
Department of Computing Science and Mathematics

University of Stirling

Using a formal user-centred model to build a

formal system-centred model

Robert G. Clark and Ana M. D. Moreira

Technical Report CSM-140

March 1997

Department of Computing Science and Mathematics
University of Stirling

Using a formal user-centred model to build a

formal system-centred model

Robert G. Clark and Ana M. D. Moreira

Department of Computing Science and Mathematics, University of Stirling
Stirling FK9 4LA, Scotland

and
Department of Informatics, Faculty of Science and Technology

New University of Lisbon, Portugal

Email rgc@compsci.stirling.ac.uk | amm@di.fct.unl.pt

Technical Report CSM-140

March 1997

Contents

Abstract iv

1 Introduction 1

1.1 Background . 1

1.2 Formal specifications from informal requirements 1

2 The systematic creation of formal object-oriented specifications 3

2.1 Introduction . 3

2.2 The two formal models . 3

2.3 Advantages of a user-centred model . 4

2.4 Related work . 4

2.5 Formalising agent views . 5

2.6 Creating a user-centred model . 6

2.6.1 Identifying agents and their views . 6

2.6.2 Formalising agent views . 7

2.6.3 Combining agent views . 11

2.6.4 Verifying, instantiating and validating agent views 11

2.6.5 The user-centred model . 12

2.7 Creating and verifying the system-centred model 13

2.7.1 Model generation . 13

2.7.2 Validation . 13

2.7.3 Verification . 13

2.8 Integration of the formal user-centred model into ROOA 14

2.8.1 The ROOA Method . 14

2.8.2 The Integration . 15

2.8.3 Summary . 16

2.9 Software Development Methods . 17

2.10 Conclusion . 18

3 The road pricing system: a case study 19

3.1 Introduction . 19

3.2 The road pricing system requirements . 19

3.3 Creating a user-centred model . 20

3.3.1 Identifying agents and their views . 20

3.3.2 Formalising agent views . 26

3.3.3 Combining agent views . 28

i

3.3.4 Instantiating and validating the user-centred model 30

3.4 Creating the system-centred model . 31

Task 1: Build an object model . 31

Task 2: Refine the object model . 31

Task 2.1: Complete the object model . 31

Task 2.2: Initial identi fication of dynamic behaviour 32

Task 2.3: Structure the object model . 35

Task 3: Build the LOTOS formal model . 38

Task 3.1: Create an Object Communication Diagram (OCD) 38

Task 3.2: Specify class templates . 38

Task 3.3: Compose the objects into a behaviour expression 39

Task 3.4: Prototype the specification . 41

Task 3.5: Refine the specification . 43

3.5 Conclusions . 43

4 Conclusions 44

Bibliography 45

A LOTOS specification of the ATM user-centred model 47

B LOTOS specification of the user-centred model of the road pricing system 51

C Object Communication Tables 62

D LOTOS specification of the system-centred model of the road pricing sys-

tem 69

ii

List of Figures

2.1 ATM Tree for an Agent View . 8

3.1 Initial object model . 21

3.2 One-point vehicle view . 21

3.3 Two-point vehicle view . 22

3.4 One-point vehicle view with no gizmo . 23

3.5 Two-point vehicle view with no gizmo . 23

3.6 Owner agent view . 24

3.7 Operator agent view . 24

3.8 Bank view for account information . 25

3.9 Bank view for automatic debits . 25

3.10 Initial object model with externally offered services 26

3.11 Initial OMT object model . 32

3.12 OMT object model with message connections 33

3.13 ETD for a vehicle passing a single toll gate and getting a green light 34

3.14 ETD for a vehicle passing a single toll gate and getting a yellow light 34

3.15 ETD for a vehicle passing a single toll gate with no gizmo 35

3.16 ETD for a vehicle successfully passing In and Exit toll gates 36

3.17 ETD for a vehicle passing In and Exit toll gates with no gizmo 36

3.18 Registration of a gizmo . 37

3.19 Refined OMT object model . 37

3.20 First version of the OCD . 39

3.21 One-point vehicle view . 40

3.22 Two-point vehicle view . 41

iii

Abstract

We have been investigating the process of constructing an executable, formal and object-

oriented specification from a set of informal requirements. This is not an easy task as there is

a wide gap between the structure and notation of a formal specification and the requirements

from which it is to be derived. It also cannot be a formal process.

As informal requirements are usually expressed in terms of the behaviour which the envi-

ronment expects from the system, we propose that the construction of a formal and executable

user-centred model should precede the construction of a formal object-oriented specification.

By prototyping the user-centred model, we can both validate it with respect to the require-

ments and show up inconsistencies in the requirements. The user-centred model can then be

used to support the construction of a formal system-centred model, i.e. the object-oriented

specification.

When both models are expressed in the same executable formal language, the informal

task of validating the object-oriented specification with respect to the requirements can be

replaced by verifying that it is equivalent to the user-centred model. We already have the

ROOA (Rigorous Object-Oriented Analysis) method, which proposes a process to build a

formal system-centred model. Now we are proposing a process to build a user-centred model.

As an example of this approach, we show its use within the ROOA method.

iv

Chapter 1

Introduction

1.1 Background

As we believe that there are many benefits in a formal approach to software development,

we have been investigating how formality can be introduced into the object-oriented analysis

process. The first result of this study was the Rigorous Object-Oriented Analysis (ROOA)

method [13, 14, 15, 16, 17].

The ROOA method provides a process for the systematic construction of an executable,

formal and object-oriented specification from a set of informal requirements. The aim is to

give a complete and accurate description of the static, dynamic and functional aspects of a

problem in terms of entities from the problem domain. This specification can be analysed for

syntactic or static semantic errors, can form the basis for formal reasoning and can be used

as the starting point in a formal development trajectory.

In ROOA, the object-oriented specification is expressed in the formal description tech-

nique LOTOS [3]. As LOTOS specifications are executable, rapid prototyping can be used

to ensure completeness and consistency and for validation with respect to the requirements.

The systematic creation of a formal model, combined with rapid prototyping, shows up in-

consistencies, contradictions, ambiguities and omissions in the requirements sufficiently early

in the development that feedback can be given to the requirements capture process.

1.2 Formal specifications from informal requirements

A major objective of the ROOA method is to provide a systematic process whereby an initial

formal requirements specification can be developed from a set of informal requirements. This

cannot be a formal process. It is also far from simple as there is a wide gulf between the

structure and notation of the specification and of the requirements from which it is to be

derived. In this report, we propose a means of narrowing this gap.

Informal requirements are usually expressed, and are most easily understood, in terms

of the behaviour which the environment expects from the system. We therefore propose

that the construction of a formal and executable user-centred specification should precede

the construction of a formal object-oriented specification. As a user-centred specification

(or model) specifies the system in terms of the behaviour expected by the environment, it

is closer to the requirements and is therefore easier to create than a system-centred object-

oriented specification. The gap between the informal requirements and the initial formal

1

Chapter 1. Introduction 2

specification has therefore been narrowed. When the user-centred specification is expressed

in LOTOS, prototyping can be used to validate it with respect to the informal requirements.

The formal user-centred model can then be used to help in the construction of the formal

object-oriented specification, i.e. the system-centred model. When both models are expressed

in the same executable formal language, they can be composed, and the composition exe-

cuted, to increase our confidence that the object-oriented specification exhibits the expected

behaviour.

We therefore construct a formal user-centred model, validate it with respect to the re-

quirements and then use the model as an aid in the construction of a formal object-oriented

specification. Once we have an initial formal specification, it is possible, at least in theory, to

verify that it is equivalent to subsequent specifications. Therefore instead of validating that

the object-oriented specification satisfies the informal requirements, we can verify that it is

equivalent to the user-centred model.

Although our examples describe how a formal user-centred model can be integrated into

the ROOA method, we believe that the approach of initially producing a user-centred model

before proceeding to the construction of a system-centred model has general applicability and

can be used with other methods and with different formal languages.

In Chapter 2, we describe the process to be followed in the building of a formal user-

centred model and how it can be used as a step in the creation of a system-centred model.

We then describe how we can verify that the two models are equivalent and how this approach

can be integrated into the ROOA method.

In Chapter 3, we apply the method to a case study and create a user-centred model which

is validated with respect to the requirements. It is then used in the creation of a ROOA

system-centred model and we examine how the two models can be shown to be equivalent.

Chapter 2

The systematic creation of formal

object-oriented specifications

2.1 Introduction

In this chapter, we first define a step by step process to be followed in the construction

of a formal and executable user-centred model. We show how prototyping this model can

both help our understanding of, and show up inconsistencies in, the informal requirements.

Prototyping is also used to validate the user-centred model with respect to the requirements.

We then show how the user-centred model can be used as an intermediate step in the building

of a formal object-oriented specification.

As an example of the approach, we describe how the construction of a formal user-centred

model can be integrated with ROOA method. As both the user-centred and ROOA models

are specified using the same executable formal language, we can compose the two models

and prototype the resulting specification to increase our confidence that the ROOA model

exhibits the correct behaviour. We then describe how verifying that the user-centred and

ROOA models are equivalent can replace the task of validating the ROOA model.

2.2 The two formal models

The user-centred model is concerned with the interaction of the environment with the system

as seen from the viewpoint of the environment. The environment includes human users,

hardware devices and other software components which we refer to collectively as agents.

The user-centred model is a set of agent views where each agent view describes, from the

viewpoint of an agent, a way in which the system is to be used. An agent view is concerned

with the role being played. For example, a particular human being can play different roles

and therefore take part in more than one agent view while several different people can play a

similar role and therefore take part in different instances of the same agent view.

To summarise, the focus in the user-centred model is on the way agents use the system,

not on the system itself.

The system-centred model is concerned with modelling an idealised view of the system and

its interaction with the environment. It is the formal requirements specification of the system

from which the design and eventual implementation will be developed.

3

Chapter 2. The systematic creation of formal object-oriented specifications 4

2.3 Advantages of a user-centred model

The idea of constructing two models is not new. The major difference in our approach is that

we propose the construction of two formal models both of which are expressed in the same

executable specification language. As the user-centred model is concerned with events, i.e.

interactions between the environment and the system, it is best expressed in an executable

event-oriented formal language such as LOTOS [3].

A formal user-centred model provides the following benefits:

• It allows a formal model to be produced earlier in the development. This enables us

to reason about the system behaviour and the requirements before the formal object-

oriented specification exists.

• It is closer to the requirements and hence more easily understood and checked for validity

by clients.

• It helps identify areas in which the requirements are vague or inconsistent. This will

support the formulation of questions so that the human agents can clarify their require-

ments.

• It helps identify ambiguities and contradictions in the views of different agents.

• As each event in the user-centred model will have a direct counterpart in the object-

oriented specification, the user-centred model can act as an intermediate step in the

construction of the formal object-oriented specification.

• It identifies the services to be provided by the object-oriented specification, i.e. the

external events in which the system takes part. The identification of the required

services helps in the identification of objects in the object-oriented specification.

• It helps us determine the boundary between the environment and the system.

• The formal step of verifying that the user-centred and object-oriented specification are

equivalent can replace the informal step of validating the object-oriented specification

with respect to the requirements.

2.4 Related work

The creation of a formal user-centred model has also been proposed by Hsia et al. [10].

However, they do not:

• use an executable specification language,

• deal with how the development of a user-centred model can be integrated into the

development of a formal system-centred model,

• deal with object-oriented development.

In the requirements analysis phase of the Object-Oriented Software Engineering (OOSE)

method, Jacobson [11] proposes the construction of a requirements model and an analysis

model which correspond, in some respects, to our user-centred and system-centred models.

Chapter 2. The systematic creation of formal object-oriented specifications 5

The OOSE requirements model is composed of a use case model and a simplified object

model called a domain object model. A use case describes possible complete sequences of

events which occur in response to some action initiated by an agent. Unlike our agent views,

use cases include both interactions of an agent with the system and the consequent interactions

between objects in the domain object model. The use case model is the complete set of use

cases.

Once a requirements model has been created, the next stage in OOSE is structuring

the information. This results in the analysis model which can be used as the base for the

subsequent design stage. The OOSE models are not specified in a formal language although

Regnell et al. have shown how this can be achieved for the use case model [20].

Use cases have recently been introduced into Rumbaugh’s OMT [22]. In Object Behaviour

Analysis (OBA), use scenarios play a similar role to use cases [21].

Glinz has shown how scenarios can be specified using Statecharts [8]. Although he proposes

that the specified scenarios can be integrated to provide a complete specification, he does not

demonstrate how this can be done when scenarios interact with one another. He also states

that future work will involve specifying both the user and system aspects of a problem in a

single Statechart specification, but does not show how this can be done or provide a systematic

development process.

LOTOS was designed to be used in the specification of OSI systems. With such systems,

a service specification is produced initially to describe the system in terms of its external

behaviour. This is then followed by a lower level protocol specification which includes internal

structure [5, 25]. Although there may appear to be a similarity between a service specification

and our user-centred model, the focus is different. Our user-centred model is concerned with

the roles played by the agents which constitute the environment and their view of the system

while a service specification can be regarded as a very high-level system-centred model.

Amyot et al. [1] use LOTOS to formalise what they call Timethreads, i.e. execution paths

through the system. However, their approach is more concerned with the system-centred

rather than with the user-centred model.

There is a similarity between our approach and work on specification via viewpoints [12,

18]. As with agent views, viewpoints promote a separation of concerns. However, as different

viewpoints are developed by different participants using different notations, the integration

of viewpoints is difficult. Agent views are more restricted than viewpoints as they are only

concerned with the direct interactions between the environment and the system. A major

problem in understanding and capturing user requirements is being overwhelmed by their

complexity which is why we believe that restricting our attention to external events and a

single specification language is a virtue.

2.5 Formalising agent views

When an agent interacts with a system there will often be a set of possible behaviours which

can take place. Consider, for example, the situation in which we lift a phone and dial a

number. The call may, or may not, be answered. An agent view is the set of such possible

behaviours and it fully defines the agent’s interaction with the system. An agent view can

be represented by a tree which shows the possible alternative event sequences. We refer to a

particular path through the tree, i.e. a sequence of external events, as an agent scenario.

We can regard the definition of an agent view to be a class template which requires

Chapter 2. The systematic creation of formal object-oriented specifications 6

possible alternative series of services from the system. However, although an agent view

defines behaviour and encapsulates a state, each instance is not really an object as it does

not have an object identifier. The construction of an agent view does help us identify the

objects which will provide the services required by the agent. Hence, a simple object model

is constructed in conjunction with the agent views.

In the early stages of analysis, it is important that we do not get bogged down in detail.

This is especially important when an executable formal model is being produced as it will

necessarily contain more detail than an informal model. That is why we formalise agent views

rather than use cases; formalising complete use cases would introduce too much detail because

they deal with internal system interactions as well as with external behaviour and it is the

external behaviour with which we are concerned at this stage. Also, use cases do not provide

a clear distinction between the user-centred and system-centred models.

Our formal user-centred model therefore consists of a set of consistent and validated agent

views which describe all aspects of how the system is to be used. Each agent view interacts

with the objects which provide the external behaviour of the system as seen from that agent’s

point of view. A major part of the construction of the model is the resolution of inconsistencies

and contradictions in the views and expectations of the different agents.

In general, an agent’s interaction with the system will involve other agents. One agent

may initiate a scenario, e.g. make a phone call, but that also involves a second (dependent)

agent, namely the person being called. Initially, we concentrate on single-agent views. In the

phone call example we would have two single-agent views, one for the caller and one for the

person being called. Later, the two single-agent views can be composed to form a multi-agent

view which describes the set of possible interaction sequences involving both the calling and

receiving agents and the telephone system.

The main advantage of dealing with single-agent views is their simplicity. They give us

a place to start when handling large complex requirements. They provide a separation of

concerns; at any one time we focus on a single agent’s view of the services the system is to

provide. They are therefore ideal in giving feedback to potential users who can check that

their requirements have been interpreted correctly. For similar reasons, in their modification

of OOSE, Regnell et al. only deal with single-agent use cases.

If agent views are to give feedback to potential users, it is important that they can be

executed. The formal language used in their representation must therefore be executable. As

we can regard the definition of an agent view to be a class template, it can be instantiated

to give an object which can be executed to show different possible sequences of interactions

between the environment and the system.

2.6 Creating a user-centred model

2.6.1 Identifying agents and their views

From the requirements, and in consultation with the users, we identify:

• the agents which make up the environment,

• the entities (interface objects) through which the environment and the system interact.

This information is used to create an initial object model. (Typically, more entities and agents

will be identified later during the analysis process and the object model will be refined.)

Chapter 2. The systematic creation of formal object-oriented specifications 7

The next step is to identify the ways in which the agents can interact with the system.

These are the agent views. For each agent view, we:

• construct an agent tree to give a graphical description of the possible event sequences

which make up each agent view by:

– identifying the events which make up the interaction between the environment and

the system,

– allocating the events to the appropriate interface objects,

– identifying the alternative event sequences which make up the agent view,

– adding the ordered events to the tree as nodes with each event being represented

by the pair: 〈class template〉.〈event〉,

• refine the object model by:

– adding any new interface objects to the object model,

– determining which events correspond to services offered by interface objects to the

environment,

– adding these offered services to the object model.

Several agent views will often use the services offered by the same object. Creation of the

object model helps ensure that the different agent views use identical names for objects and

services which are essentially the same.

In the specification of an automated banking system customers may interact with the

system through ATMs or by going to the bank and dealing with human tellers. Although a

customer may do either, they act as different agents in these two circumstances.

We must construct trees for these two agent views together with trees for all the other

agent views of the banking system. A tree for the ATM agent view is given in Figure 2.1.

Each path through the tree provides an agent scenario. In this example, the agent view is

self standing and so there is no difference between a single and a multi-agent view.

The requirements will show that the ATM is composed of the following entities: card

reader, keypad, screen, dispenser and printer. They correspond to the objects in the system

interface with which the agent view may interact. The set of objects may change as the

development of the specification proceeds.

Rather than duplicating large parts of the tree, a shorthand is used to represent iteration.

The subtree to be duplicated is labelled as is the branch where the copy of the subtree is

to be inserted. Care must be taken to ensure that the tree only describes terminating agent

scenarios. In the ATM example, for instance, invalid passwords may be given several times.

However, all agent scenarios terminate as the requirements will specify a limit on the number

of incorrect attempts. When the limit is exceeded, the ATM will retain the card.

2.6.2 Formalising agent views

As the semantics of a LOTOS process definition can be represented as a tree, it is straight-

forward to construct the outline of a LOTOS process definition from the tree representing an

agent view:

Chapter 2. The systematic creation of formal object-oriented specifications 8

(Stolen Card)
1

1

(When too many
 wrong passwords)

(When password try
 limit not passed)

Screen.insert_card

Card_Reader.insert_card

Screen.rep_invalid

Card_Reader.return_card

Screen.ask_passw stop

Card_Reader.take_card

Keypad.cancel

stop
Card_Reader.return_card

Card_Reader.take_card

stop

Keypad.give_passw

Screen.choose_service stop Screen.rep_invalid

Keypad.withdraw

Card_Reader.return_card

Keypad.balance

Printer.get_info

Card_Reader.return_card

Card_Reader.take_card

stop

stop

Card_Reader.take_card

Card_Reader.return_card

Screen.no_paper

Keypad.cancel

stop

Keypad.cancel

Card_Reader.return_card

Card_Reader.take_card

stop

Screen.take_card

Keypad.amount

Screen.no_funds

Card_Reader.return_card

Card_Reader.take_card

stop

Card_Reader.return_card

Card_Reader.take_card

Dispenser.give_money

Dispenser.take_money

stop

Screen.request_amount

Card_Reader.take_card

Figure 2.1: ATM Tree for an Agent View

Chapter 2. The systematic creation of formal object-oriented specifications 9

• At each node of the tree, the first event of each branch will be offered as an option in a

LOTOS choice expression.

• If the same subtree appears more than once, it is defined as a separate process and an

instantiation of that process is inserted instead of the LOTOS code for the subtree.

The LOTOS process definition does however contain a significant amount of additional

material, namely the information which is to be passed when the agent and the system

interact. We must return to the informal requirements to determine what information is

required at each stage and its source. This frequently shows up omissions, ambiguities and

general vagueness in the requirements which must be rectified.

In LOTOS, processes interact with one another through gates. We can regard the LOTOS

process definition of an agent view to be a class template with an object being represented

by the instantiation of the LOTOS process. As class templates offer their services at different

gates, the LOTOS definition of an agent view requires a separate gate for each class of interface

object with which it interacts. We do not give an introduction to the LOTOS language in

this report. A tutorial introduction is available in [3]

The LOTOS process definition for the ATM agent view given in Figure 2.1 is given below.

It uses the gates: cdr, kpd, scrn, disp and pr to interact with the five interface objects given

above. Each event has the following structure:

<gate> <message name> <object identifier> <optional parameters>

The complete LOTOS specification is given in Appendix A and includes the definitions

of the sorts Atm and Customer.

process Atm_Agent[cdr, kpd, scrn, disp, pr](a: Atm, c: Customer) : exit :=

cdr !insert_card !Id(a) !Id(c) !Card_No(c);

(scrn !rep_invalid !Id(a) !Id(c);

Return_Card[cdr](a, c)

[]

(* Stolen card, transaction stopped, card not returned *)

exit

[]

scrn !ask_passw !Id(a) !Id(c);

Check_Passw[cdr, kpd, scrn, disp, pr](a, c, 0)

)

endproc (* Atm_Agent *)

process Return_Card[cdr](a: Atm, c: Customer) : exit :=

cdr !return_card !Id(a) !Id(c);

cdr !take_card !Id(a) !Id(c);

exit

endproc (* Return_Card *)

process Check_Passw[cdr, kpd, scrn, disp, pr](a: Atm, c: Customer, num: Nat)

: exit :=

kpd !give_passw !Id(a) !Id(c) !Password(c);

Chapter 2. The systematic creation of formal object-oriented specifications 10

([num lt succ(succ(0))] ->

scrn !rep_invalid !Id(a) !Id(c);

Check_Passw[cdr, kpd, scrn, disp, pr](a, c, succ(num))

[]

[num eq succ(succ(0))] ->

(* Too many wrong passwords *)

exit

[]

Atm_Trans[cdr, kpd, scrn, disp, pr](a, c)

)

[]

Cancel[cdr, kpd](a, c)

endproc (* Check_Passw *)

process Atm_Trans[cdr, kpd, scrn, disp, pr](a: Atm, c: Customer) : exit :=

scrn !choose_service !Id(a) !Id(c);

(kpd !withdraw !Id(a) !Id(c);

scrn !request_amount !Id(a) !Id(c);

kpd !amount !Id(a) !Id(c) ?am: Money;

(scrn !no_funds !Id(a) !Id(c);

Return_Card[cdr](a, c)

[]

scrn !Take_Card !Id(a) !Id(c);

Return_Card[cdr](a, c)

>> (disp !give_money !Id(a) !Id(c);

disp !take_money !Id(a) !Id(c);

exit

)

)

[]

kpd !balance !Id(a) !Id(c);

(scrn !no_paper !Id(a) !Id(c);

Return_Card[cdr](a, c)

[]

pr !get_info ?am: Money;

Return_Card[cdr](a, c)

)

[]

Cancel[cdr, kpd](a, c)

)

endproc (* Atm_Trans *)

process Cancel[cdr, kpd](a: Atm, c: Customer) : exit :=

kpd !cancel !Id(a) !Id(c);

Return_Card[cdr](a, c)

endproc (* Cancel *)

Chapter 2. The systematic creation of formal object-oriented specifications 11

There is repetition in the agent tree as some events are possible at different times; for

example, cancellation of the transaction by the agent. We factor such events to make the

specification simpler. The LOTOS specification also gives more information as it shows the

information to be passed during each event.

It will be noted that many of the tree nodes have alternative child nodes. In some of these

cases, it is the agent who decides what is to be done next; in others it is the system which

will decide. We do not need to distinguish between the two situations at this stage.

2.6.3 Combining agent views

Although, in this case, the individual agent view is self standing, in general dealing with

individual agent views is not sufficient to specify external system behaviour fully; e.g. a

person cannot respond to a phone call before the caller has made the call.

Agent views must therefore be combined. If two agent views View 1 and View 2 are

completely independent of one another, then they can be composed using the interleaving

operator:

View_1[s] ||| View_2[t]

However, when two views are not independent, this composition does not work as it does not

constrain the relative ordering of the events in View 1 and View 2.

In the specification of OSI systems [25], a service specification is produced using the

constraint oriented style in which behaviour is expressed as sets of constraints operating at

external interfaces. There are local constraints which define the order of the services provided

to (or required by) a single agent and end-to-end constraints which define the interaction

between agents.

A similar approach can be used to construct multi-agent views from single-agent views.

Given that View 1 and View 2 define two single-agent views which are dependant on one

another, their combined effect can be specified by the LOTOS behaviour expression:

(View_1[s] ||| View_2[t])

|[s, t]|

Constraint[s,t]

where process Constraint defines the interaction between the single-agent views.

An example of such a constraint is given in Section 3.3.3.

2.6.4 Verifying, instantiating and validating agent views

The LOTOS process definition of each single-agent view can be instantiated to give a single-

agent view object. Such an object offers a set of alternative execution sequences. Execution

of a LOTOS behaviour expression using a simulator such as SMILE [7] creates a tree showing

all possible event traces. As this should have the same structure as the original agent tree,

we have a simple check to verify that an agent tree has been correctly specified in LOTOS.

The LOTOS SMILE simulator allows the use of uninstantiated variables instead of values.

As SMILE is able to determine when a combination of conditions can never be true, a single

instantiation of an agent view can deal with a set of similar agent instances rather than be

instantiated for a particular agent instance.

The LOTOS process definition for an agent view can be instantiated from a process with

the structure:

Chapter 2. The systematic creation of formal object-oriented specifications 12

process X_Tree[gates, success](parameters) : noexit :=

X_Agent[gates](parameters) >> success; stop

endproc

The occurrence of the success event during simulation indicates that the an agent view has

been successfully executed.

Initially, we execute single-agent view objects independently; this demonstrates the pos-

sible behaviours that an agent expects from the system. When an agent’s interaction with

the system involves other agents, single-agent views can be composed as described in Sec-

tion 2.6.3. Their instantiation results in a multi-agent view object which can be executed to

ensure that the complete set of possible events has been properly described.

The process of composing agent views can show up inconsistencies. When this happens,

we return to the agent view identification step, make the appropriate changes in one or more

single-agent views and repeat the subsequent steps.

It will often be the case that two or more agent views will describe what are best described

as variants of one another. When two such agent views require the same initial sequence of

events from the system, they must be combined to form a single agent view.

2.6.5 The user-centred model

The behaviour that the environment expects from the system is the composition of all the

agent views. Hence, the formal user-centred model is the composition, using the interleaving

operator, of the LOTOS specifications of all the agent views. This behaviour expression is

then composed in parallel with the constraint processes which define their interactions.

If the resulting user-centred model is prototyped, the number of alternative events offered

is too large to be handled conveniently. The user-centred model must therefore be composed

with a Test process with the following structure [19]:

process Test[gates, success](parameters) : noexit :=

Scenario[gates](parameters) >> success; stop

endproc

Each scenario is derived directly from a single or multi-agent view and defines a behaviour

which the user-centred model must satisfy.

Validation of the user-centred model is by executing a series of such test compositions

to demonstrate that the expected behaviour is supported, i.e. that the success event is

reached. Initially, we prototype interactively to explore particular execution paths. However,

that will not usually allow all possible paths to be explored. Hence, once we have shown

that the composition is successful for at least some execution paths, we replace interactive

prototyping with the use of LOLA [19] which can automatically perform a complete state

exploration of the composition of a specification and a test process. LOLA reports one of

three possible results:

MUST where all possible execution paths lead to the success event.

MAY where at least one execution path leads to the success event.

REJECT where no execution path leads to the success event.

This enables us to verify whether or not a particular test has been satisfied.

Chapter 2. The systematic creation of formal object-oriented specifications 13

2.7 Creating and verifying the system-centred model

2.7.1 Model generation

We now construct a formal system-centred model which satisfies the agent views. The formal

user-centred model is a major help in the development of the system-centred model. For

example, as the interactions between an agent and the system are often not through a single

interface object, the agent view specifications help partition behaviour among the different

interface objects.

Each event in an agent view can be the starting event for (part of) an event trace diagram.

Many of the required objects will already have been identified and be represented in the initial

object model. Constructing event trace diagrams identifies the message passing between these

objects and often shows the need for new operations and may show the need for new objects.

When several agent views use the services offered by one interface object, we must check

that they do not make incompatible demands. This gives us a further means of discovering

inconsistencies and contradictions in the requirements. Their resolution will often require us

to go back to the users for further or revised information.

It is possible that two agent views will have used different names for objects or services

which are essentially the same. The definition of the system-centred model will help identify

any such occurrences so that they can be rectified.

2.7.2 Validation

The system-centred model must support the behaviour specified by the user-centred model.

We must verify that all the required services are provided.

As the system centred model is expressed in the same formal language as the user-centred

model, the two specifications can be composed and the composition executed using the same

test cases that were used for the validation of the user-centred model. Interactively pro-

totyping the composed system allows us to explore interesting execution paths to increase

our confidence that the system-centred model offers the expected behaviour. This is very

important during the creation of the system-centred model. Interactive prototyping will nor-

mally be too time consuming to demonstrate that all execution paths of the composed system

terminate successfully; for that we use LOLA.

The user-centred and system-centred models are two alternative ways of formally speci-

fying the same system. Our next step is therefore to demonstrate that the two specifications

are equivalent.

2.7.3 Verification

There are many different definitions of what it means for two specifications to be equivalent,

but the only one which can be applied in practice to large specifications is testing equivalence.

In testing equivalence, the specifications under test are regarded as black boxes, i.e. we

only consider external behaviour, internal structure is ignored. The two specifications are

composed with test processes in the same way as was described in the validation of the user-

centred model in Section 2.6.5. However, we are not now concerned with the informal process

of showing that the formal user-centred model satisfies the informal requirements, but with

the formal process of demonstrating that the two formal models cannot be distinguished by

experiment.

Chapter 2. The systematic creation of formal object-oriented specifications 14

Two specifications A and B are testing equivalent if every MUST or MAY test on A gives

the same result with B and vice versa. Using LOLA allows a complete state exploration of

the composition of each of the user-centred and system-centred models with each test process

and reports each of the results as MUST, MAY or REJECT. The drawback is, of course, that

the set of test processes is not complete. However, by judicious choice of a sufficiently large

number of tests we can have reasonable confidence that the specifications are indeed testing

equivalent [19].

2.8 Integration of the formal user-centred model into ROOA

2.8.1 The ROOA Method

The aim of the ROOA method is to construct a formal object-oriented model of the observable

behaviour of a system. It involves three tasks. In Tasks 1 and 2, it uses the techniques of

informal object-oriented analysis methods such as [6, 11, 21, 23] to build an object model

and part of the dynamic model from a set of informal requirements. In Task 3, we build

the formal system-centred model (the ROOA model). The construction of a system-centred

model is shown in Chapter 3.

The ROOA model is expressed in LOTOS and acts as a formal requirements specification.

Prototyping is used to validate the specification against the requirements. Informal require-

ments normally contain inconsistencies, contradictions, ambiguities and omissions. Some of

these errors will be detected and resolved during the process of constructing the formal spec-

ification while others will be found when prototyping the specification. The ROOA method

enables these errors to be detected sufficiently early in the development so that feedback can

be given to the requirements capture process.

When a problem is process-oriented, only a very simple object model showing the most ob-

vious objects and associations can be constructed without considering dynamic behaviour [17].

This simple object model corresponds to what Jacobson calls the domain object model [11]. In

such cases, scenarios and event trace diagrams already play an important part in the ROOA

method and help to identify the objects and their interactions and to identify dynamic be-

haviour. However, the introduction of a formal user-centred model is a major change of

emphasis. Once the user-centred model has been created, it is used directly in the construc-

tion of the ROOA specification.

In the validation phase of the ROOA method, scenarios are encoded in LOTOS, and used

as test cases to drive the ROOA model to demonstrate that the specification has the expected

external behaviour. Here again, the introduction of a formal user-centred model gives a major

change of emphasis. By the time we reach the validation phase, we already have two formal

models. The two models are composed and their composition executed. Interesting execution

paths are explored interactively to increase our confidence in the behaviour of the system-

centred model. Prototyping with agent views rather than with agent scenarios gives a much

wider coverage of the required behaviour.

We then use a tool such as LOLA which supports the automatic exploration of the com-

plete state space of the composition of a specification and a test process to verify that the

user-centred and ROOA models are testing equivalent.

Chapter 2. The systematic creation of formal object-oriented specifications 15

2.8.2 The Integration

The system-centred model is built following the ROOA method, but takes advantage of the

user-centred model and of the initial object model which has already been created.

The ROOA method involves three main tasks:

1. build an object model;

2. refine the object model;

3. build and validate the LOTOS ROOA model.

Task 1

Task 1 includes the construction of an initial object model which is then enhanced by applying

the ideas of object-oriented analysis methods, such as OOSE [11] or OMT [23]. The user-

centred model is a major help in identifying objects.

Task 2

To refine the object model we use the user-centred model to identify dynamic behaviour to

help us:

• add more objects to the object model;

• identify services offered by each object;

• identify message connections between objects.

We start with an event in an agent view. This identifies the interface object which is to

synchronise with this event. We then determine the internal system objects and the object

interactions (message connections) which are required to satisfy the requested behaviour and

record the information in an event trace diagram (ETD). Each agent view may identify the

need for new class templates or it may suggest additional services to be added to the existing

class templates in the object model.

The requested behaviour will often require the involvement of other agents. This process

therefore enables multi-agent views to be constructed. The composition of single-agent views

to form a multi-agent view will show up any contradictions in the different agent views.

Task 3

The first step is to construct an Object Communication Diagram (OCD), i.e. a graphical

representation of the ROOA model. The development of the ROOA model starts with the

specification of the model’s interface objects which are identified by examining the user-

centred model. They must offer the services demanded by the agent views.

Although the ETDs show the possible sequences of object interactions (event synchro-

nisations) required to respond to events in the user-centred model, they do not give any

information about the data to be passed. It is the formal user-centred model which details

the data passed to the system, and expected from the system, when an agent view and an

interface object synchronise on an event. This information is used directly in the construction

of the definitions of the interface objects in the system-centred model: each external event in

Chapter 2. The systematic creation of formal object-oriented specifications 16

an interface object synchronises with an event in one or more agent views and so the number

and sorts of its parameters is fully determined by the number and sorts of the parameters in

the corresponding event in the agent view.

The synchronisation between an interface object and an agent view is typically followed

by one or more object interactions between the interface object and other objects in the

system-centred model. These object interactions may then be followed by an event where the

interface object reports back to the agent view. The purpose of each object interaction is to

carry out (part of) the wishes of the agent view. The decision about the number and sorts of

the parameters required in the object interactions is therefore driven by the data exchanged

in the interactions between the agent view and the interface object.

Once the event structure of the object interactions in an interface object has been deter-

mined, the same approach can be used to determine the structure of the events in the objects

with which it synchronises with the interface object playing the role of an agent view. In this

way the number and sorts of the parameters in all the object interactions can be determined.

As we are using a formal language, we can ensure that synchronising events properly match

with one another with respect to the number and sorts of their parameters.

The single ROOA model must cater for all the different agent views. Each agent view

describes the expected behaviour of the system from the point of view of a particular agent.

When we come to specify the system-centred model which is to satisfy this behaviour, it

is not unusual for incompatibilities to appear in the expectations of different agents. The

resolution of these contradictions will often require us to go back to the users for further or

revised information.

The user-centred model plays an important role when we validate the ROOA specifica-

tion. As the user-centred model has already been validated with respect to the informal

requirements, validation of the ROOA specification is now concerned with the formal task of

verifying that it is equivalent to the user-centred model.

The ROOA method is iterative. In later iterations, the formal user-centred model, the

informal object model and the formal ROOA model are developed in conjunction. This is

especially important in tracing the consequences of a change in the requirements.

2.8.3 Summary

Having the ROOA and user-centred models represented in the same formal language has

significant advantages:

• We can integrate the information (services and objects) found during the construction

of the user-centred model into the system-centred model.

• We can compose both models to verify that the system-centred model offers all the

services required by the user-centred model and execute the resulting specification to

validate the system-centred model. This may require changes in both models and in

the requirements.

• We can trace how a change in one model affects the other.

• As the ROOA model must be able to provide the behaviour expected by all the agent

views, we can identify inconsistencies and contradictions in the views making up the

user-centred model. Resolving such inconsistencies plays a major part in clarifying the

requirements.

Chapter 2. The systematic creation of formal object-oriented specifications 17

• We can validate the user-centred model against the informal requirements and then

verify that the user-centred and ROOA models are equivalent.

2.9 Software development

Object-oriented development is best suited to software life-cycle models in which incremental

and iterative development is an explicit and important component. Two examples are the

Spiral Model [2] and the Fountain Model [9].

We are concerned with the activity of object-oriented analysis and believe that our ap-

proach can fit within these development methods; it can be continually revisited as a system

is incrementally developed. Also, as we produce a formal requirements specification, our

method can form the first stage of a formal development trajectory where the design and

eventual implementation are automatically developed from, and can be verified against, the

specification.

We propose the use of an executable specification language. Our approach therefore

not only consists of constructing formal user-centred and system-centred models, but also

prototyping these models both to give feedback to requirements capture and to validate the

models. It therefore contains, within the analysis phase, activities which normally take place

in later phases.

Requirements are often vague, inconsistent or incomplete and be open to misinterpreta-

tion. Capturing and then specifying the requirements as agent views forces their unambiguous

description. This enables us to identify problems in the requirements very early in the devel-

opment and to formulate questions to users so that we can have clarification. Execution of

the agent views shows up the consequences of the clients’ demands and these can be passed

back to the clients to ensure that they are indeed intended.

This is especially useful when the requirements have not been fully developed and ex-

ploration is needed to help clarify what is required. As prototyping can be done quickly,

it allows us to try out alternative ideas and report results back to the clients for comment.

This is a great aid in helping them clarify their ideas; seeing the consequences of their initial

requirements can help a client refine the existing, or formulate further, requirements.

The creation and execution of the formal system-centred model enables further checks to

be made on the suitability of the clients’ requirements. It is at this stage that we might find

that two agent views lead to incompatible demands on the system which cannot be satisfied.

This is especially useful during exploration as it indicates that the requirements must be

rethought.

We do not propose that a complete user-centred model is created before we proceed to

the creation of the system-centred model. Instead, it is best if an incremental approach is

adopted. With incomplete requirements, some parts will be well understood while others will

not. Those parts of the requirements which are best understood can be modelled first. This

subset of the user-centred model can be executed to ensure that it behaves according to the

clients’ expectations. This will give both us and the clients a better understanding of the

system. The corresponding part of the system-centred model can then be created and, when

the two models are written in the same executable specification language, the models can

be composed and the composition executed. Prototyping of both the user-centred and the

composed models gives feedback to the requirements capture process enabling further agent

views to be formulated and existing ones refined. In this way both the user and system-centred

Chapter 2. The systematic creation of formal object-oriented specifications 18

models can be developed incrementally.

2.10 Conclusion

This chapter presents a process we can follow in building a formal user-centred model. A

user-centred model consists of a set of agent views which represent the external behaviour

that agents expect from the proposed system. The advantage in defining a user-centred model

is that we can can easily identify the behaviour that the system is expected to provide. Also,

a user-centred model can help in the construction of the formal system-centred model and in

the clarification of the informal requirements.

When the system-centred model is built using the ROOA method, we have the advantage

that processes in both are specified using LOTOS. Therefore, we can use LOTOS tools to

prototype the user-centred model to validate it with respect to the requirements and then

verify that the system-centred ROOA model is equivalent to the user-centred model.

Chapter 3

The road pricing system: a case

study

3.1 Introduction

In this chapter we use a case study to show how a user-centred model can be built by following

the process presented in Chapter 2. We then show how this model can be used to help create

and validate a system-centred model.

The user-centred model is specified in LOTOS. We use LOTOS tools to prototype the

external behaviour of the system and to identify ambiguities, omissions and contradictions in

the original set of requirements.

As the system-centred model is built using the ROOA method, it is also specified us-

ing LOTOS. The obvious advantage is that we can integrate the two models and use the

user-centred model to verify and validate the system-centred model. Another important ad-

vantage is that we can easily integrate the information (services and objects) found during

the construction of the user-centred model into the system-centred model.

3.2 The road pricing system requirements

As part of a road traffic pricing system, we require an automated system which will enable

drivers of authorized vehicles to be charged at toll gates without having to stop. Drivers

must install a device (a gizmo) in their vehicle. (Each gizmo can only be used within a single

vehicle. Therefore, if a person has two cars, he or she has to have two gizmos.) Authorized

vehicles must have a registration which includes vehicle details, the owner’s personal data

and an account number from where automatic debits are done monthly.

Each gizmo has an identification number which is read by the sensors installed in special

lanes at the toll gates. Let us call those lanes green lanes. With the information given by a

sensor, the system can then store the necessary information so that the specified bank account

can be debited.

When an authorized vehicle passes through a green lane, a green light is turned on and the

amount being debited is shown in a big display. If an unauthorized vehicle passes through a

green lane, a yellow light turns on and a camera photographs the vehicle registration number.

(Later, the owner of the vehicle will be fined.)

Different types of vehicles pay different rates.

19

Chapter 3. The road pricing system: a case study 20

There are two kinds of green lane: one where all vehicles of the same type pay the same

fixed amount (e.g. at a toll bridge) and one where the amount to be paid depends on the

distance travelled. For example, a car which uses 50 miles of a motorway pays less then a car

which uses 100 miles of the same motorway. For this, the system has to store the entrance

point and the exit point, for each vehicle.

We want to model the part of the system which receives the information from the gizmos,

determines whether the vehicle is authorized, displays the amount to be debited, turns on

the appropriate light, triggers a photograph when necessary, and deals with the automatic

account debits.

3.3 Creating a user-centred model

To create a user-centred model we must accomplish four main tasks:

1. identify agents and their views;

2. formalise agent views;

3. combine agent views;

4. instantiate and validate agent views.

3.3.1 Identifying agents and their views

By the end of this task we will have identified the agents which interact with the system, the

views each one has of the system, and, as a result, the interface objects which allow those

interactions.

Identifying agents, interface objects and agent views

The first question to ask ourselves is: what interacts with the system? The first agent we may

think of is the gizmo installed in a vehicle. A vehicle uses a toll gate and has a driver. We

regard the composite vehicle-driver-gizmo to be a single agent which we refer to as vehicle.

Another agent is the owner of the vehicle. He or she has to buy a gizmo and be registered

before being able to use the green lanes. A third agent is the bank. This agent behaves

differently from the other two. While the first two require services from the system, the bank

offers services to the system.

The second question to answer is: how does each agent view the system? In order to

answer this, we imagine ourselves to be the agent and describe what we see when we use

the system. As part of this process, we identify the interface objects with which we, the

agents, interact. This has the advantage of helping in the creation of the object model of the

system-centred model.

The first obvious interface object is a toll gate. The vehicle agent (i.e. the driver) sees and

uses a toll gate, but it also knows about its components. For example, it sees a light turning

green or yellow, sees the amount shown in the display, knows that there must be a sensor

which identifies its gizmo, and also knows that if the light turns yellow a photograph of its

plate number will be taken. Therefore, a toll gate is an object which has four components.

The vehicle agent also knows that there are different types of toll gate (e.g. entry and exit

Chapter 3. The road pricing system: a case study 21

gates for a motorway and a single gate for a toll bridge) and that the display is only used

when it is either leaving the motorway or when it passes through a single toll gate.

All this information should be added to the object model and represented by using object-

oriented concepts. An object model using OMT notation is shown in Figure 3.1.

SensorLight Camera

Display

Toll_Gate

In_TollPay_Toll�

Exit_TollSingle_Toll

Figure 3.1: Initial object model

Now, we start identifying the views of the vehicle agent. This agent knows that it can

use the system in two different ways: one where it always pays the same amount, let us call

it the one-point vehicle view, and another where the amount paid depends on the distance

travelled, let us call it the two-point vehicle view.

Sensor.read

Light.green

Display.amount

stop

Light.yellow

Camera.photo

stop

(unauthorized) (authorized)

Figure 3.2: One-point vehicle view

Constructing a tree for each agent view

An agent view is graphically represented as a tree. In order to build this tree we:

• identify the events which make up the interaction between the environment and the

system,

• allocate the events to the appropriate interface objects,

Chapter 3. The road pricing system: a case study 22

Sensor.read

Light.yellow

Camera.photo

Sensor.read

stop

Light.yellow

Camera.photo

stop

Light.green

Sensor.read stop

Display.amount

stop

Light.yellow

Camera.photo

stop

Light.green

(unauthorized) (authorized)

(leave)

(leave)

(In_Toll)

(Exit_Toll)

(Exit_Toll)

Sensor.read

stop

Light.yellow

Camera.photo

(Exit_Toll)

Figure 3.3: Two-point vehicle view

• identify the possible alternative event sequences which make up the agent view,

• add the ordered events to the tree as nodes with each event being represented by the

pair: 〈class template〉.〈event〉.

The one-point vehicle view is depicted in Figure 3.2, When the vehicle passes the toll

gate, the sensor reads the vehicle’s gizmo identifier. The system will then either show a green

light and display the amount to be debited or show a yellow light and a camera will take a

photo of the vehicle’s plate number. The yellow light is shown to vehicles whose gizmo is not

accepted by the system because, for example, it has been reported stolen or its registration

has been cancelled.

The two-point vehicle view is shown in Figure 3.3. When the vehicle enters a motorway,

first it passes an In Toll gate. Here, a sensor reads its gizmo identifier and the system either

responds by showing a green light or by showing a yellow light followed by triggering a camera.

After this, the vehicle proceeds onto the motorway and it may just leave it by some unknown

method (it could have an accident, for example, and so never reach the exit toll, or it can

leave by using a non-green lane) or it passes through an Exit Toll gate. If a yellow light in

the In Toll was shown, now the vehicle can only get another yellow. On the other hand, if

a green light was shown, the vehicle may get a yellow light if the state of the system has

changed (for example, the system now knows that that vehicle was stolen) or a green light

again, meaning that everything is normal.

The agent view also describes the situation where a vehicle passes through an Exit Toll

gate, but did not enter the motorway through an In Toll gate. This leads to a yellow light

being shown and a photograph taken. It should be noted that this situation was omitted from

the original informal statement of requirements.

Chapter 3. The road pricing system: a case study 23

Light.yellow

Camera.photo

stop

Sensor.detect

Figure 3.4: One-point vehicle view with no gizmo

Light.yellow

Camera.photo

stop

(In_Toll)

stop

Light.yellow

Camera.photo

(Exit_Toll)
Sensor.detect Sensor.detect

Figure 3.5: Two-point vehicle view with no gizmo

In our vehicle agent views, we have assumed that the vehicle has a gizmo which is read

by a sensor. We must also consider the agent view where a vehicle goes through a green lane

either without a gizmo or with a gizmo which is broken and cannot be detected. In such

a situation, a sensor must be able to detect that a vehicle has passed, so that it can show

a yellow light and cause a photograph to be taken. This situation leads to two more agent

views. They are shown in Figures 3.4 and 3.5. When a vehicle has no detectable gizmo,

its action at an In Toll and at an Exit Toll gate are not linked and so each are considered

separately in Figure 3.5.

The benefit of constructing a formal user centred model and structuring the requirements

as a set of agent views is that it can identify omissions in the requirements. The requirements

state that a light can turn green or yellow, but say nothing about whether the light stays on

or whether it is cleared before the next vehicle is processed. The requirements are amended

so that the light (and the display) are to be cleared before the next vehicle is processed.

We now consider the views of the owner and bank agents. They help us to identify two

more interface objects: Reg Desk, to deal with the registration of a vehicle by its owner, and

Bank Interface, to deal with the bank agent.

The owner agent only has one view of the system which is shown in Figure 3.6. It gives

information which includes vehicle details, the vehicle owner’s personal data and an account

number from where the monthly debits will be done. The registration may or may not be

Chapter 3. The road pricing system: a case study 24

stop stop

Reg_Desk.cancel Reg_Desk.report_stolen

Reg_Desk.give_info

Reg_Desk.get_gizmo
Reg_Desk.refuse_gizmo

stop

Figure 3.6: Owner agent view

accepted.

stop stop

stop Printer.print_receipt

Operator_Interf.monthly_debit Operator_Interf.update_pricesOperator_Interf.change_toll

1

1

Figure 3.7: Operator agent view

An agent which almost always appears in a system is the operator. This is shown in

Figure 3.7. The system offers three services to the operator: monthly debit so that the

operator can initiate the monthly debits of gizmo owner’s accounts, change toll so that toll

gates can be added to, or removed from, the system and update prices so that the toll prices

can be modified. Although these operations are not mentioned explicitly in the requirements,

they are identified as being necessary for the initiation and correct working of the system.

A consequence of the operation initiating monthly debits is that a series of receipts will be

produced. As these receipts must be handled by an operator, we can regard this as part of

the operator agent view.

The bank agent has two different views of the system: the view when it is asked for

information about an account number and the view when it is asked for automatic debits.

These two views are shown in Figures 3.8 and 3.9.

When an owner agent attempts to register with the system, the agent view in Figure 3.8

is activated by the system to check with the bank whether or not that account number exists.

Therefore, the two single agent views, owner and bank debit can be combined later to give a

Chapter 3. The road pricing system: a case study 25

Bank_Interface.query_account

Bank_Interface.rtn_query_account

stop

Figure 3.8: Bank view for account information

stop

Bank_Interface.debit

stop Bank_Interface.close_account

Figure 3.9: Bank view for automatic debits

multi-agent view.

The bank agent view dealing with the debits is very simple. It either just receives the

event and finishes or it responds by informing the system that the account has been closed

and the debit cannot therefore take place.

Refining the object model

Based on the information in the agent views, we refine the initial object model by:

• adding any new interface objects to the object model,

• determining which events correspond to services offered by interface objects to the

environment,

• adding these offered services to the object model.

At this point we have no more interface objects to be added to the object model. We have

to analyse each agent view and decide whether or not a given event corresponds to a call of

a service offered by an interface object or if it is merely a response. Responses do not appear

in an object model. The best way to do this is, once again, to stand outside the system, and

follow the tree identifying which messages are reaching the system and which are leaving it.

For example, Reg Desk.give info in Figure 3.6 is a service offered to the environment.

When an owner agent calls this service, it is sent the message Reg Desk.refuse gizmo or

Reg Desk.get gizmo as a response.

In some situations, it may appear that an interface object sends a message of its own

volition, e.g. Light can send the message Light.yellow. In fact, Light will offer a service

such as turn yellow to internal objects in the system and it is a call of that service which

will trigger Light.yellow being sent to the environment. However, we do not, at this stage,

show services such as turn yellow in the object model as we are only concerned with services

Chapter 3. The road pricing system: a case study 26

offered to the environment, not with services offered to internal system objects; they will be

added later during the construction of the system-centred model.

The result of analysing the events in each agent view to determine which are services

offered by interface objects is shown in Figure 3.10.

Sensor

read

detect�

Light Camera

Display

Toll_Gate

In_TollPay_Toll�

Exit_TollSingle_Toll

Reg_Desk

give_info

report_stolen

cancel��

Bank_Interface

Price_Table

Operator_Interface

monthly_debit

update_prices

change_toll

Printer

Figure 3.10: Initial object model with externally offered services

3.3.2 Formalising agent views

Each agent view is formalised using LOTOS. The definition of an agent view is a LOTOS

process which requires possible alternative series of services from the system. It is straightfor-

ward to construct the outline of a LOTOS process definition from a tree by using the choice

operator to offer each branch of the tree as a LOTOS choice expression. We can also factorize

out those parts of the tree which are similar and define them in a separate process.

The LOTOS formal model contains much more information than was held in the tree. We

have to return to the requirements or, when necessary, the clients to determine the information

which is to be passed between the agent and the system. The need for this extra detail is

very useful in clarifying the requirements.

A LOTOS process definition for the Two Point Vehicle agent view corresponding to the

tree given in Figure 3.3 is given below. It includes a number of LOTOS gates for communi-

cation (one for each toll gate component). The agent first interacts with the components of

an In Toll gate and then later with the components of an Exit Toll gate. The components

are identified by the object identifier of their toll gate. Sort Toll Id is defined in an ADT.

Toll gate identifiers are introduced as variables into the process, as in:

?int: Toll_Id

The variable int is then constrained to be the identifier of an In Toll gate by the predicate

Chapter 3. The road pricing system: a case study 27

Is Enter(int). An Exit Toll gate identifier ext is later introduced and constrained in a

similar way.

The rest of the body of the process follows the directions given in Chapter 2. Mainly:

• for each node of the tree, we define a choice operator in which each option defines a

branch;

• if the same subtree appears more than once, it is defined as a separate process and an

instantiation of that process is inserted instead of the LOTOS code for the subtree.

Much of the behaviour at an exit gate is independent of whether a vehicle agent was shown

a green or a yellow light at the entry gate. This behaviour can therefore be factored out. It

is defined in process Leaving. Process Missing deals with the case where a gizmo identifier

was not detected at the In Toll, but was detected at the Exit Toll gate.

process Two_Point_Vehicle[sen, lgt, dpl, cam] : exit :=

(sen !read ?int: Toll_Id ?id_g: Gizmo_Id [Is_Enter(int)];

((Yellow[lgt, cam](id_g, int)

>> Leaving[sen, lgt, dpl, cam](id_g, was_yellow)

)

[]

lgt !green !int !id_g;

lgt !clear !int;

Leaving[sen, lgt, dpl, cam](id_g, was_green)

)

[]

Yellow_No_G[lgt, cam](int)

)

[]

Missing[sen, lgt, dpl, cam]

where

process Leaving[sen, lgt, dpl, cam](id_g: Gizmo_Id, s: Entry_Val)

: exit :=

(sen !read ?ext: Toll_Id !id_g [Is_Exit(ext)];

([s eq was_green] -> Green[lgt,dpl](id_g, ext)

[]

Yellow[lgt, cam](id_g, ext)

)

[]

Yellow_No_G[lgt, cam](ext)

)

[]

(* leave in a non-green lane *)

exit

)

endproc (* Leaving *)

process Missing[sen, lgt, dpl, cam]

Chapter 3. The road pricing system: a case study 28

: exit :=

sen !read ?ext: Toll_Id ?id_g: Gizmo_Id [Is_Exit(ext)];

Yellow[lgt, cam](id_g, ext)

endproc (* Leaving *)

endproc (* Two_Point_Vehicle *)

The two processes given below are part of the Two Point Vehicle process. Process Yellow

defines part of the external behaviour of the toll gate when the light turns yellow and a

photograph is taken while Green defines the behaviour when the light turns green at the exit

gate.

process Yellow[lgt, cam](id_g: Gizmo_Id, iden: Toll_Id) : exit :=

lgt !yellow !iden !id_g;

cam !photo !iden !id_g;

lgt !clear !iden;

exit

endproc (* Yellow *)

process Green[lgt, dpl](id_g: Gizmo_Id, iden: Toll_Id) : exit :=

lgt !green !iden !id_g;

dpl !amount !iden !some_am;

dpl !clear !iden;

lgt !clear !iden;

exit

endproc (* Green *)

The other agent views are defined in a similar way. A full LOTOS specification can be

found in Appendix B although it differs slightly from the above for reasons which are given

later.

3.3.3 Combining agent views

Some agent views are self standing while others interact with one another and so can be

combined to give a multi-agent view. In Chapter 2 we discussed how this can be accomplished.

For example, when an owner agent asks for a registration, the desk contacts a bank agent

to check on the specified bank account before it accepts the registration. Therefore the owner

agent view, depicted in Figure 3.6, and the bank view for account information, depicted in

Figure 3.8, can be combined. The LOTOS definitions of the two single-agent views are left

unchanged. They are instantiated and composed using the interleaving operator. The two

processes then fully synchronise with a new process O B Constraint where we define the

sequencing of the events between the two single-agent views.

process O_B_Constraint[rd, bk] : exit :=

rd !give_info ?dsk: Desk_Id ?g_id: Gizmo_Id ?pl_id: Plate_Id

?ac_no: Ac_Nr ?inf: Info;

bk !query_account ?bnk: Bank_Interf_Id !ac_no;

bk !rtn_query_account !bnk !ac_no ?ok: Bool;

([ok]-> rd !get_gizmo !g_id !dsk;

Chapter 3. The road pricing system: a case study 29

O_B_Constraint[rd, bk]

[]

[not(ok)] -> rd !refuse_gizmo !g_id !dsk;

O_B_Constraint[rd, bk]

)

[]

rd ?ev: Event ?dsk: Desk_Id ?g_id: Gizmo_Id;

O_B_Constraint[rd, bk]

[]

exit

endproc (* O_B_Constraint *)

Process O B Constraint ensures that event give info occurs before event query account

and that event rtn query account occurs before either get gizmo or refuse gizmo. It also

relates the response by the bank to the choice of whether the owner gets, or is refused, a

gizmo.

The other events in O B Constraint add no new information and are present as a LOTOS

technical feature to ensure that, for every event in the single-agent view process definitions,

there is a corresponding event in O B Constraint.

A system must be initialised before it can be used. Hence toll gates cannot detect vehicles

before the toll gates have been added to the system or a gizmo used before it has been regis-

tered. Let us consider the situation where we ensure that a gizmo has been registered before

it can be used and that a gizmo must have passed successsfully through an In Toll before

it can pass successfully through an Exit Toll. Registration occurs in the Operator Agent

view while gizmos are used at toll gates.

Initially, we regarded a vehicle’s behaviour at an In Toll and its subsequent behaviour

at an Exit Toll as a single agent view which we referred to as the Two Point Vehicle

view. This led to problems when we dealt with multiple instances of the vehicle views. The

specification in Appendix B splits the Two Point Vehicle view into two separate single-

agent views: In Vehicle describing behaviour at an In Toll and Exit Vehicle describing

behaviour at an Exit Toll. In Vehicle and Exit Vehicle are composed into a multi-agent

view using the Gizmos constraint process given below.

The Gizmos constraint process is defined to maintain the set of currently registered gizmos

and the set of gizmos which have entered, but have not yet left a motorway. Other restrictions

are concerned with when a vehicle can pass through a toll gate and get a green light, e.g. a

vehicle cannot pass through a second In Toll before it has passed through an Exit Toll.

Process Gizmos interacts with Operator Agent on gate rd and with the each of the processes

specifying behaviour at a toll gate on gate lgt.

process Gizmos[rd, lgt](idgs, curr: Gizmo_Id_Set) : noexit :=

rd !give_info ?dsk : Desk_Id ?idg: Gizmo_Id ?pl: Plate_Id ?ac: Ac_Nr !inf;

Gizmos[rd, lgt](idgs, curr)

[]

rd !get_gizmo ?idg: Gizmo_Id ?dsk : Desk_Id;

Gizmos[rd, lgt](Insert(idg, idgs), curr)

[]

rd !refuse_gizmo ?idg: Gizmo_Id ?dsk : Desk_Id;

Chapter 3. The road pricing system: a case study 30

Gizmos[rd, lgt](idgs, curr)

[]

(* cancel or report stolen *)

rd ?op : Event ?dsk : Desk_Id ?idg: Gizmo_Id;

Gizmos[rd, lgt](Remove(idg, idgs), curr)

[]

lgt !green ?t_id:Toll_Id ?idg: Gizmo_Id

[(idg isin idgs) and Is_Enter(t_id) and not(idg isin curr)];

Gizmos[rd, lgt](idgs, Insert(idg, curr))

[]

lgt !green ?t_id:Toll_Id ?idg: Gizmo_Id

[Is_Exit(t_id) and (idg isin curr) and (idg isin idgs)];

Gizmos[rd, lgt](idgs, Remove(idg, curr))

[]

lgt !green ?t_id:Toll_Id ?idg: Gizmo_Id

[Is_Single(t_id) and(idg isin idgs) and not(idg isin curr)];

Gizmos[rd, lgt](idgs, curr)

[]

lgt !yellow ?t_id:Toll_Id ?idg: Gizmo_Id

[(idg notin idgs) or (Is_Exit(t_id) and (idg notin curr))

or ((idg isin curr) and (Is_Enter(t_id) or Is_Single(t_id)))];

Gizmos[rd, lgt](idgs, Remove(idg, curr))

[]

lgt !yellow ?t_id:Toll_Id;

Gizmos[rd, lgt](idgs, curr)

[]

lgt !clear ?t_id:Toll_Id;

Gizmos[rd, lgt](idgs, curr)

endproc (* Gizmos *)

Another constraint to be considered is that two vehicles cannot be processed simultane-

ously at the same toll gate.

3.3.4 Instantiating and validating the user-centred model

Once we have specified an agent view, it can be instantiated from an enclosing process, as

described in Section 2.6.4, so that we can check, using the SMILE simulator, that it executes

as expected. Multiple agent views, together with their constraints can be checked in a similar

way.

As described in Section 2.6.5, the user-centred model can then be created by composing all

the agent views and their constraints in a behaviour expression. The full user-centred model

must deal with multiple instances of the vehicle views. As number of alternative events offered

is now too large to be handled conveniently, the user model is composed with test processes

to check that it behaves as expected. The test processes are derived directly from single or

multi-agent views. Using LOLA, all possible execution paths of the composition of the user-

centred model and a test process can be explored and the result of MUST, MAY or REJECT

reported. In this way, the user-centred model can be validated.

Chapter 3. The road pricing system: a case study 31

The modified LOTOS specification of user-centred model together with a sample test

process is shown in Appendix B.

3.4 Creating the system-centred model

The system centred-model is built by following the ROOA method, but it takes advantage of

the user-centred model and of the initial object model already created.

The ROOA method involves three main tasks as described in Section 2.8.2.

Task 1: Build an object model

An object model shows the class templates that compose the system and the relationships

between their objects. An initial object model, containing interface objects, already exists

from the construction of the user-centred model (see Figure 3.10).

Producing an analysis model from a set of requirements is not easy. Object-oriented

methods propose strategies for the identification of objects and their attributes, services and

relationships. With problems which are primarily data-oriented, an object model can be

constructed without paying too much attention to dynamic behaviour. With process-oriented

problems, on the other hand, the dynamic aspects of a problem must be explored to help

identify the static object structure. Indeed, Rubin and Goldberg [21] suggest that the best

way of identifying objects is to focus on their behaviour. When a method such as OMT [23]

is used to deal with process-oriented problems, we have found that agent views are a major

help in identifying the required objects.

From the requirements we can identify some objects and their attributes which we add to

the initial object model. However, as the problem we are analysing has a significant dynamic

component, we cannot identify all the objects at this stage. The resulting incomplete object

model is shown in Figure 3.11.

Task 2: Refine the object model

During this task we use the user-centred model and the event traces initiated by the agent

views to help us identify:

• more objects;

• static relationships;

• attributes and services in each class template;

• message connections.

Task 2.1: Standardise the object model

Some analysis methods do not distinguish between static relationships and message connec-

tions, or have services or attributes in their object model. In this task we add those services,

attributes, static relationships and message connections which can be easily derived from the

requirements and from the user-centred model. We do not worry if the result is incomplete,

as more detail will be added in Task 2.2.

Chapter 3. The road pricing system: a case study 32

Sensor

read

detect�

Light Camera

Display

Toll_Gate

In_TollPay_Toll�

Exit_TollSingle_Toll

Reg_Desk

give_info

report_stolen

cancel��

Bank_Interface

Reg_Control

Owner_Details

name

address

acc_nr

bank_id

Gizmo_Details

gizmo_id

stolen

valid

cancelled

Vehicle

plate_nr

kind

Price_Table

toll_gate_details

road_price

Operator_Interface

monthly_debit

update_prices

change_toll

Printer

Figure 3.11: Initial OMT object model

We examine the agent views and identify events which are sent to the environment and

determine if the relevant interface object must offer a service to some internal object to trigger

the external event. For example, in the one-point vehicle view, for Light to generate the events

Light.yellow and Light.green, it must offer the services turn yellow and turn green.

Also, by analysing the object model in Figure 3.11, we can see that some of the static

relationships are in fact message connections. These additions are shown in Figure 3.12 1.

Task 2.2: Identify dynamic behaviour

In order to identify dynamic behaviour we:

• build Event Trace Diagrams (ETDs) to show sequences of object interactions;

• collect the information in the ETDs in an Object Communication Table (OCT).

Agent views show the interactions between agents and interface objects. The starting

event in an agent scenario will trigger a series of interactions between objects internal to the

1As LOV/OMT does not give us a notation for messages connections, we use the relationship notation and

name it “calls”.

Chapter 3. The road pricing system: a case study 33

calls calls

calls

calls

calls

�

calls

calls

� calls

calls

Sensor

read

detect

Light

turn_green

turn_yellow

Camera

take_photo

Display

show_amount

Toll_Gate

In_TollPay_Toll�

Exit_TollSingle_Toll

Reg_Desk

give_info

report_stolen

cancel��

Bank_Interface

send_debit

check_account

Reg_Control

Owner_Details

name

address

acc_nr

bank_id

Gizmo_Details

gizmo_id

stolen

valid

cancelled

Vehicle

plate_nr

kind

Price_Table

toll_gate_details

road_price

Operator_Interface

monthly_debit

update_prices

change_toll

Printer

Figure 3.12: OMT object model with message connections

system. We describe these sequences by means of event trace diagrams. Some of the required

objects will already have been identified and be represented in the initial object model. An

event trace diagram will show the message passing between these objects and its construction

may show new objects and services. Each new object and service identified is added to the

object model.

Let us analyse the one-point vehicle view. The scenario where the vehicle gets a green

light results in the ETD shown in Figure 3.13. This ETD allowed us to identify new services

and two new objects: Gate Processor and Usage Details. We must ensure that a toll gate

fully processes a vehicle before the next vehicle arrives. That is the reason for the objects

Light and Display sending a clear event to the toll gate to indicate that they are ready.

The Toll then sends an enable event to allow the sensor to read the next gizmo. This enable

event must be sent sufficiently quickly so that no vehicle is missed, but it is not sent until

Light and Display have indicated that they are ready for the next vehicle. The presence

of enable makes this requirement explicit. What we are therefore doing is making explicit

requirements which were left vague in the original informal requirements.

We are not saying that explicit clear and enable signals must be sent from Light and

Display to the toll gate in an implementation. A specification language which modelled time

explicitly could use time constraints to specify that Light and Display must process a vehicle

Chapter 3. The road pricing system: a case study 34

Sensor
read

turn_green
Light

Display show_amount

Gate_Processor

check_gizmo

add

rtn_check_gizmo

Usage_Details

Price_table

get_amount

rtn_get_amount

Single_Toll

get_gizmo_id
get_gizmo_id

rtn_get_gizmo_id

Gizmo_Details

clear

clear

enable

Figure 3.13: ETD for a vehicle passing a single toll gate and getting a green light

Sensor

read
get_gizmo_id

Light

Camera

turn_yellow

Gate_Processor

check_gizmo

Photos_Taken

add

rtn_check_gizmo

take_photo

Single_Toll

get_gizmo_id

rtn_get_gizmo_id

Gizmo_Details

clear

taken

enable

Figure 3.14: ETD for a vehicle passing a single toll gate and getting a yellow light

sufficiently quickly so that they are always ready for the next vehicle. An implementation

would then just have to demonstrate that it performed the operations sufficiently quickly. We

do not therefore show these events in our object model.

Figure 3.14 shows the ETD which results from the agent scenario where a vehicle gets a

yellow light. This ETD allowed us to identify the object Photos Taken. The taken event

ensures that the photograph taken is of the offending vehicle, not some subsequent vehicle.

The ETD for the case when a vehicle passes a single toll gate and has no readable gizmo is

shown in Figure 3.15.

We now analyse the two-point vehicle view. The agent scenario where the vehicle gets a

green light at both the entrance and at the exit gates leads to the ETD shown in Figure 3.16.

The ETD corresponding to the two-point vehicle view where a vehicle has no gizmo is shown

in Figure 3.17.

The ETD dealing with the agent view where a client makes a registration is depicted in

Figure 3.18.

Usually we only draw ETDs for complex agent views. For simple agent views we can

identify all the services and objects involved without having to draw the corresponding ETDs.

As we construct the ETDs and identify new objects and services we add them to the

existing object model. A version of the object model, including the objects found when

Chapter 3. The road pricing system: a case study 35

Sensor

Light

Camera

turn_yellow

Gate_Processor

Photos_Taken

add

take_photo

Single_Toll

detect
no_gizmo_detect

report_no_gizmo

clear

taken

enable

Figure 3.15: ETD for a vehicle passing a single toll gate with no gizmo

identifying dynamic behaviour, is presented in Figure 3.19.

The next step is to collect all to information given in the ETDs and build an OCT.

Eventually, this table will be composed of five columns, but now we are only building the

first four columns. In the first column we list the class templates that form the object model;

in the second column we list the services offered by each class template; in the third column

we list, for each service offered by a class template in column one, the services that that

class template requires from other class templates to accomplish that particular service; in

the fourth column we list, for each service offered in column one, the class templates (clients)

which require that service (for each offered service we may have a list of clients). The initial

OCT is shown in Tables C.1 and C.2 in Appendix C.

Task 2.3: Structure the object model

Grouping class templates into subsystems or into aggregates is necessary when we are dealing

with large complex systems.

This task is difficult to accomplish and so we cannot expect to do it completely and cor-

rectly in the first iteration. The low level class templates in the object model often remain

almost unchanged during the development, but the high level structure is less stable. Our

suggestion is to do only what is obvious to begin with, and then come back to it as our knowl-

edge about each individual class template increases. We use aggregates and subsystems to

structure a large system. The fundamental difference between an aggregate and a subsystem

is that, while the components are an intrinsic part of the aggregate, and the aggregate is

itself an object from the problem domain, a subsystem is merely a grouping of related class

templates.

In our road pricing system, we propose, at this stage, two subsystems: Client Details

and Toll. Toll encloses the hierarchy defined for the toll gates, with its inheritance and

aggregation relationships. Client Details incorporates all the data which defines a client:

Gizmo Details, Owner Details and Vehicles. The resulting OCT is shown in Table C.3

shown in Appendix C.

The standard OCT shows, for each class template, the services it offers to other class

templates. The services offered by the object components of Toll are given in the OCT shown

in Table C.4.

Chapter 3. The road pricing system: a case study 36

Sensor

read

turn_green
Light

read

Gate_Processor

Usage_Details

check_gizmo

add

create

check_gizmo

check_if_in

remove

rtn_check_gizmo

rtn_check_gizmo

rtn_check_if_in Price_Table
get_amount

rtn_get_amount
turn_green

Display
show_amount

get_gizmo_id get_gizmo_id

rtn_get_gizmo_id

In_Toll

Exit_Toll

get_gizmo_id
get_gizmo_id

rtn_get_gizmo_id

Sensor

Light

Current_JourneyGizmo_Details

clear
enable

clear

clear

enable

Figure 3.16: ETD for a vehicle successfully passing In and Exit toll gates

Sensor

Light

Camera

turn_yellow

Gate_Processor Photos_Taken

add

take_photo

detect no_gizmo_detect

In_Toll

Sensor

Light

Camera

turn_yellow

take_photo

detect
no_gizmo_detect

Exit_Toll

add

report_no_gizmo

report_no_gizmo

clear

taken
enable

clear

taken
enable

Figure 3.17: ETD for a vehicle passing In and Exit toll gates with no gizmo

Chapter 3. The road pricing system: a case study 37

Reg_Desk Reg_Control Bank_Interface

give_info

query_account

rtn_query_account

get_gizmo

create

create

create

Owner_Details

check_account

rtn_check_account

Gizmo_Details

add_info

rtn_add_info

Vehicles

Figure 3.18: Registration of a gizmo

calls

calls

calls

calls

calls

calls

calls

calls
calls

calls

callscalls

calls

�

calls

�

calls

�

calls

�

�calls �

calls

�

calls�

calls

�

calls

calls

Sensor

read

detect

Light

turn_green

turn_yellow

Camera

take_photo

Display

show_amount

Toll_Gate

get_gizmo_id

no_gizmo_detect

In_Toll

get_gizmo_id

Pay_Toll�

Exit_Toll

get_gizmo_id

Single_Toll

get_gizmo_id

Reg_Desk

give_info

report_stolen

cancel��

Bank_Interface

send_debit

check_account

close_account

Reg_Control

add_info

report_stolen

cancel

Owner_Details

name

address

acc_nr

bank_id

create

get_owner

add

Gizmo_Details

gizmo_id

status

create

get_gizmo

check_gizmo

change_status

Vehicles

plate_nr

create

get_vehicle

Gate_Processor

check_gizmo_id�

report_no_gizmo

Current_Journey

in_gate

date

check_if_in

create

remove

Usage_Details

date

amount

get_usage

add

Photos_Taken

add

Price_Table

toll_gate_details

road_price

get_amount

update

Bill_Processor

debit

close_account

Operator_Interface

monthly_debit

update_prices

change_toll

Printer

print_receipt

Figure 3.19: Refined OMT object model

Chapter 3. The road pricing system: a case study 38

Task 3: Build the LOTOS formal model

Task 3.1: Create an Object Communication Diagram (OCD)

The OCD is a graph where, in the first iteration, each node represents an object and each arc

connecting two objects represents a gate of communication between them. In later iterations,

the diagram is generalised to deal with multiple instances of the same class template. In the

beginning, some of the objects may not be connected by arcs to the rest of the diagram. As

the method is applied, these objects will either disappear or be connected to the others, and

new groupings may appear, refining the diagram.

In order to build the OCD, we first have to complete the OCT, by adding to it the column

Gates. This column gives the name of the gates that the objects in column one and column

four use to communicate between each other.

To identify the gates, we follow three basic rules [13]:

1. Give the same gate name for the object communications which require the same set, or

subset, of services; i.e. where there is an overlap between the set of services required by

different clients.

2. Give different gate names for object communications which require a different set of

services, i.e. where there is no overlap between the set of services required by each

client.

These two rules are the result of requiring that an object cannot use the same gate to

communicate with both an object at the same level of abstraction and another object

at a different level of abstraction.

3. For each pure server, define a single gate from where it offers all its services.

The completed OCTs are presented in Tables C.5 and C.6 in Appendix C. Based on these

OCTs we build the first version of the OCD, presented in Figure 3.20.

Task 3.2: Specify class templates

To specify the behaviour of an object we place ourselves inside that object and act as if we

were the centre of the system. By following this strategy, and using the information in the

OCT and event trace diagrams, we identify the events the object takes part in and their order.

These events correspond to the services the object offers to, or requires of, its environment

(i.e. the rest of the system) and are often shown as the options of a choice expression.

We start by specifying the interface objects. For each event in the LOTOS process defini-

tion of an agent view, there is an event in the LOTOS process definition of an interface object

which has an identical signature. The formal user-centred model is therefore used directly in

the construction of the LOTOS definition of the interface objects.

Some events in the user-centred model show the initiation of some action which is to be

carried out by the system together with the information which is required from the environ-

ment. The others show responses from the system and the information which is to be passed

to the environment. The system-centred model must demonstrate how the input information

is distributed among the internal objects and how the objects combine to produce the desired

output. Details of the events on which the internal objects are to synchronise are already

held in the ETDs, but it is the user-centred model that determines the information which is

to be passed during event synchronisation.

Chapter 3. The road pricing system: a case study 39

Exit_Toll

Sensor

Camera

Display

Single_Toll

In_Toll

Light

Photos_Taken
Price_Table

Current
Journey

Operator
Interface

Usage
Details

Reg_Desk
Reg_Control

oi

pr

ph

cj
ud

ud

 Bank
Interface

 Gate
Processor

c

 Bill
Processor

Client_Details

Gizmo_Details

Owner_Details

c

c

c

c

c

rc
rd

bi2

bi1

pt pt

gp
gp

gp

gp

bk

bp1

bp2

toTolls

Vehicles

sen sen

lgt lgt

cam
cam

dpl
dpl

li

si

ci

di

li
si

di
ci

li
si

di
ci

li
si

di
ci

prinPrinter

Figure 3.20: First version of the OCD

Inconsistencies in Agent Views

Each agent view describes the expected behaviour of the system from the point of view of a

particular agent. When we come to specify the objects in the system-centred model which

are to satisfy this behaviour, it will not be unusual for incompatibilities to appear in the

expectations of different agents.

When such incompatibilities appear, we must return to the agent views to resolve the

differences. Consider, for example, the view of the driver of a vehicle with a gizmo. They

expect their gizmo to be read and checked to determine if it is valid. A driver of a vehicle

without a gizmo will, on the other hand, expect their vehicle to be detected. When these two

views are considered together, we see that the sensor must take part in two events; it first

detects the presence of a vehicle and then attempts to read its gizmo. The agent views in

Figures 3.2 and 3.3, and the LOTOS specification of the user-centred model, should therefore

be modified to include the detection of a vehicle. We can, in fact, amalgamate the views of

a vehicle with and without a gizmo and that is shown in Figures 3.21 and 3.22. A vehicle is

detected and if the sensor cannot read a gizmo, a yellow light is shown.

The user-centred LOTOS specification given in Appendix B shows the amalgamated agent

views.

Task 3.3: Compose the objects into a behaviour expression

Following the structure of the OCD, we compose the objects defined in Task 3.2 into a LOTOS

behaviour expression by using the parallel operators. A possible top-level LOTOS behaviour

expression corresponding to the OCD of Figure 3.20 is:

Chapter 3. The road pricing system: a case study 40

Sensor.read

Light.green

Display.amount

stop

Light.yellow

Camera.photo

stop

(unauthorized) (authorized)
Camera.photo

stop

Light.yellow

(no gizmo)

Sensor.detect

Figure 3.21: One-point vehicle view

hide gp, to in

Toll_Gates[sen, lgt, dpl, cam, gp, to]

|[gp, to]|

(hide c, ud, bi1, bi2, bp2 in

(hide bp1 in

(hide pt, ph, cj in

(Gate_Processor[gp, ph, c, cj, ud, pt](gp_id)

|||

Operator_Interface[pt, bp1, oi, to](oper_id)

)

|[pt, ph, cj]|

(Photos_Taken[ph](ph_id)

|||

Current_Journey[cj](cj_id, {} of Gizmo_Id_Set)

|||

Price_Table[pt](pt_id)

)

)

|[bp1]|

(hide pr in

Bill_Processor[c, ud, bp1, bp2, bi1, pr](bp_id)

|[pr]|

Printer[pr, prin](prin_id)

)

|||

(hide rc in

Reg_Desk[rd, rc](dsk_id)

|[rc]|

Reg_Control[rc, bi2, c](rc_id)

Chapter 3. The road pricing system: a case study 41

Sensor.read

Light.yellow

Camera.photo

stop

Light.green

Sensor.read

stop

Display.amount

stop

Light.yellow

Camera.photo

stop

Light.green

(unauthorized) (authorized)

(leave)

(leave)

(In_Toll)

(Exit_Toll)

(Exit_Toll)

stop

Light.yellow

Camera.photo

Sensor.read

stop

Light.yellow

Camera.photo

stop

Light.yellow

Camera.photo

stop

Light.yellow

Camera.photo

(Exit_Toll)

stop

Light.yellow

Camera.photo

Sensor.read

stop

Light.yellow

Camera.photo

Sensor.detectSensor.detect

Sensor.detect

Sensor.detect

(no gizmo) (no gizmo)

(no gizmo)

(no gizmo)

Figure 3.22: Two-point vehicle view

)

)

|[c, ud, bi1, bi2, bp2]|

(Client_Details[c]

|||

Usage_Details[ud](us_id, {} of Gizmo_Id_Set)

|||

Bank_Interface[bk, bi1, bi2, bp2](bank_id)

))

Gates are introduced as locally as possible using the hide operator. The full specification

is given in Appendix D.

Task 3.4: Prototype the specification

The top-level behaviour expression of the system-centred LOTOS specification is composed

in turn with each of the multi-agent views. The resulting compositions are then executed

using SMILE to ensure that the system-centred model can satisfy each agent view, i.e. that

Chapter 3. The road pricing system: a case study 42

the success event is reached as described in Section 2.6.4.

Each event in the user-centred model should have a corresponding event in the system-

centred model which has exactly the same structure and with which it can synchronise. The

occurrence of the success event in a simulation indicates when a path through the agent

view has been successfully completed.

Many agent views assume that the system has already been initialised, e.g. that toll gates

have already been added to the system and that there is at least one registered gizmo. That

is why the composition is with multi-agent views. Their constraints can then ensure that

proper initialisation has taken place.

Execution of the SMILE simulator creates an event tree. This may be created either depth

first or breadth first. The branching is kept within bounds because:

• we simulate with uninstantiated variables rather than with values,

• SMILE does not expand subtrees which it recognises as providing behaviour identical

to that already analysed,

• composing the system model with an agent view enables us to focus on a particular

feature of the overall behaviour.

All paths in the tree should lead to the success event defined in the user-centred specifi-

cation as the system-centred model should not offer any behaviour which is not expected by

the user-centred model.

Testing Equivalence

Interactive prototyping with SMILE is used during the development of the ROOA model to

increase our confidence that it satisfies the behaviour expected by the user-centred model.

The next step is to demonstrate that the user-centred and ROOA models both describe the

same system. As described in Section 2.7.3, we use LOLA to verify that the user-centred and

ROOA models cannot be distinguished by experiment, i.e. that they are testing equivalent.

Although the system-centred model was developed from the user-centred model it contains a

lot of extra internal detail. It is therefore very easy for inconsistencies to be introduced.

The set of test cases used to validate the user-centred model with respect to the informal

requirements are now used to check that the two models offer the same behaviour. As the

ROOA model has significant internal structure, the number of states generated, and which

have to be explored, is very much greater than in the case of the user-centred model. However,

as testing equivalence is only concerned with external behaviour, the two specifications can

still be equivalent. The much larger number of states generated with the ROOA model means

that LOLA takes much longer to produce each result.

The main problem with LOLA is combinatorial explosion where the number of states

becomes too large. A major cause of this is an internal event which, even though it only

occurs once, can occur at any time once it has been allowed. As it can then be interleaved

with all subsequent events, the number of possible traces quickly becomes unmanageable.

Such an event is:

p !update ?ptid: P_T_Id !inf

in Operator Interface. When this event was commented out, the number of transitions

generated when the system-centred model was composed with the test where two vehicles

Chapter 3. The road pricing system: a case study 43

both successfully passed through a pair of In Toll and Exit Toll gates was 4198; when it

was present the simulation was aborted after more than 100000 transitions! Specifications

should therefore be constructed so that such free floating events do not occur.

When the number of transitions becomes too large, LOLA supports exploration of ran-

domly selected executions. Although that can increase ones confidence that a specification

has the expected behaviour, it cannot be used to show testing equivalence.

Task 3.5: Refine the specification

We refine the specification by re-applying Tasks 2.3, 3.1, 3.2, 3.3 and 3.4. During successive

refinements we may:

1. Model static relationships.

2. Introduce more object generators.

3. Identify new higher level objects.

4. Demote an object to be specified only as an ADT.

5. Promote an object from an ADT to a process and an ADT.

6. Refine processes and ADTs by introducing more detail.

3.5 Conclusions

In this chapter we showed, by means of an example, how a user centred-model can be built

to help both in understanding the requirements and in the construction of a system-centred

model. We followed the process described in Chapter 2 to build the user-centred model, and

used the ROOA method to build the system centred model. The initial part of the ROOA

method had to be changed to intregrate the results produced by the user-centred process. As

we used LOTOS to specify both models, we were able to use LOTOS tools to validate that

the user-centred model offers the expected external behaviour and to attempt to verify that

the user and system-centred models are equivalent.

Chapter 4

Conclusions

Our approach has been to take ideas from several disparate areas, to combine them and to

apply them in a novel setting.

From formal methods, we have taken the idea of a formal user-centred model [10]; from

requirements engineering, the notion of expressing requirements as a set of multiple view-

points [12, 18] and from object-oriented analysis, the notion of expressing requirements as a

set of use cases [11].

We have adapted the LOTOS constraint-oriented style used for the specification of a

telecommunication service to the specification of the user-centred model, have demonstrated

how LOTOS can be used in the specification of an object-oriented model and have then used

standard LOTOS techniques to validate the user-centred model and to show that the user

and system-centred models are testing equivalent [19].

Finally, although modelling the environment as part of the specification of a system is

standard practice, especially with embedded systems [4, 24], we believe that our modelling of

the environment as a user-centred model, and its subsequent use in the creation and validation

of a formal object-oriented specification, is new.

The problem that we have addressed is the large gap that has to be bridged during the

transition from informal requirements to an inititial formal requirements specification (i.e.

the system-centred model). We have proposed that a formal and executable user-centred

model should be constructed to bridge this gap. The construction, and subsequent execution,

of the user-centred model helps us to understand, structure and clarify the requirements.

The user-centred model is then used to aid the construction of the system-centred model.

Validation of the system-centred model is then concerned with verifying that it is equivalent

to the user-centred model.

We have shown how the development of a formal user-centred model can be integrated into

the ROOA method and have described how the formal user-centred model can complement

the OCD and ETDs in the construction of the ROOA model. We have then shown how LOLA

can demonstrate that the user-centred and ROOA models cannot be distinguished by testing.

Although we have been concerned with LOTOS and the ROOA method, we believe that

the approach is applicable to other formal languages and development methods.

44

Bibliography

[1] Amyot, D., Bordeleau, F., Buhr, R.J.A., Logrippo, L.: Formal support for design tech-

niques: a Timethreads-LOTOS approach. In: Proceedings FORTE’95, Chapman and

Hall 1996, pp. 57-72.

[2] Boehm, B.W.: A Spiral Model of Software Development and Enhancement. IEEE Com-

puter, 21(5), 61-72, 1988.

[3] Bolognesi, T., Brinksma, E.: Introduction to the ISO Specification Language LOTOS.

Computer Networks and ISDN Systems, 14, 25-59, 1987.

[4] Clark, R.G.: ‘Using LOTOS in the Object-Based Development of Embedded Systems’.

Unified Computation Laboratory, Oxford University Press, 1992, pp.307-319

[5] Clark, R.G., Jones, V.: The Use of LOTOS in the Formal Development of an OSI

Protocol. Computer Communications, 15(2), 86-92, 1992.

[6] Coad, P., Yourdon, E.: Object Oriented Analysis (Second Edition), Yourdon Press,

Prentice-Hall 1991.

[7] Eertink H., Wolz D.: Symbolic Execution of LOTOS Specifications. In: Diaz M., Groz

R. (eds): Formal Description Techniques V, North-Holland 1993, pp. 295-310.

[8] Glinz, P.: An Integrated Formal Model of Scenarios Based on Statecharts. ESEC’95,

LNCS 989, Springer-Verlag, pp.254-271, 1995.

[9] Henderson-Sellers B., Edwards, J.M.: The Object-Oriented Systems Life Cycle, Comm

ACM, 33(9), 142-159, 1990.

[10] Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y., and Chen, C.: Formal Approach

to Scenario Analysis. IEEE Software, 33-41, March 1994.

[11] Jacobson, I.: Object-Oriented Software Engineering. Addison-Wesley 1992.

[12] Kotonya, G., Sommerville, I.: Requirements Engineering with Viewpoints. Software En-

gineering Journal, 11(1), 5-18, 1996.

[13] Moreira, A.M.D.: Rigorous Object-Oriented Analysis. PhD Thesis. Department of Com-

puting Science and Mathematics, University of Stirling, Scotland, 1994.

[14] Moreira, A.M.D., Clark, R.G.: Combining Object-Oriented Analysis and Formal De-

scription Techniques. In: Tokoro, M. and Pareschi, R. (ed): 8th European Conference

on Object-Oriented Programming: ECOOP ’94, LNCS 821, Springer-Verlag, 1994 pp.

344-364.

45

Bibliography 46

[15] Moreira, A.M.D., Clark, R.G.: Rigorous Object-Oriented Analysis. In: Bertino, E and

Urban, S (ed): ISOOMS: International Symposium on Object Oriented Methodologies

and Systems, LNCS 858, Springer-Verlag, 1994 pp. 65-78.

[16] Moreira, A.M.D., Clark, R.G.: LOTOS in the Object-Oriented Analysis Process. In:

Goldsack, S and Kent, S (eds): Formal Methods in Object Technology, Springer-Verlag,

1996 pp. 33-46.

[17] Moreira, A.M.D., Clark, R.G.: Adding Rigour to Object-Oriented Analysis. Software

Engineering Journal 11(5), 270-280, 1996.

[18] Nuseibeh, B., Kramer, J., Finkelstein, A.: A Framework for Expressing the Relationships

between Multiple Views in Requirements Specification. IEEE Transactions on Software

Engineering, 20(10), 760-773, 1994.

[19] Quemada, J., Azcorra, A. and Pavon, S.: The Lotosphere Design Methodology. In:

Bolognesi, T., van de Lagemaat, J. and Vissers, C. (eds): LOTOSphere: Software De-

velopment with LOTOS, Kluwer Academic Publishers, 1995, pp 29-58.

[20] Regnell, B, Kimbler, K and Wesslen, A: Improving the Use Case Driven Approach to

Requirements Engineering, Second IEEE Int Symposium on Requirements Engineering,

IEEE Press, 1995, pp 40-47.

[21] Rubin, K.S., Goldberg, A.: Object Behaviour Analysis. Comm ACM, 35(9), 48-62, 1992.

[22] Rumbaugh, J.: Getting started. Using use cases to capture requirements, J Object Ori-

ented Programming, 7(5), 8-23, September 1994.

[23] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-Oriented

Modelling and Design, Prentice-Hall 1991.

[24] Sipma, H.B. and Manna, Z.: Specification and Verification of Controlled Systems, Formal

Techniques in Real-Time and Fault Tolerant Systems, LNCS 863, Springer-Verlag, 1994,

pp 641-659.

[25] Turner, K.J., van Sinderen, M.: LOTOS Specification Style for OSI. LOTOSphere: Soft-

ware Development with LOTOS, Kluwer Academic Publishers, pp.137-159, 1995.

Appendix A

LOTOS specification of the ATM

user-centred model

specification Atm [rdr, kpd, scrn, disp, pr, success]: noexit

library

NaturalNumber

endlib

type Id_Type is

sorts Id

opns id1, id2 : -> Id

endtype

type Money_Type is

sorts Money

opns m : -> Money

endtype

type Customer_Type is Id_Type

sorts Customer

opns Make_Customer : Id, Id, Id -> Customer

Id : Customer -> Id

Password : Customer -> Id

Card_No : Customer -> Id

eqns forall iden, pass, card : Id

ofsort Id

Id(Make_Customer(iden, pass, card)) = iden;

Password(Make_Customer(iden, pass, card)) = pass;

Card_No(Make_Customer(iden, pass, card)) = card;

endtype

type ATM_Type is Id_Type

47

Appendix A. LOTOS specification of the ATM user-centred model 48

sorts Atm

opns Make_ATM : Id -> Atm

Id : Atm -> Id

eqns forall iden : Id

ofsort Id

Id(Make_ATM(iden)) = iden;

endtype

type Events is

sorts Event

opns insert_card, rep_invalid, return_card, take_card, ask_passw,

give_passw, withdraw, amount, request_amount, choose_service,

no_funds, give_money, take_money, balance,

no_paper, get_info, cancel : -> Event

endtype

behaviour

Atm_Tree[rdr, kpd, scrn, disp, pr, success]

where

process Atm_Tree[rdr, kpd, scrn, disp, pr, success] : noexit :=

Atm_Agent[rdr, kpd, scrn, disp, pr]

>> success; stop

where

process Atm_Agent[cdr, kpd, scrn, disp, pr] : exit :=

choice a: Atm, c: Customer[]

cdr !insert_card !Id(a) !Id(c) !Card_No(c);

(scrn !rep_invalid !Id(a) !Id(c);

Return_Card[cdr](a, c)

[]

(* Stolen card, transaction stopped, card not returned *)

exit

[]

scrn !ask_passw !Id(a) !Id(c);

Check_Passw[cdr, kpd, scrn, disp, pr](a, c, 0)

)

endproc (* Atm_Agent *)

process Return_Card[cdr](a: Atm, c: Customer) : exit :=

cdr !return_card !Id(a) !Id(c);

cdr !take_card !Id(a) !Id(c);

exit

endproc (* Return_Card *)

process Check_Passw[cdr, kpd, scrn, disp, pr](a: Atm, c: Customer, num: Nat)

: exit :=

kpd !give_passw !Id(a) !Id(c) !Password(c);

Appendix A. LOTOS specification of the ATM user-centred model 49

([num lt succ(succ(0))] ->

scrn !rep_invalid !Id(a) !Id(c);

Check_Passw[cdr, kpd, scrn, disp, pr](a, c, succ(num))

[]

[num eq succ(succ(0))] ->

(* Too many wrong passwords *)

exit

[]

Atm_Trans[cdr, kpd, scrn, disp, pr](a, c)

)

[]

Cancel[cdr, kpd](a, c)

endproc (* Check_Passw *)

process Atm_Trans[cdr, kpd, scrn, disp, pr](a: Atm, c: Customer) : exit :=

scrn !choose_service !Id(a) !Id(c);

(kpd !withdraw !Id(a) !Id(c);

scrn !request_amount !Id(a) !Id(c);

kpd !amount !Id(a) !Id(c) ?am: Money;

(scrn !no_funds !Id(a) !Id(c);

Return_Card[cdr](a, c)

[]

scrn !take_card !Id(a) !Id(c);

Return_Card[cdr](a, c)

>> (disp !give_money !Id(a) !Id(c);

disp !take_money !Id(a) !Id(c);

exit

)

)

[]

kpd !balance !Id(a) !Id(c);

(scrn !no_paper !Id(a) !Id(c);

Return_Card[cdr](a, c)

[]

pr !get_info ?am: Money;

Return_Card[cdr](a, c)

)

[]

Cancel[cdr, kpd](a, c)

)

endproc (* Atm_Trans *)

process Cancel[cdr, kpd](a: Atm, c: Customer) : exit :=

kpd !cancel !Id(a) !Id(c);

Return_Card[cdr](a, c)

endproc (* Cancel *)

endproc (* Atm_Tree *)

Appendix A. LOTOS specification of the ATM user-centred model 50

endspec

Appendix B

LOTOS specification of the

user-centred model of the road
pricing system

specification rps [sen, lgt, dpl, cam, bk, rd, oi, prin, success]: noexit

library

NaturalNumber, Boolean

endlib

type Id_Type is Boolean, NaturalNumber

sorts Id

opns id1, id2, id3, id4, id5, id6,

id7, id8, id9, id10, id11,

id12, id13, id14, id15, id16,

id17, id18, id19, id20 : -> Id

h : Id -> Nat

eq, _ne_, _lt_, _gt_ : Id, Id -> Bool

First_Set : Id -> Bool

Second_Set : Id -> Bool

Third_Set : Id -> Bool

Fourth_Set : Id -> Bool

eqns forall n1, n2: Id

ofsort Nat

h(id1) = 0;

h(id2) = succ(h(id1));

h(id3) = succ(h(id2));

h(id4) = succ(h(id3));

h(id5) = succ(h(id4));

h(id6) = succ(h(id5));

h(id7) = succ(h(id6));

h(id8) = succ(h(id7));

h(id9) = succ(h(id8));

51

Appendix B. LOTOS specification of the user-centred model of the road pricing system 52

h(id10) = succ(h(id9));

h(id11) = succ(h(id10));

h(id12) = succ(h(id11));

h(id13) = succ(h(id12));

h(id14) = succ(h(id13));

h(id15) = succ(h(id14));

h(id16) = succ(h(id15));

h(id17) = succ(h(id16));

h(id18) = succ(h(id17));

h(id19) = succ(h(id18));

h(id20) = succ(h(id19));

ofsort Bool

n1 eq n2 = h(n1) eq h(n2);

n1 ne n2 = h(n1) ne h(n2);

n1 lt n2 = h(n1) lt h(n2);

n1 gt n2 = h(n1) gt h(n2);

First_Set(n1) = h(n1) lt h(id5);

Second_Set(n1) = not(h(n1) lt h(id5)) and (h(n1) lt h(id10));

Third_Set(n1) = not(h(n1) lt h(id10)) and (h(n1) lt h(id15));

Fourth_Set(n1) = not(h(n1) lt h(id15)) and (h(n1) lt h(id20));

endtype

type Set_Id_Type is Set actualizedby Id_Type using

sortnames Id for Element

Bool for FBool

endtype

type Toll_Id_Set_Type is Set_Id_Type

renamedby

sortnames Toll_Id for Id

Toll_Id_Set for Set

opnnames Is_Enter for First_Set

Is_Exit for Second_Set

Is_Single for Third_Set

endtype

type Desk_Id_Type is

sorts Desk_Id

opns dsk_id : -> Desk_Id

endtype

type Info_Type is

sorts Info

opns inf : -> Info

endtype

type Gizmo_Id_Set_Type is Set_Id_Type

Appendix B. LOTOS specification of the user-centred model of the road pricing system 53

renamedby

sortnames Gizmo_Id for Id

Gizmo_Id_Set for Set

endtype

type Plate_Id_Type is Id_Type

renamedby

sortnames Plate_Id for Id

endtype

type Ac_Nr_Type is Id_Type

renamedby

sortnames Ac_Nr for Id

endtype

type Vehicle_Type is Gizmo_Id_Set_Type, Plate_Id_Type, Ac_Nr_Type, Info_Type

sorts Vehicle

opns Make_Vehicle : Gizmo_Id, Plate_Id, Ac_Nr, Info -> Vehicle

Id : Vehicle -> Gizmo_Id

Plate_Nr : Vehicle -> Plate_Id

Account_Nr : Vehicle -> Ac_Nr

Name_Info : Vehicle -> Info

eqns forall iden: Gizmo_Id, plate: Plate_Id, acc: Ac_Nr, fo: Info

ofsort Gizmo_Id

Id(Make_Vehicle(iden, plate, acc, fo)) = iden;

ofsort Plate_Id

Plate_Nr(Make_Vehicle(iden, plate, acc, fo)) = plate;

ofsort Ac_Nr

Account_Nr(Make_Vehicle(iden, plate, acc, fo)) = acc;

ofsort Info

Name_Info(Make_Vehicle(iden, plate, acc, fo)) = fo;

endtype

type Cost_Type is

sorts Cost

opns some_am : -> Cost

endtype

type Op_Id_Type is

sorts Op_Id

opns oper_id : -> Op_Id

endtype

type Pr_Id_Type is

sorts Pr_Id

opns prin_id : -> Pr_Id

endtype

Appendix B. LOTOS specification of the user-centred model of the road pricing system 54

type Entry_Type is Id_Type

renamedby

sortnames Entry_Val for Id

opnnames was_green for id1

was_yellow for id2

endtype

type Bank_Interf_Id_Type is

sorts Bank_Interf_Id

opns bank_id : -> Bank_Interf_Id

endtype

type Events is

sorts Event

opns read, yellow, green, photo, amount, refuse_gizmo, get_gizmo,

monthly_receipt, cancel, report_stolen, give_info, detect,

rtn_give_info, query_account, rtn_query_account, update_prices,

close_account, debit, monthly_debit, change_toll, new_toll,

print_receipt, clear : -> Event

endtype

behaviour

((In_Vehicles[sen, lgt, dpl, cam]

|||

Exit_Vehicles[sen, lgt, dpl, cam]

|||

One_Point_Vehicles[sen, lgt, dpl, cam]

|||

Owner_Agent[rd]

|||

Bank_Acc_Agent[bk]

|||

Bank_Debit_Agent[bk]

|||

Operator_Agent[oi, prin]

)

|[rd, sen, lgt, bk, oi]|

((Toll_Ids[sen, oi]({} of Toll_Id_Set)

|||

Gizmos[rd, lgt]({} of Gizmo_Id_Set, {} of Gizmo_Id_Set)

|[rd]|

O_B_Constraint[rd, bk]

)

|[sen, lgt]|

Busy_Toll[sen, lgt]({} of Toll_Id_Set)

)

Appendix B. LOTOS specification of the user-centred model of the road pricing system 55

)

where

process In_Vehicles[sen, lgt, dpl, cam] : noexit :=

sen !detect ?int: Toll_Id [Is_Enter(int)];

(In_Vehicle[sen, lgt, dpl, cam](int)

|||

In_Vehicles[sen, lgt, dpl, cam]

)

where

process In_Vehicle[sen, lgt, dpl, cam](int : Toll_Id) : noexit :=

sen !read !int ?id_g: Gizmo_Id;

(Yellow[lgt, cam](id_g, int)

[]

lgt !green !int !id_g;

lgt !clear !int;

stop

)

[]

sen !read !int;

Yellow_No_G[lgt, cam](int)

endproc (* In_Vehicle *)

endproc (* In_Vehicles *)

process Exit_Vehicles[sen, lgt, dpl, cam] : noexit :=

sen !detect ?ext: Toll_Id [Is_Exit(ext)];

(Exit_Vehicle[sen, lgt, dpl, cam](ext)

|||

Exit_Vehicles[sen, lgt, dpl, cam]

)

where

process Exit_Vehicle[sen, lgt, dpl, cam](ext : Toll_Id) : noexit :=

sen !read !ext ?id_g: Gizmo_Id;

(Green[lgt,dpl](id_g, ext)

[]

Yellow[lgt, cam](id_g, ext)

)

[]

sen !read !ext;

Yellow_No_G[lgt, cam](ext)

endproc (* Exit_Vehicle *)

endproc (* Exit_Vehicles *)

process Yellow[lgt, cam](id_g: Gizmo_Id, iden: Toll_Id) : noexit :=

lgt !yellow !iden !id_g;

cam !photo !iden !id_g;

Appendix B. LOTOS specification of the user-centred model of the road pricing system 56

lgt !clear !iden;

stop

endproc (* Yellow *)

process Green[lgt, dpl](id_g: Gizmo_Id, iden: Toll_Id) : noexit :=

lgt !green !iden !id_g;

dpl !amount !iden !some_am;

dpl !clear !iden;

lgt !clear !iden;

stop

endproc (* Green *)

process Yellow_No_G[lgt, cam](iden: Toll_Id) : noexit :=

lgt !yellow !iden;

cam !photo !iden;

lgt !clear !iden;

stop

endproc (* Yellow_No_G *)

process One_Point_Vehicles[sen, lgt, dpl, cam] : noexit :=

sen !detect ?sin: Toll_Id [Is_Single(sin)];

(One_Point_Vehicle[sen, lgt, dpl, cam](sin)

|||

One_Point_Vehicles[sen, lgt, dpl, cam]

)

where

process One_Point_Vehicle[sen, lgt, dpl, cam](sin : Toll_Id) : noexit :=

sen !read !sin ?id_g: Gizmo_Id;

(Green[lgt, dpl](id_g, sin)

[]

Yellow[lgt, cam](id_g, sin)

)

[]

sen !read !sin;

Yellow_No_G[lgt, cam](sin)

endproc (* One_Point_Vehicle *)

endproc (* One_Point_Vehicles *)

process Owner_Agent[rd] : noexit :=

rd !give_info ?dsk : Desk_Id ?idg: Gizmo_Id ?pl: Plate_Id ?ac: Ac_Nr !inf;

(rd !get_gizmo !idg !dsk;

Owner_Agent[rd]

[]

rd !refuse_gizmo !idg !dsk;

Owner_Agent[rd]

)

[]

Appendix B. LOTOS specification of the user-centred model of the road pricing system 57

Desk_Services[rd]

where

process Desk_Services[rd] : noexit :=

rd !cancel ?dsk : Desk_Id ?idg: Gizmo_Id;

Owner_Agent[rd]

[]

rd !report_stolen ?dsk : Desk_Id ?idg: Gizmo_Id;

Owner_Agent[rd]

endproc (* Desk_Services *)

endproc (* Owner_Agent *)

process Bank_Acc_Agent[bk] : noexit :=

bk !query_account ?bnk: Bank_Interf_Id ?ac_no: Ac_Nr;

bk !rtn_query_account !bnk !ac_no ?account_ok: Bool;

Bank_Acc_Agent[bk]

endproc (* Bank_Acc_Agent *)

process Bank_Debit_Agent[bk] : noexit :=

bk !debit ?bnk: Bank_Interf_Id ?ac_no: Ac_Nr;

(Bank_Debit_Agent[bk]

[]

bk !close_account !bnk !ac_no;

Bank_Debit_Agent[bk]

)

endproc (* Bank_Debit_Agent *)

process Operator_Agent[oi, prin] : noexit :=

oi !update_prices ?opr_id: Op_Id !inf;

Operator_Agent[oi, prin]

[]

oi !monthly_debit ?opr_id: Op_Id;

(Print_Out[prin] >> Operator_Agent[oi, prin])

[]

oi !change_toll ?opr_id: Op_Id ?idt: Toll_Id !inf;

Operator_Agent[oi, prin]

[]

oi !new_toll ?opr_id: Op_Id ?idt: Toll_Id !inf;

Operator_Agent[oi, prin]

where

process Print_Out[prin] : exit :=

prin !print_receipt ?p_id: Pr_Id !inf ?pl: Plate_Id

!some_am ?ac: Ac_Nr ?idt: Toll_Id;

Print_Out[prin]

[]

exit

endproc (* Print_Out *)

endproc (* Operator_Agent *)

Appendix B. LOTOS specification of the user-centred model of the road pricing system 58

process Gizmos[rd, lgt](idgs, curr: Gizmo_Id_Set) : noexit :=

rd !give_info ?dsk : Desk_Id ?idg: Gizmo_Id ?pl: Plate_Id ?ac: Ac_Nr !inf;

Gizmos[rd, lgt](idgs, curr)

[]

rd !get_gizmo ?idg: Gizmo_Id ?dsk : Desk_Id;

Gizmos[rd, lgt](Insert(idg, idgs), curr)

[]

rd !refuse_gizmo ?idg: Gizmo_Id ?dsk : Desk_Id;

Gizmos[rd, lgt](idgs, curr)

[]

(* cancel or report stolen *)

rd ?op : Event ?dsk : Desk_Id ?idg: Gizmo_Id[idg isin idgs];

Gizmos[rd, lgt](Remove(idg, idgs), curr)

[]

lgt !green ?t_id:Toll_Id ?idg: Gizmo_Id

[(idg isin idgs) and Is_Enter(t_id) and not(idg isin curr)];

Gizmos[rd, lgt](idgs, Insert(idg, curr))

[]

lgt !green ?t_id:Toll_Id ?idg: Gizmo_Id

[Is_Exit(t_id) and (idg isin curr) and (idg isin idgs)];

Gizmos[rd, lgt](idgs, Remove(idg, curr))

[]

lgt !green ?t_id:Toll_Id ?idg: Gizmo_Id

[Is_Single(t_id) and(idg isin idgs) and not(idg isin curr)];

Gizmos[rd, lgt](idgs, curr)

[]

lgt !yellow ?t_id:Toll_Id ?idg: Gizmo_Id

[(idg notin idgs) or (Is_Exit(t_id) and (idg notin curr))

or ((idg isin curr) and (Is_Enter(t_id) or Is_Single(t_id)))];

Gizmos[rd, lgt](idgs, Remove(idg, curr))

[]

lgt !yellow ?t_id:Toll_Id;

Gizmos[rd, lgt](idgs, curr)

[]

lgt !clear ?t_id:Toll_Id;

Gizmos[rd, lgt](idgs, curr)

endproc (* Gizmos *)

process Toll_Ids[sen, oi](tids: Toll_Id_Set) : noexit :=

sen !detect ?t_id:Toll_Id [t_id isin tids];

Toll_Ids[sen, oi](tids)

[]

sen !read ?t_id:Toll_Id ?idg: Gizmo_Id[t_id isin tids];

Toll_Ids[sen, oi](tids)

[]

sen !read ?t_id:Toll_Id[t_id isin tids];

Appendix B. LOTOS specification of the user-centred model of the road pricing system 59

Toll_Ids[sen, oi](tids)

[]

oi !update_prices ?o_id: Op_Id !inf;

Toll_Ids[sen, oi](tids)

[]

oi !monthly_debit ?o_id: Op_Id;

Toll_Ids[sen, oi](tids)

[]

oi !new_toll ?o_id: Op_Id ?idt: Toll_Id !inf;

Toll_Ids[sen, oi](Insert(idt, tids))

[]

oi !change_toll ?o_id: Op_Id ?idt: Toll_Id !inf[idt isin tids];

Toll_Ids[sen, oi](tids)

endproc (* Toll_Ids *)

process Busy_Toll[sen, lgt](busy: Toll_Id_Set) : noexit :=

sen !detect ?t_id:Toll_Id [not(t_id isin busy)];

Busy_Toll[sen, lgt](Insert(t_id,busy))

[]

sen !read ?t_id:Toll_Id ?idg: Gizmo_Id;

Busy_Toll[sen, lgt](busy)

[]

sen !read ?t_id:Toll_Id;

Busy_Toll[sen, lgt](busy)

[]

lgt !clear ?t_id:Toll_Id[t_id isin busy];

Busy_Toll[sen, lgt](Remove(t_id,busy))

[]

lgt !yellow ?t_id:Toll_Id;

Busy_Toll[sen, lgt](busy)

[]

lgt !green ?t_id:Toll_Id ?idg: Gizmo_Id;

Busy_Toll[sen, lgt](busy)

[]

lgt !yellow ?t_id:Toll_Id ?idg: Gizmo_Id;

Busy_Toll[sen, lgt](busy)

endproc (* Busy_Toll *)

process O_B_Constraint[rd, bk] : exit :=

rd !give_info ?dsk: Desk_Id ?g_id: Gizmo_Id ?pl_id: Plate_Id

?ac_no: Ac_Nr ?inf: Info;

bk !query_account ?bnk: Bank_Interf_Id !ac_no;

bk !rtn_query_account !bnk !ac_no ?ok: Bool;

([ok]-> rd !get_gizmo !g_id !dsk;

O_B_Constraint[rd, bk]

[]

[not(ok)] -> rd !refuse_gizmo !g_id !dsk;

Appendix B. LOTOS specification of the user-centred model of the road pricing system 60

O_B_Constraint[rd, bk]

)

[]

rd ?ev: Event ?dsk: Desk_Id ?g_id: Gizmo_Id;

O_B_Constraint[rd, bk]

[]

exit

endproc (* O_B_Constraint *)

(* Process Testing is a scenario involving two vehicles both

going through the enter and exit gates of a motorway *)

process Testing[oi, rd, bk, sen, lgt, dpl, cam, success] : noexit :=

Init[rd, oi, bk]>> Two_Point_Vehicle_A[sen, lgt, dpl, cam] >> success; stop

where

process Init[rd, oi, bk] : exit :=

oi !new_toll !oper_id !id10 of Toll_Id !inf

[Is_Single(id10)];

oi !new_toll !oper_id !id1 of Toll_Id !inf

[Is_Enter(id1)];

oi !new_toll !oper_id !id5 of Toll_Id !inf

[Is_Exit(id5)];

(let v1: Vehicle = Make_Vehicle(id1 of Gizmo_Id, id1 of Plate_Id,

id1 of Ac_Nr, inf),

v2: Vehicle = Make_Vehicle(id2 of Gizmo_Id, id2 of Plate_Id,

id2 of Ac_Nr, inf) in

rd !give_info !dsk_id !Id(v1) !Plate_Nr(v1)

!Account_Nr(v1) !Name_Info(v1);

bk !query_account !bank_id !Account_Nr(v1);

bk !rtn_query_account !bank_id !Account_Nr(v1) !true;

rd !get_gizmo !Id(v1) !dsk_id;

rd !give_info !dsk_id !Id(v2) !Plate_Nr(v2)

!Account_Nr(v2) !Name_Info(v2);

bk !query_account !bank_id !Account_Nr(v2);

bk !rtn_query_account !bank_id !Account_Nr(v2) !true;

rd !get_gizmo !Id(v2) !dsk_id;

exit)

endproc

process Two_Point_Vehicle_A[sen, lgt, dpl, cam] : exit :=

sen !detect !id1 of Toll_Id (*Is_Enter(id1)*);

sen !read !id1 of Toll_Id !id1 of Gizmo_Id;

lgt !green !id1 of Toll_Id !id1 of Gizmo_Id;

lgt !clear !id1 of Toll_Id;

sen !detect !id1 of Toll_Id (*Is_Enter(id1)*);

sen !read !id1 of Toll_Id !id2 of Gizmo_Id;

Appendix B. LOTOS specification of the user-centred model of the road pricing system 61

lgt !green !id1 of Toll_Id !id2 of Gizmo_Id;

lgt !clear !id1 of Toll_Id;

sen !detect !id5 of Toll_Id (*Is_Exit(id5)*);

sen !read !id5 of Toll_Id !id2 of Gizmo_Id;

lgt !green !id5 of Toll_Id !id2 of Gizmo_Id;

dpl !amount !id5 of Toll_Id ?the_cost : Cost;

dpl !clear !id5 of Toll_Id;

lgt !clear !id5 of Toll_Id;

sen !detect !id5 of Toll_Id (*Is_Exit(id5)*);

sen !read !id5 of Toll_Id !id1 of Gizmo_Id;

lgt !green !id5 of Toll_Id !id1 of Gizmo_Id;

dpl !amount !id5 of Toll_Id ?the_cost : Cost;

dpl !clear !id5 of Toll_Id;

lgt !clear !id5 of Toll_Id;

exit

endproc (* Two_Point_Vehicle_A *)

endproc (* Testing *)

endspec

Appendix C

Object Communication Tables

62

Appendix C. Object Communication Tables 63

Class Offered Required Clients
Templates Services Services

Sensor (S) read In Toll.get gizmo id External
Exit Toll.get gizmo id External

Single Toll.get gizmo id External
detect In Toll.no gizmo detect External

Exit Toll.no gizmo detect External
Single Toll.no gizmo detect External

Light (L) turn green In Toll, Exit Toll,
Single Toll

turn yellow In Toll, Exit Toll,

Single Toll

Display (D) show amount Exit Toll, Single Toll

Camera (C) take photo In Toll, Exit Toll,
Single Toll

Single Toll (S T) get gizmo id Gate Processor.check gizmo id Sensor
Light.turn green
Display.show amount

Light.turn yellow
Camera.take photo

no gizmo detect Gate Processor.report no gizmo Sensor
Light.turn yellow
Camera.take photo

In Toll (I N) get gizmo id Gate Processor.check gizmo id Sensor

Light.turn green
Light.turn yellow

Camera.take photo
no gizmo detect Gate Processor.report no gizmo Sensor

Light.turn yellow
Camera.take photo

Exit Toll (E T) get gizmo id Gate Processor.check gizmo id Sensor

Light.turn green
Display.show amount
Light.turn yellow

Camera.take photo
no gizmo detect Gate Processor.report no gizmo Sensor

Light.turn yellow
Camera.take photo

Pay Toll (P T) get gizmo id Gate Processor.check gizmo id Sensor
Light.turn green
Display.show amount
Light.turn yellow
Camera.take photo

no gizmo detect Gate Processor.report no gizmo Sensor
Light.turn yellow
Camera.take photo

Toll Gate (T G) get gizmo id Gate Processor.check gizmo id Sensor

Light.turn green
Display.show amount

Light.turn yellow
Camera.take photo

no gizmo detect Gate Processor.report no gizmo Sensor
Light.turn yellow
Camera.take photo

create Operator Interface

Table C.1: OCT with class templates, services offered, services required and clients

Appendix C. Object Communication Tables 64

Class Offered Required Clients
Templates Services Services

Gate Processor check gizmo id Gizmo Detail.check gizmo In Toll, Exit Toll,
(G P) Single Toll

Current Journey.check if in
Current Journey.create

Price Table.get amount
Usage Details.add
Current Journey.remove
Photos Taken.add

report no gizmo Photos Taken.add In Toll, Exit Toll,

Single Toll

Price Table (P) get amount Gate Processor
update Operator Interface

Gizmo Detail (G D) create Reg Control

get gizmo Bill Processor
check gizmo Gate Processor
change status Reg Control

Usage Details (U D) get usage Bill Processor
add Gate Processor

Current Journey create Gate Processor
(C J) check if in Gate Processor

remove Gate Processor

Photos Taken (Ph T) add Gate Processor

Owner Detail create Reg Control

(O D) get owner Bill Processsor
add Reg Control

Vehicle (V) create Reg Control
get vehicle Bill Processsor

Reg Control add info Bank Interface.check account Reg Desk
(R C) Vehicle.create

Gizmo Detail.create
Owner Detail.create

report stolen Gizmo Detail.change status Reg Desk
cancel Gizmo Detail.change status Reg Desk

Reg Desk (R D) give info Reg Control.add info External

report stolen Reg Control.report stolen External
cancel Reg Control.cancel External

Bank Interface send debit Bill Processor

(B I) check account Reg Control
close account Bill Processor.close account External

Bill Processor debit Usage Details.get usage Operator Interface

(B P) Gizmo Detail.get gizmo
Owner Detail.get owner
Vehicle.get vehicle

Bank Interface.send debit
Printer.print receipt

close account Owner Detail.get owner Bank Interface
Gizmo Detail.change status

Operator Interface monthly debit Bill Processor.debit External
(O I) update prices Price Table.update External

change toll Toll Gate.create External
Price Table.update

Printer print receipt Bill Processor

Table C.2: OCT with class templates, services offered, services required and clients (contin-

ued)

Appendix C. Object Communication Tables 65

Class Offered Required Clients
Templates Services Services

Toll read (S) T G.get gizmo id External
[T G + I T + E T + detect (S) T G.no gizmo detect External
S T + P T + L + create O I
D + S + C]

Gate Processor check gizmo id Gizmo Detail.check gizmo T G
(G P) Current Journey.check if in

Current Journey.create

Price Table.get amount
Usage Details.add
Current Journey.remove
Photos Taken.add

report no gizmo Photos Taken.add T G

Price Table (P) get amount G P
update O I

Usage Details get usage B P
(U D) add G P

Current Journey create G P
(C J) check if in G P

remove G P

Photos Taken (Ph T) add G P

Client Details create (G D) R C
[G D + O D + V] get gizmo (G D) B P

check gizmo (G D) G P
change status (G D) R C
create (O D) R C

get owner (O D) B P
add (O D) R C

create (V) R C
get vehicle (V) B P

Reg Control (R C) add info Bank Interface.check account R D

Vehicle.create
Owner Detail.create

Gizmo Detail.create
report stolen Gizmo Detail.change status R D
cancel Gizmo Detail.change status R D

Reg Desk (R D) give info Reg Control.add info External
report stolen Reg Control.report stolen External
cancel Reg Control.cancel External

Bank Interface send debit B P

(B I) check account R C
close account Bill Processor.close account External

Bill Processor (B P) debit Usage Details.get usage O I
Gizmo Detail.get gizmo
Owner Detail.get owner
Vehicle.get vehicle
Bank Interface.send debit

Printer.print receipt
close account Owner Detail.get owner B I

Gizmo Detail.change status

Operator Interface monthly debit Bill Processor.debit External
(O I) update prices Price Table.update External

change toll Toll Gate.create External
Price Table.update

Printer print receipt B P

Table C.3: OCT with subsystems

Appendix C. Object Communication Tables 66

Class Offered Required Clients
Templates Services Services

Sensor read T G.get gizmo id External

detect T G.no gizmo detect External

Light turn green T G
turn yellow T G

Display show amount P T

Camera take photo T G

Toll Gate get gizmo id Gate Processor.check gizmo id S
Light.turn green
Display.show amount

Light.turn yellow
Camera.take photo

no gizmo detect Gate Processor.report no gizmo S
Light.turn yellow

Camera.take photo

Table C.4: OCT showing the objects within subsystem Toll

Appendix C. Object Communication Tables 67

Class Offered Required Clients Gates
Templates Services Services

Toll read (S) T G.get gizmo id External t
[T G + I T + E T + detect (S) T G.no gizmo detect External t
S T + P T + L + create O I to
D + S + C]

Gate Processor check gizmo id Gizmo Detail.check gizmo T G gp
(G P) Current Journey.check if in

Current Journey.create

Price Table.get amount
Usage Details.add
Current Journey.remove
Photos Taken.add

report no gizmo Photos Taken.add T G gp

Price Table (P) get amount G P pt
update O I pt

Usage Details get usage B P ud
(U D) add G P ud

Current Journey create G P cj
(C J) check if in G P cj

remove G P cj

Photos Taken (Ph T) add G P ph

Client Details create (G D) R C c
[G D + O D + V] get gizmo (G D) B P c

check gizmo (G D) G P c
change status (G D) R C c
create (O D) R C c

get owner (O D) B P c
add (O D) R C c

create (V) R C c
get vehicle (V) B P c

Reg Control add info Bank Interface.check account R D rc

(R C) Vehicle.create rc
Owner Detail.create

Gizmo Detail.create
report stolen Gizmo Detail.change status R D rc
cancel Gizmo Detail.change status R D rc

Reg Desk (R D) give info Reg Control.add info External rd
report stolen Reg Control.report stolen External rd
cancel Reg Control.cancel External rd

Bank Interface send debit B P bi1

(B I) check account R C bi2
close account Bill Processor.close account External bk

Bill Processor (B P) debit Usage Details.get usage O I bp1
Gizmo Detail.get gizmo
Owner Detail.get owner
Vehicle.get vehicle
Bank Interface.send debit

Printer.print receipt
close account Owner Detail.get owner B I bp2

Gizmo Detail.change status

Operator Interface monthly debit Bill Processor.debit External oi
(O I) update prices Price Table.update External oi

change toll Toll Gate.create External oi
Price Table.update

Printer print receipt B P p

Table C.5: OCT with gates

Appendix C. Object Communication Tables 68

Class Offered Required Clients Gates
Templates Services Services

Sensor read T G.get gizmo id External sen

detect T G.no gizmo detect External sen

Light turn green T G li
turn yellow T G li

Display show amount P T di

Camera take photo T G ci

Toll Gate get gizmo id Gate Processor.check gizmo id S si
Light.turn green
Display.show amount
Light.turn yellow
Camera.take photo

no gizmo detect Gate Processor.report no gizmo S si
Light.turn yellow

Camera.take photo

Table C.6: OCT with gates for the objects within subsystem Toll

Appendix D

LOTOS specification of the

system-centred model of the road
pricing system

specification rps [sen, lgt, dpl, cam, bk,

rd, prin, oi, success]: noexit

library

NaturalNumber, Boolean, Set

endlib

type Id_Type is Boolean, NaturalNumber

sorts Id

opns id1, id2, id3, id4, id5, id6,

id7, id8, id9, id10, id11,

id12, id13, id14, id15, id16,

id17, id18, id19, id20 : -> Id

h : Id -> Nat

eq, _ne_, _lt_, _gt_ : Id, Id -> Bool

First_Set : Id -> Bool

Second_Set : Id -> Bool

Third_Set : Id -> Bool

Fourth_Set : Id -> Bool

eqns forall n1, n2: Id

ofsort Nat

h(id1) = 0;

h(id2) = succ(h(id1));

h(id3) = succ(h(id2));

h(id4) = succ(h(id3));

h(id5) = succ(h(id4));

h(id6) = succ(h(id5));

h(id7) = succ(h(id6));

69

Appendix D. LOTOS specification of the system-centred model of the road pricing system70

h(id8) = succ(h(id7));

h(id9) = succ(h(id8));

h(id10) = succ(h(id9));

h(id11) = succ(h(id10));

h(id12) = succ(h(id11));

h(id13) = succ(h(id12));

h(id14) = succ(h(id13));

h(id15) = succ(h(id14));

h(id16) = succ(h(id15));

h(id17) = succ(h(id16));

h(id18) = succ(h(id17));

h(id19) = succ(h(id18));

h(id20) = succ(h(id19));

ofsort Bool

n1 eq n2 = h(n1) eq h(n2);

n1 ne n2 = h(n1) ne h(n2);

n1 lt n2 = h(n1) lt h(n2);

n1 gt n2 = h(n1) gt h(n2);

First_Set(n1) = h(n1) lt h(id5);

Second_Set(n1) = not(h(n1) lt h(id5)) and (h(n1) lt h(id10));

Third_Set(n1) = not(h(n1) lt h(id10)) and (h(n1) lt h(id15));

Fourth_Set(n1) = not(h(n1) lt h(id15)) and (h(n1) lt h(id20));

endtype

type Set_Id_Type is Set actualizedby Id_Type using

sortnames Id for Element

Bool for FBool

endtype

type Toll_Id_Set_Type is Set_Id_Type

renamedby

sortnames Toll_Id for Id

Toll_Id_Set for Set

opnnames Is_Enter for First_Set

Is_Exit for Second_Set

Is_Single for Third_Set

endtype

type Desk_Id_Type is

sorts Desk_Id

opns dsk_id : -> Desk_Id

endtype

type Gizmo_Stat_Type is Id_Type

renamedby

sortnames Gizmo_Status for Id

opnnames g_ok for id1

Appendix D. LOTOS specification of the system-centred model of the road pricing system71

g_stolen for id2

g_cancel for id3

g_closed for id4

endtype

type Cost_Type is

sorts Cost

opns some_am : -> Cost

endtype

type Date_Type is

sorts Date

opns the_date : -> Date

endtype

type Info_Type is

sorts Info

opns inf : -> Info

endtype

type Ac_Nr_Set_Type is Set_Id_Type

renamedby

sortnames Ac_Nr for Id

Ac_Nr_Set for Set

endtype

type Plate_Id_Set_Type is Set_Id_Type

renamedby

sortnames Plate_Id for Id

Plate_Id_Set for Set

endtype

type Gizmo_Id_Set_Type is Set_Id_Type

renamedby

sortnames Gizmo_Id for Id

Gizmo_Id_Set for Set

endtype

type G_P_Id_Type is

sorts G_P_Id

opns gp_id : -> G_P_Id

endtype

type Ph_T_Id_Type is

sorts Ph_T_Id

opns ph_id : -> Ph_T_Id

endtype

Appendix D. LOTOS specification of the system-centred model of the road pricing system72

type P_T_Id_Type is

sorts P_T_Id

opns pt_id : -> P_T_Id

endtype

type C_J_Id_Type is

sorts C_J_Id

opns cj_id : -> C_J_Id

endtype

type R_C_Id_Type is

sorts R_C_Id

opns rc_id : -> R_C_Id

endtype

type Op_Id_Type is

sorts Op_Id

opns oper_id : -> Op_Id

endtype

type Bill_P_Id_Types is

sorts Bill_P_Id

opns bp_id : -> Bill_P_Id

endtype

type Usage_List_Id_Type is

sorts Usage_List_Id

opns us_id : -> Usage_List_Id

endtype

type Bank_Interf_Id_Type is

sorts Bank_Interf_Id

opns bank_id : -> Bank_Interf_Id

endtype

type Pr_Id_Type is

sorts Pr_Id

opns prin_id : -> Pr_Id

endtype

type Vehicle_Type is Gizmo_Id_Set_Type, Plate_Id_Set_Type,

Ac_Nr_Set_Type, Info_Type

sorts Vehicle

opns Make_Vehicle : Gizmo_Id, Plate_Id, Ac_Nr, Info -> Vehicle

Id : Vehicle -> Gizmo_Id

Plate_Nr : Vehicle -> Plate_Id

Appendix D. LOTOS specification of the system-centred model of the road pricing system73

Account_Nr : Vehicle -> Ac_Nr

Name_Info : Vehicle -> Info

eqns forall iden: Gizmo_Id, plate: Plate_Id, acc: Ac_Nr, fo: Info

ofsort Gizmo_Id

Id(Make_Vehicle(iden, plate, acc, fo)) = iden;

ofsort Plate_Id

Plate_Nr(Make_Vehicle(iden, plate, acc, fo)) = plate;

ofsort Ac_Nr

Account_Nr(Make_Vehicle(iden, plate, acc, fo)) = acc;

ofsort Info

Name_Info(Make_Vehicle(iden, plate, acc, fo)) = fo;

endtype

type Events is

sorts Event

opns read, yellow, green, photo, amount, refuse_gizmo,

monthly_receipt, cancel, report_stolen, give_info, detect,

query_account, rtn_query_account, clear, enable, taken,

debit, check_gizmo_id, no_gizmo_detect,

turn_green, turn_yellow, take_photo, show_amount,

rtn_check_gizmo_id, check_gizmo, change_status,

get_amount, rtn_check_gizmo, add, update_prices,

rtn_check_if_in, check_if_in, get_usage, update,

check_account, rtn_check_account, send_debit, change_toll,

get_vehicle, get_owner, get_gizmo_id, monthly_debit,

report_no_gizmo, create, remove, close_account, new_toll,

add_info, print_receipt, rtn_add_info, get_gizmo : -> Event

endtype

behaviour

(hide gp, to in

Toll_Gates[sen, lgt, dpl, cam, gp, to]

|[gp, to]|

(hide c, ud, bi1, bi2, bp2 in

(hide bp1 in

(hide pt, ph, cj in

(Gate_Processor[gp, ph, c, cj, ud, pt](gp_id)

|||

Operator_Interface[pt, bp1, oi, to](oper_id)

)

|[pt, ph, cj]|

(Photos_Taken[ph](ph_id)

|||

Current_Journey[cj](cj_id, {} of Gizmo_Id_Set)

|||

Price_Table[pt](pt_id)

)

Appendix D. LOTOS specification of the system-centred model of the road pricing system74

)

|[bp1]|

(hide pr in

Bill_Processor[c, ud, bp1, bp2, bi1, pr](bp_id)

|[pr]|

Printer[pr, prin](prin_id)

)

|||

(hide rc in

Reg_Desk[rd, rc](dsk_id)

|[rc]|

Reg_Control[rc, bi2, c](rc_id)

)

)

|[c, ud, bi1, bi2, bp2]|

(Client_Details[c]

|||

Usage_Details[ud](us_id, {} of Gizmo_Id_Set)

|||

Bank_Interface[bk, bi1, bi2, bp2](bank_id)

))

)

where

(* Process Testing is a scenario involving two vehicles both

going through the enter and exit gates of a motorway *)

process Testing[oi, rd, bk, sen, lgt, dpl, cam, success] : noexit :=

Init[rd, oi, bk]>> Two_Point_Vehicle_A[sen, lgt, dpl, cam] >> success; stop

where

process Init[rd, oi, bk] : exit :=

oi !new_toll !oper_id !id10 of Toll_Id !inf

[Is_Single(id10)];

oi !new_toll !oper_id !id1 of Toll_Id !inf

[Is_Enter(id1)];

oi !new_toll !oper_id !id5 of Toll_Id !inf

[Is_Exit(id5)];

(let v1: Vehicle = Make_Vehicle(id1 of Gizmo_Id, id1 of Plate_Id,

id1 of Ac_Nr, inf),

v2: Vehicle = Make_Vehicle(id2 of Gizmo_Id, id2 of Plate_Id,

id2 of Ac_Nr, inf) in

rd !give_info !dsk_id !Id(v1) !Plate_Nr(v1)

!Account_Nr(v1) !Name_Info(v1);

bk !query_account !bank_id !Account_Nr(v1);

bk !rtn_query_account !bank_id !Account_Nr(v1) !true;

rd !get_gizmo !Id(v1) !dsk_id;

rd !give_info !dsk_id !Id(v2) !Plate_Nr(v2)

Appendix D. LOTOS specification of the system-centred model of the road pricing system75

!Account_Nr(v2) !Name_Info(v2);

bk !query_account !bank_id !Account_Nr(v2);

bk !rtn_query_account !bank_id !Account_Nr(v2) !true;

rd !get_gizmo !Id(v2) !dsk_id;

exit)

endproc

process Two_Point_Vehicle_A[sen, lgt, dpl, cam] : exit :=

sen !detect !id1 of Toll_Id (*Is_Enter(id1)*);

sen !read !id1 of Toll_Id !id1 of Gizmo_Id;

lgt !green !id1 of Toll_Id !id1 of Gizmo_Id;

lgt !clear !id1 of Toll_Id;

sen !detect !id1 of Toll_Id (*Is_Enter(id1)*);

sen !read !id1 of Toll_Id !id2 of Gizmo_Id;

lgt !green !id1 of Toll_Id !id2 of Gizmo_Id;

lgt !clear !id1 of Toll_Id;

sen !detect !id5 of Toll_Id (*Is_Exit(id5)*);

sen !read !id5 of Toll_Id !id2 of Gizmo_Id;

lgt !green !id5 of Toll_Id !id2 of Gizmo_Id;

dpl !amount !id5 of Toll_Id ?the_cost : Cost;

dpl !clear !id5 of Toll_Id;

lgt !clear !id5 of Toll_Id;

sen !detect !id5 of Toll_Id (*Is_Exit(id5)*);

sen !read !id5 of Toll_Id !id1 of Gizmo_Id;

lgt !green !id5 of Toll_Id !id1 of Gizmo_Id;

dpl !amount !id5 of Toll_Id ?the_cost : Cost;

dpl !clear !id5 of Toll_Id;

lgt !clear !id5 of Toll_Id;

exit

endproc (* Two_Point_Vehicle_A *)

endproc (* Testing *)

process Sensor[sen, si](id: Toll_Id) : exit :=

sen !detect !id;

(sen !read !id ?gi: Gizmo_Id;

si !get_gizmo_id !id !gi;

si !enable !id;

Sensor[sen, si](id)

[]

sen !read !id; (* fail to read gizmo *)

si !no_gizmo_detect !id;

si !enable !id;

Sensor[sen, si](id)

)

Appendix D. LOTOS specification of the system-centred model of the road pricing system76

endproc (* Sensor *)

process Light[li, lgt](id: Toll_Id) : exit :=

li !turn_green !id ?gi: Gizmo_Id;

lgt !green !id !gi;

lgt !clear !id;

li !clear !id;

Light[li, lgt](id)

[]

li !turn_yellow !id ?gi: Gizmo_Id;

lgt !yellow !id !gi;

lgt !clear !id;

li !clear !id;

Light[li, lgt](id)

[]

li !turn_yellow !id;

lgt !yellow !id;

lgt !clear !id;

li !clear !id;

Light[li, lgt](id)

endproc (* Light *)

process Camera[ci, cam](id: Toll_Id) : exit :=

ci !take_photo !id ?gi: Gizmo_Id;

cam !photo !id !gi;

ci !taken !id;

Camera[ci, cam](id)

(* gizmo id imprinted on photograph *)

[]

ci !take_photo !id;

cam !photo !id;

ci !taken !id;

Camera[ci, cam](id)

endproc (* Camera *)

process Display[di, dpl](id: Toll_Id) : exit :=

di !show_amount !id ?am: Cost;

dpl !amount !id !am;

dpl !clear !id;

di !clear !id;

Display[di, dpl](id)

endproc (* Display *)

process Toll_Gates[sen, lgt, dpl, cam, t, to] : noexit :=

In_Tolls[sen, lgt, cam, t, to]({} of Toll_Id_Set)

|||

Single_Tolls[sen, lgt, dpl, cam, t, to]({} of Toll_Id_Set)

Appendix D. LOTOS specification of the system-centred model of the road pricing system77

|||

Exit_Tolls[sen, lgt, dpl, cam, t, to]({} of Toll_Id_Set)

where

process Toll[sen, si, li, lgt, ci, cam](id: Toll_Id) : exit :=

Light[li, lgt](id)

|||

Sensor[sen, si](id)

|||

Camera[ci, cam](id)

endproc (* Toll *)

process Toll_Gate[si, li, ci, t](id: Toll_Id) : exit :=

si !no_gizmo_detect !id;

t !report_no_gizmo ?gpid: G_P_Id !id;

li !turn_yellow !id;

ci !take_photo !id;

ci !taken !id;

li !clear !id;

si !enable !id;

exit

endproc (* Toll_Gate *)

process In_Tolls[sen, lgt, cam, t, to](ids: Toll_Id_Set) : noexit :=

to !create ?id: Toll_Id [(id notin ids) and Is_Enter(id)];

(In_Toll[sen, lgt, cam, t](id)

|||

In_Tolls[sen, lgt, cam, t, to](Insert(id, ids))

)

where

process In_Toll[sen, lgt, cam, t](id: Toll_Id) : noexit :=

hide si, li, ci in

The_Toll[si, li, ci, t](id)

|[si, li, ci]|

Toll[sen, si, li, lgt, ci, cam](id)

where

process The_Toll[si, li, ci, t](id: Toll_Id) : noexit :=

si !get_gizmo_id !id ?gi: Gizmo_Id;

t !check_gizmo_id ?gpid: G_P_Id !gi !id;

t !rtn_check_gizmo_id !gpid !gi

!id ?ok:Bool ?an_amount: Cost;

([ok] -> li !turn_green !id !gi;

li !clear !id;

si !enable !id;

The_Toll[si, li, ci, t](id)

[]

[not(ok)] -> li !turn_yellow !id !gi;

ci !take_photo !id !gi;

Appendix D. LOTOS specification of the system-centred model of the road pricing system78

ci !taken !id;

li !clear !id;

si !enable !id;

The_Toll[si, li, ci, t](id)

)

[]

(Toll_Gate[si, li, ci, t](id)

>> The_Toll[si, li, ci, t](id))

endproc (* The_Toll *)

endproc (* In_Toll *)

endproc (* In_Tolls *)

process Pay_Toll[sen, si, li, lgt, ci, cam, di, dpl](id: Toll_Id) : exit :=

Toll[sen, si, li, lgt, ci, cam](id)

|||

Display[di, dpl](id)

endproc (* Pay_Toll *)

process Single_Tolls[sen, lgt, dpl, cam, t, to](ids: Toll_Id_Set) : noexit :=

to !create ?id: Toll_Id [(id notin ids) and Is_Single(id)];

(Single_Toll[sen, lgt, dpl, cam, t](id)

|||

Single_Tolls[sen, lgt, dpl, cam, t, to](Insert(id, ids))

)

where

process Single_Toll[sen, lgt, dpl, cam, t](id: Toll_Id) : noexit :=

hide si, li, ci, di in

The_Toll[si, li, ci, di, t](id)

|[si, li, ci, di]|

Pay_Toll[sen, si, li, lgt, ci, cam, di, dpl](id)

where

process The_Toll[si, li, ci, di, t](id: Toll_Id) : noexit :=

si !get_gizmo_id !id ?gi: Gizmo_Id;

t !check_gizmo_id ?gpid: G_P_Id !gi !id;

t !rtn_check_gizmo_id !gpid !gi

!id ?ok:Bool ?an_amount: Cost;

([ok] -> li !turn_green !id !gi;

di !show_amount !id !an_amount;

di !clear !id;

li !clear !id;

si !enable !id;

The_Toll[si, li, ci, di, t](id)

[]

[not(ok)] -> li !turn_yellow !id !gi;

ci !take_photo !id !gi;

ci !taken !id;

li !clear !id;

Appendix D. LOTOS specification of the system-centred model of the road pricing system79

si !enable !id;

The_Toll[si, li, ci, di, t](id)

)

[]

(Toll_Gate[si, li, ci, t](id)

>> The_Toll[si, li, ci, di, t](id))

endproc (* The_Toll *)

endproc (* Single_Toll *)

endproc (* Single_Tolls *)

process Exit_Tolls[sen, lgt, dpl, cam, t, to](ids: Toll_Id_Set) : noexit :=

to !create ?id: Toll_Id [(id notin ids) and Is_Exit(id)];

(Exit_Toll[sen, lgt, dpl, cam, t](id)

|||

Exit_Tolls[sen, lgt, dpl, cam, t, to](Insert(id, ids))

)

where

process Exit_Toll[sen, lgt, dpl, cam, t](id: Toll_Id) : noexit :=

hide si, li, ci, di in

The_Toll[si, li, ci, di, t](id)

|[si, li, ci, di]|

Pay_Toll[sen, si, li, lgt, ci, cam, di, dpl](id)

where

process The_Toll[si, li, ci, di, t](id: Toll_Id) : noexit :=

si !get_gizmo_id !id ?gi: Gizmo_Id;

t !check_gizmo_id ?gpid: G_P_Id !gi !id;

t !rtn_check_gizmo_id !gpid !gi

!id ?ok:Bool ?an_amount: Cost;

([ok] -> li !turn_green !id !gi;

di !show_amount !id !an_amount;

di !clear !id;

li !clear !id;

si !enable !id;

The_Toll[si, li, ci, di, t](id)

[]

[not(ok)] -> li !turn_yellow !id !gi;

ci !take_photo !id !gi;

ci !taken !id;

li !clear !id;

si !enable !id;

The_Toll[si, li, ci, di, t](id)

)

[]

(Toll_Gate[si, li, ci, t](id)

>> The_Toll[si, li, ci, di, t](id))

endproc (* The_Toll *)

endproc (* Exit_Toll *)

Appendix D. LOTOS specification of the system-centred model of the road pricing system80

endproc (* Exit_Tolls *)

endproc (* Toll_Gates *)

process Gate_Processor[t, pt, g, cj, u, p](id: G_P_Id) : noexit :=

t !check_gizmo_id !id ?gi: Gizmo_Id ?idt: Toll_Id;

g !check_gizmo !gi !idt;

g !rtn_check_gizmo !gi !idt ?ok:Bool;

([ok and Is_Single(idt)] ->

p !get_amount ?ptid: P_T_Id !idt ?an_amount: Cost;

u !add ?us_id: Usage_List_Id !idt !gi !an_amount !the_date;

t !rtn_check_gizmo_id !id !gi !idt !ok !an_amount;

Gate_Processor[t, pt, g, cj, u, p](id)

[]

[not(ok) and Is_Single(idt)] ->

pt !add ?phid: Ph_T_Id !gi !idt;

t !rtn_check_gizmo_id !id !gi !idt !ok ?an_amount: Cost;

Gate_Processor[t, pt, g, cj, u, p](id)

[]

[ok and Is_Enter(idt)] ->

cj !create ?cj_i: C_J_Id !idt !gi;

t !rtn_check_gizmo_id !id !gi !idt !ok ?an_amount: Cost;

Gate_Processor[t, pt, g, cj, u, p](id)

[]

[not(ok) and Is_Enter(idt)] ->

pt !add ?phid: Ph_T_Id !gi !idt;

t !rtn_check_gizmo_id !id !gi !idt !ok ?an_amount: Cost;

Gate_Processor[t, pt, g, cj, u, p](id)

[]

[ok and Is_Exit(idt)] ->

cj !check_if_in ?cj_i: C_J_Id !idt !gi;

cj !rtn_check_if_in !cj_i !idt !gi ?is_in: Bool;

([is_in] ->

p !get_amount ?ptid: P_T_Id !idt ?an_amount: Cost;

cj !remove ?cj_i: C_J_Id !idt !gi;

u !add ?us_id: Usage_List_Id !idt !gi !an_amount !the_date;

t !rtn_check_gizmo_id !id !gi

!idt !is_in !an_amount;

Gate_Processor[t, pt, g, cj, u, p](id)

[]

[not(is_in)] ->

pt !add ?phid: Ph_T_Id !gi !idt;

t !rtn_check_gizmo_id !id !gi

!idt !is_in ?an_amount: Cost;

Gate_Processor[t, pt, g, cj, u, p](id)

)

[]

[not(ok) and Is_Exit(idt)] ->

Appendix D. LOTOS specification of the system-centred model of the road pricing system81

pt !add ?phid: Ph_T_Id !gi !idt;

t !rtn_check_gizmo_id !id !gi !idt !ok ?an_amount: Cost;

Gate_Processor[t, pt, g, cj, u, p](id)

)

[]

t !report_no_gizmo !id ?idt: Toll_Id;

pt !add ?phid: Ph_T_Id !idt;

Gate_Processor[t, pt, g, cj, u, p](id)

endproc (* Gate_Processor *)

process Price_Table[p](id: P_T_Id) : noexit :=

p !get_amount !id ?idt: Toll_Id !some_am;

Price_Table[p](id)

[]

p !update !id !inf;

Price_Table[p](id)

endproc (* Price_Table *)

process Usage_Details[u](id: Usage_List_Id, idgs: Gizmo_Id_Set) : noexit :=

u !add !id ?idt: Toll_Id ?gi: Gizmo_Id !some_am !the_date;

Usage_Details[u](id, Insert(gi, idgs))

[]

u !get_usage !id ?idg: Gizmo_Id !some_am !the_date

?idt: Toll_Id [idg isin idgs];

Usage_Details[u](id, Remove(idg, idgs))

endproc (* Usage_Details *)

process Current_Journey[cj](id: C_J_Id, idgs: Gizmo_Id_Set) : noexit :=

cj !create !id ?idt: Toll_Id ?gi: Gizmo_Id;

Current_Journey[cj](id, Insert(gi, idgs))

[]

cj !check_if_in !id ?idt: Toll_Id ?gi: Gizmo_Id;

cj !rtn_check_if_in !id !idt !gi !(gi isin idgs);

Current_Journey[cj](id, idgs)

[]

cj !remove !id ?idt: Toll_Id ?gi: Gizmo_Id;

Current_Journey[cj](id, Remove(gi, idgs))

endproc (* Current_Journey *)

process Photos_Taken[pt](id: Ph_T_Id) : noexit :=

pt !add !id ?gi: Gizmo_Id ?idt: Toll_Id;

Photos_Taken[pt](id)

[]

pt !add !id ?idt: Toll_Id;

Photos_Taken[pt](id)

endproc (* Photos_Taken *)

Appendix D. LOTOS specification of the system-centred model of the road pricing system82

process Client_Details[c] : noexit :=

Gizmo_Details[c]({} of Gizmo_Id_Set)

|||

Owner_Details[c]({} of Ac_Nr_Set)

|||

Vehicles[c]({} of Plate_Id_Set)

where

process Gizmo_Details[c](ids: Gizmo_Id_Set) : noexit :=

c !create ?idg: Gizmo_Id ?pl: Plate_Id ?ac: Ac_Nr;

(Gizmo_Detail[c](idg, pl, ac, g_ok)

|||

Gizmo_Details[c](Insert(idg, ids))

)

where

process Gizmo_Detail[c](id: Gizmo_Id, pl: Plate_Id,

ac: Ac_Nr, stat: Gizmo_Status) : noexit :=

c !check_gizmo !id ?idt: Toll_Id;

c !rtn_check_gizmo !id !idt !(stat eq g_ok) ;

Gizmo_Detail[c](id, pl, ac, stat)

[]

c !get_gizmo !id !ac;

Gizmo_Detail[c](id, pl, ac, stat)

[]

c !change_status !id ?st: Gizmo_Status;

Gizmo_Detail[c](id, pl, ac, st)

endproc (* Gizmo_Detail *)

endproc (* Gizmo_Details[*)

process Owner_Details[c](ids: Ac_Nr_Set) : noexit :=

c !create ?ac: Ac_Nr ?inf: Info;

([ac isin ids] -> Owner_Details[c](ids)

[]

[ac notin ids] ->

(Owner_Detail[c](ac, {} of Gizmo_Id_Set, inf)

|||

Owner_Details[c](Insert(ac, ids))

)

)

where

process Owner_Detail[c](ac: Ac_Nr, idgs: Gizmo_Id_Set, inf: Info)

: noexit :=

c !add !ac ?idg: Gizmo_Id;

Owner_Detail[c](ac, Insert(idg, idgs), inf)

[]

c !get_owner !ac !idgs !inf;

Owner_Detail[c](ac, idgs, inf)

Appendix D. LOTOS specification of the system-centred model of the road pricing system83

endproc (* Owner_Detail *)

endproc (* Owner_Details *)

process Vehicles[c](ids: Plate_Id_Set) : noexit :=

c !create ?pl: Plate_Id ?idg: Gizmo_Id [pl notin ids];

(Vehicle[c](pl, idg)

|||

Vehicles[c](Insert(pl, ids))

)

where

process Vehicle[c](plate_nr: Plate_Id, idg: Gizmo_Id) : noexit :=

c !get_vehicle !plate_nr !idg;

Vehicle[c](plate_nr, idg)

endproc (* Vehicle *)

endproc (* Vehicles *)

endproc (* Client_Details *)

process Reg_Desk[dk, rc](id: Desk_Id) : noexit :=

dk !give_info !id ?idg: Gizmo_Id ?pl: Plate_Id ?ac: Ac_Nr ?inf: Info;

rc !add_info ?rcid: R_C_Id !idg !pl !ac !inf;

rc !rtn_add_info !rcid !idg !ac ?acc_ok: Bool;

([acc_ok] -> dk !get_gizmo !idg !id;

Reg_Desk[dk, rc](id)

[]

[not(acc_ok)] -> dk !refuse_gizmo !idg !id;

Reg_Desk[dk, rc](id)

)

[]

dk !report_stolen !id ?idg: Gizmo_Id;

rc !report_stolen ?rcid: R_C_Id !idg;

Reg_Desk[dk, rc](id)

[]

dk !cancel !id ?idg: Gizmo_Id;

rc !cancel ?rcid: R_C_Id !idg;

Reg_Desk[dk, rc](id)

endproc (* Reg_Desk *)

process Reg_Control[rc, bi2, c](id: R_C_Id) : noexit :=

rc !add_info !id ?idg: Gizmo_Id ?pl: Plate_Id

?ac: Ac_Nr !inf;

bi2 !check_account ?bnk: Bank_Interf_Id !ac;

(bi2 !rtn_check_account !bnk !ac !true;

c !create !idg !pl !ac;

c !create !pl !idg;

c !create !ac !inf;

c !add !ac !idg;

rc !rtn_add_info !id !idg !ac !true;

Appendix D. LOTOS specification of the system-centred model of the road pricing system84

Reg_Control[rc, bi2, c](id)

[]

bi2 !rtn_check_account !bnk !ac !false;

rc !rtn_add_info !id !idg !ac !false;

Reg_Control[rc, bi2, c](id)

)

[]

rc !cancel !id ?idg: Gizmo_Id;

c !change_status !idg !g_cancel;

Reg_Control[rc, bi2, c](id)

[]

rc !report_stolen !id ?idg: Gizmo_Id;

c !change_status !idg !g_stolen;

Reg_Control[rc, bi2, c](id)

endproc (* Reg_Control *)

process Bank_Interface[bk, bi1, bi2, bp2](id: Bank_Interf_Id) : noexit :=

bi2 !check_account !id ?ac: Ac_Nr;

bk !query_account !id !ac;

bk !rtn_query_account !id !ac ?account_ok: Bool;

bi2 !rtn_check_account !id !ac !account_ok;

Bank_Interface[bk, bi1, bi2, bp2](id)

[]

bi1 !send_debit !id ?ac: Ac_Nr !some_am;

bk !debit !id !ac;

Bank_Interface[bk, bi1, bi2, bp2](id)

[]

bk !close_account !id ?ac: Ac_Nr;

bp2 !close_account ?bp_id: Bill_P_Id !ac;

Bank_Interface[bk, bi1, bi2, bp2](id)

endproc (* Bank_Interface *)

process Operator_Interface[p, bp1, oi, to](id: Op_Id) : noexit :=

oi !update_prices !id !inf;

p !update ?ptid: P_T_Id !inf;

Operator_Interface[p, bp1, oi, to](id)

[]

oi !monthly_debit !id;

bp1 !debit ?bpid: Bill_P_Id !the_date;

Operator_Interface[p, bp1, oi, to](id)

[]

oi !new_toll !id ?idt: Toll_Id !inf;

to !create !idt;

(*p !update ?ptid: P_T_Id !inf;*)

Operator_Interface[p, bp1, oi, to](id)

[]

oi !change_toll !id ?idt: Toll_Id !inf;

Appendix D. LOTOS specification of the system-centred model of the road pricing system85

p !update ?ptid: P_T_Id !inf;

Operator_Interface[p, bp1, oi, to](id)

endproc (* Operator_Interface *)

process Bill_Processor[c, u, bp1, bp2, bi1, pr](id: Bill_P_Id) : noexit :=

bp1 !debit !id !the_date;

(Send_Bills[c, u, bi1, pr](the_date)

>> Bill_Processor[c, u, bp1, bp2, bi1, pr](id)

)

[]

bp2 !close_account !id ?ac:Ac_Nr;

c !get_owner !ac ?idgs: Gizmo_Id_Set ?inf: Info;

(Close_Gs[c](idgs)

>> Bill_Processor[c, u, bp1, bp2, bi1, pr](id)

)

where

process Send_Bills[c, u, bi, pr](d: Date) : exit :=

u !get_usage ?us_id: Usage_List_Id

?idg: Gizmo_Id !some_am !d ?idt: Toll_Id;

c !get_gizmo !idg ?ac: Ac_Nr;

c !get_owner !ac ?idgs: Gizmo_Id_Set !inf;

c !get_vehicle ?pl: Plate_Id !idg;

bi !send_debit ?b_id: Bank_Interf_Id !ac !some_am;

pr !print_receipt ?p_id: Pr_Id

!inf !pl !some_am !ac !idt;

Send_Bills[c, u, bi, pr](d)

[]

(* When all bills sent *)

exit

endproc (* Send_Bills *)

process Close_Gs[c](idgs: Gizmo_Id_Set) : exit :=

c !change_status ?idg: Gizmo_Id !g_closed [idg isin idgs];

Close_Gs[c](Remove(idg, idgs))

[]

[idgs eq {}] -> exit

endproc (* Close_Gs *)

endproc (* Bill_Processor *)

process Printer[pr, prin](id: Pr_Id) : noexit :=

pr !print_receipt !id ?inf: Info ?pl: Plate_Id

?am: Cost ?ac: Ac_Nr ?idt: Toll_Id;

prin !print_receipt !id !inf !pl !am !ac !idt;

Printer[pr, prin](id)

endproc (* Printer *)

endspec

