
Specification Case Studies in ROOA

Ana M. D. Moreira and Robert G. Clark

Technical Report CSM-129

October 1994

Specification Case Studies in ROOA

Ana M. D. Moreira and Robert G. Clark

Department of Computing Science and Mathematics, University of Stirling
Stirling FK9 4LA, Scotland

Telephone +44-786-467421, Facsimile +44-786-464551
Email amm@fct.unl.pt | rgc@compsci.stirling.ac.uk

Technical Report CSM-129

October 1994

Contents

Abstract v

1 Introduction 1

2 Automated banking system 3

2.1 Introduction . 3

2.2 The solution with OMT . 3

2.2.1 The object model . 4

2.2.2 The dynamic model . 9

2.2.3 The functional model . 14

2.3 Applying ROOA . 19

Task 1: Build an object model . 19

Task 2: Refine the object model . 19

Task 3: Build the LOTOS formal model . 20

Task 3.1: Create an Object Communication Diagram (OCD) 21

Task 3.2: Specify class templates . 21

Task 3.3: Compose the objects into a behaviour expression 25

Task 3.4: Prototype the specification . 26

Task 3.5: Refine the specification . 27

Task 3.5.1: Model static relationships . 27

Task 3.5.2: Introduce object generators . 27

Task 3.5.3: Identify new higher level objects 29

Task 3.5.4 and 3.5.5: Demote and promote an object to be specified as
ADTs or as processes . 30

Task 3.5.6: Refine processes and ADTs . 30

2.4 Conclusions . 31

3 Warehouse management system 33

3.1 Introduction . 33

3.2 Applying ROOA . 33

Task 1: Build an object model . 33

Task 2: Refine the object model . 34

Task 3: Build the LOTOS formal model . 37

Task 3.1: Create an Object Communication Diagram (OCD) 37

Task 3.2: Specify class templates . 38

Task 3.3: Compose the objects into a behaviour expression 43

Task 3.4: Prototype the specification . 43

Task 3.5: Refine the specification . 44

3.3 Conclusions . 45

i

4 A car rental system 47
4.1 Introduction . 47
4.2 The car rental system requirements . 47
4.3 Applying ROOA . 48

Task 1: Build an object model . 48
Task 2: Refine the object model . 48

Task 2.1: Complete the o bject model . 49
Task 2.2: Initial identification of dynamic behaviour 49
Task 2.3: Structure the object model . 50

Task 3: Build the LOTOS formal model . 51
Task 3.1: Create an Object Communication Diagram (OCD) 51
Task 3.2: Specify class templates . 52
Task 3.3: Compose the objects into a behaviour expression 53
Task 3.4: Prototype the specification . 53
Task 3.5: Refine the specification . 54

4.4 Conclusions . 54

5 Conclusions 55

Bibliography 57

A LOTOS specification for the banking system 59

B LOTOS specification for Warehouse management system 77

C LOTOS specification for the car rental system 89

ii

List of Figures

2.1 Initial approach to an object model diagram . 7
2.2 Object model with attributes . 8
2.3 Object model with inheritance . 9
2.4 Event trace diagram for automatic teller . 11
2.5 Event trace diagram for deposit cheque initiated by CT 11
2.6 Event trace diagram for transfer initiated by CT 11
2.7 Event flow diagram for automatic teller . 12
2.8 State diagram for automatic teller . 12
2.9 State diagram for counter teller . 13
2.10 State diagram for cheque . 13
2.11 State diagram for cheque has funds . 14
2.12 Input and output values for the automated banking application 15
2.13 Data flow diagram for automated banking application 15
2.14 Data flow diagram for accept transaction . 16
2.15 Data flow diagram for perform transaction . 16
2.16 Data flow diagram for deposit cheque . 17
2.17 Final object model . 21
2.18 Initial OCD . 22
2.19 Final OCD . 29

3.1 Simplified object analysis diagram produced by Jacobson 34
3.2 Initiate enter new item . 35
3.3 Execute enter new item . 35
3.4 Initiate remove item . 36
3.5 Remove item . 36
3.6 Initiate redistribution . 36
3.7 Execute redistribution . 37
3.8 Warehouse object model . 40
3.9 Initial OCD for the warehouse system . 40
3.10 Final OCD . 44

4.1 Initial object model . 48
4.2 Event trace diagram for reservation transaction . 49
4.3 Event trace diagram for rental transaction . 50
4.4 Event trace diagram for return transaction . 50
4.5 Final object model . 52
4.6 An OCD for the car rental system . 52

iii

List of Tables

2.1 Candidates for objects . 4
2.2 Final list of objects . 5
2.3 Candidates for Associations . 6
2.4 Final list of associations . 7
2.5 Automatic teller machine scenario . 10
2.6 Deposit cheque scenario . 10
2.7 Transfer service scenario . 10
2.8 Function description for withdraw (cash or cheque) 17
2.9 OCT with class templates, services offered, services required and clients 20
2.10 OCT with gates . 22
2.11 Refined OCT . 29

3.1 The OCT for the warehouse system . 38
3.2 The OCT for the warehouse system (continued) . 39

4.1 Interface scenario for Reservation . 49
4.2 An OCT for the car rental system . 51

iv

Abstract

The Rigorous Object-Oriented Analysis (ROOA) method [11, 12, 13, 14, 16] starts from a set
of informal requirements and produces a formal object-oriented analysis model that acts as a
requirements specification. This specification is expressed in the standard formal description
language LOTOS [1, 2].

The ROOA formal model integrates the static, dynamic and functional properties of a system
in contrast to existing OOA methods which are informal and produce three separate models that
are difficult to integrate and keep consistent. ROOA provides a systematic development process,
by proposing a set of rules to be followed during the analysis phase. During the application of
these rules, auxiliary structures are created to help in tracing the requirements through to the
final formal model.

As LOTOS produces executable specifications, prototyping can be used to check the confor-
mance of the specification against the original requirements and to detect inconsistencies, omissions
and ambiguities early in the development process.

ROOA has been applied to several problems. This document shows how this can be done, by
presenting three case studies: an automated banking system, a warehouse management system
and a car rental system.

v

vi

Chapter 1

Introduction

Object-oriented approaches and formal methods have both been proposed as ways of alleviating
problems in the development and maintenance of reliable software systems. Object-oriented ap-
proaches are gradually becoming more and more accepted in industry, during all phases of software
development. Formal methods are also gradually becoming more used in industry, but they are
not usually introduced until the design phase. This is because the construction of an initial formal
specification during early stages of development is difficult. In fact, little previous work has been
done in the area of object-oriented analysis and formal methods.

We have developed the Rigorous Object-Oriented Analysis (ROOA) method [11, 12, 13, 14, 16]
which specifies the required behaviour of a system by constructing a model using the formal
description technique LOTOS (Language Of Temporal Ordering Specification) [1, 8]. As LOTOS
has a formal semantics, the model has a precise meaning and can be used as a formal requirements
specification of the system’s intended behaviour.

The ROOA method shows how LOTOS can be integrated with object-oriented analysis meth-
ods. ROOA complements existing object-oriented analysis methods (such as those by Rumbaugh
et al., Coad and Yourdon, Jacobson and Shlaer-Mellor), enabling precision and formality in de-
velopment where required, for example in safety-sensitive systems [5, 9, 17, 18].

The model produced by ROOA integrates the static, dynamic and functional models, unlike
informal object-oriented analysis methods, such as the one by Rumbaugh et al., which create three

separate models [17]. It is primarily a dynamic model, but it keeps the structure of the static object
model. The object communication table and the object communication diagram are intermediate
structures which help us in the difficult transformation from the static to the dynamic model and
in tracing the requirements through to the final formal model.

An important part of the ROOA method is to give a formal interpretation in LOTOS of object-
oriented analysis constructs such as: class templates, objects, inheritance, relationships between
objects, message passing between objects, aggregates, and subsystems.

ROOA uses a stepwise refinement approach for the development and for validation of the
specification against the requirements. The development process is iterative and parts of the
method can be re-applied to subsystems. Different objects can be represented at different levels
of abstraction and the model can be refined incrementally.

In this document we show how ROOA can be applied to create a formal requirements spec-
ification. We analyse three problems: an automated banking system, a warehouse management
system and a car rental system. The automated banking system is discussed in more detail than
the other two examples. For this example, we use the OMT method [17] to build an object model,
a dynamic model and a functional model. ROOA only needs an object model, but for this exercise
we decided to show how ROOA would behave if the three models already exist. For the second
example, we start by using the object model developed by Jacobson [9]. After some attempts to
understand this model, we ended making some modifications before applying ROOA. Finally, the
third example describes a simple car rental system.

While in the first example inheritance plays an important role, in the second example aggrega-

1

2 Chapter 1. Introduction

tion is the interesting object-oriented concept. The specification of dynamic behaviour also played
a much more important role than it did in the banking example. The associated LOTOS specifi-
cations are given in Appendices A and B. The LOTOS specification for the car rental system is
given in Appendix C, but only the more interesting functionality of the system is explored.

The purpose of this report is to show the application of the ROOA method. A full description
of the method is given in [11].

Chapter 2

Automated banking system

2.1 Introduction

In this chapter we first apply the OMT method to create an object model, a dynamic model and
part of a functional model. This shows how we can apply ROOA in situations where an OOA
method has already been applied.

In the following chapters we only apply OOA methods to create an object model, and from
there start applying the ROOA tasks.

The system we are specifying is to implement an automated banking application by managing
the transactions the clients do with their own accounts either by interacting with automatic teller
machines, by writing cheques or by dealing directly with the counter tellers. The requirements of
the problem are as follows:

The clients can take money from their own accounts, can deposit money, and can ask for
their current balance. All these operations can be accomplished either directly in the
bank or by using automatic teller machines. Withdrawing money from an account can
be done by cheque, by transfer to other banks, or by card, using the teller machine. It
is also possible to withdraw money from one account if the client authorizes a standing
order. Depositing money in an account can be done by cheque from another account,
by transfer from other banks or by giving actual cash to the counter tellers. In order
to access an automatic teller machine, the client has a key card with a special code.
The teller machine allows the client both to withdraw and to get the balance of an
account. There are two kinds of accounts: savings accounts and cheque accounts.
Savings accounts give a periodical interest and cannot be accessed by the automatic
tellers. Cheque accounts can either be updated by the automatic teller machines or
counter tellers. This implies that key cards are only associated with cheque accounts.

2.2 The solution with OMT

The Object-Oriented Modelling Technique (OMT) method proposed by Rumbaugh et al. [17]
incorporates three models: the object model, the dynamic model and the functional model. The
object model shows the objects and their static relationships; the dynamic model shows the order
in which the operations are performed; the functional model shows the data transformations in the
system. The relative importance of each model depends upon the kind of problem being analysed.

ROOA formalises the object model produced by OMT and then integrates the result with a
LOTOS behaviour model. Nevertheless, we decided to present here a complete solution using
Rumbaugh’s method, with the Rumbaugh object, dynamic and functional models, in order to
show the advantages obtained when LOTOS is used with another OOA method.

3

4 Chapter 2. Automated banking system

We start by constructing the object model, then the dynamic model and finally the functional
model.

2.2.1 The object model

The object model gives the static structure of the system. This model describes the objects in
the system and their static relationships which include the generalization relationship (inheri-
tance). OMT proposes an enhanced entity relationship diagram to represent the object model.
The enhancements were introduced to support generalization, aggregation, qualified association,
constraints and a special notation to represent link attributes which correspond to the Structured
Analysis concept of “associative entities”.

The object model is produced in eight steps, which are applied iteratively:

1. Identify object classes.

2. Prepare a data dictionary.

3. Identify associations.

4. Identify attributes of objects and links.

5. Organize and simplify object classes using inheritance.

6. Verify that access paths exist for likely queries.

7. Iterate and refine the model.

8. Group classes into modules.

Identify object classes. Objects and classes are normally described in the user requirements
as nouns. In the first stage, accept all the nouns as candidate object classes and, in the next
stage, discard unnecessary or incorrect ones and, if necessary, add others which were ignored in
the requirements, but which we have now found to be important.

For the banking system, the initial list of candidate object classes is shown in Table 2.1.

Client
Money
Account

Current balance
Bank

Automatic teller
Cheque

Transfer
Other bank
Card
Standing order
Cash
Counter teller
Code

Savings account
Cheque account

Table 2.1: Candidates for objects

Some of the listed candidate object classes are only attributes of other object classes. Examples
are Current balance, Cash and Money (Cash and Money represent the same concept), which belong
to the object class Account, and Code which belongs to the object class Card. The candidate for
object class Bank is the system we want to analyse, and therefore should be ignored. The candidate
for object class Transfer is really an operation. The final list of object classes is as depicted in
Table 2.2.

2.2. The solution with OMT 5

Client
Account
Automatic teller
Cheque
Other bank
Card
Standing order

Counter teller
Savings account
Cheque account

Table 2.2: Final list of objects

Prepare a data dictionary. Names (nouns) are not enough to describe a concept (an object
class, in this case). In order to give a better idea of each object class we write one paragraph for
each one, giving any information we think is relevant.

Account: allows transactions on it. A single account can have more than one
“holder”. An account can be of two types: savings and cheque.

Automatic teller: a place where the clients can make their own transactions, using cards as
identification. We are only interested in the interface between an auto-
matic teller machine and the system where all the information is kept.

Card: is assigned to a client and refers to an account. It is used to operate the
automatic teller machine. Each card contains a card number and a bank
code. Each card is owned by a single client and one client can have more
than one card.

Cheque: is used by the client to withdraw cash from their own account directly in
the bank or is used to credit another client’s account and withdraw from
the cheque owner’s account. The cheque owner may or may not be a client
of our bank.

Cheque account: is one type of account which has cheques associated with it and can be
accessed by an automatic teller machine.

Client: holds one or more accounts in the bank and for each account can have
zero or one card (optional).

Counter teller: represents the interface the bank employee uses to access the accounts.

Other bank: interacts with the system, by sending and receiving information about
transfers to or from other banks.

Savings account: is one type of account which can pay interest. Transactions in this account
can imply a loss of interest.

Standing order: is a client authorisation to do periodical withdrawals from the client ac-
count and respective deposits in somebody else’s account which can either
be, or not be, in our bank. A standing order is defined for two accounts,
one date and one amount.

Identify associations. An association is a dependency between classes. Associations are often
described in the user requirements as verbs or verb phrases (be careful because services are also
described as verbs). At this stage we should not spend too much time deciding about the type of
association (aggregation and generalization are a kind of association). Some of the associations
may not be in the requirements. Do not forget that the initial requirements are not an immutable
document. Analysis is the process of understanding the requirements and proposing a model

6 Chapter 2. Automated banking system

for it. The analysis process is iterative, therefore things can change. The first attempt to find
associations is depicted in Table 2.3.

clients can take money from their own accounts
(clients) ... using automatic tellers
withdrawing money from an account can be done by cheque
(withdrawing from account) ... by transfer to other banks

(withdrawing from account) ... by card
(withdrawing from account) ... by card using the teller machine
... account if the client authorizes a standing order
depositing money in an account can be done by cheque
(depositing money in an account) ... by transfer from other banks
(depositing money in an account) ... by giving actual cash to the counter tellers
in order to access an automatic teller ... (card)
the client has a key card
the teller machine allows the client

Knowledge of the problem domain
key card accesses cheque accounts

bank employs counter tellers
client writes cheque
counter teller initiates transaction with cheque
savings account is an account

cheque account is an account

Table 2.3: Candidates for Associations

The candidate associations are parts of the sentences of the initial set of requirements. In the
above list, for example, the entry

... account if the client authorizes a standing order

incorporates the implicit association

Standing order with respect to Account

Due to the way used to find associations (seek for verbs and verb phrases), many of the entries
listed above are written as actions. Actions represent services, not associations. We will later
decide that some of the entries are services. The others we need to rephrase.

The candidate association

(clients) ... using automatic tellers

describes part of the interaction cycle between the client and the teller machine, not a relationship
between the client and teller machine. The same happens with the entries:

(withdrawing from account) ... by card using the teller machine

in order to access an automatic teller ... (card)

the teller machine allows the client

The entry

bank employs counter tellers

is an association outside our system, since we are not interested in modelling the staff of the bank.
Notice that we ignored any associations between classes that were eliminated in the previous

step. In OMT those associations can be listed and then ignored. We think that this is an
unnecessary step which can be avoided.

The final list of associations is shown in Table 2.4. During the construction of the preliminary
object model, other associations can be found.

We then look for multiplicity. (Be careful with redundant associations. Study the cardinality
in order to decide if an association is really needed — this study can add new associations.)

Figure 2.1 represents a first approach to the object model.

Identify attributes of objects and links. A link is an instance of an association. Attributes
describe properties of the objects. Attributes are usually described as nouns followed by possessive

2.2. The solution with OMT 7

Client owns Account
Cheque updates Account
Other Bank updates Account
Card accesses Account
Automatic Teller updates Account
Client authorizes Standing Order
Account is updated by Standing Order

Counter Teller initiates transaction with Cheque
Counter Teller updates Account
Client has Card
Client writes Cheque
Savings Account is an Account
Cheque Account is an Account

Table 2.4: Final list of associations

ChequeAccount

Card

Standing
Order

Cheque
Account

Client

Other Bank

Savings
Account

updates

updates

is updated

updates

has

is accessed

is a

is a

is owned

authorizes

receives_
payment

is written by

Automatic
Teller

initiatesCounter
Teller

1,2

is updated by

Figure 2.1: Initial approach to an object model diagram

phrases (for example, the name of the client) or by adjectives (for example, expired (date)).
Attributes are not fully described in the initial set of requirements. In order to find them we
should apply our knowledge of the system (in the real world). Implementation attributes should
be avoided at this stage, only important attributes are kept in the object model. Link attributes
are usually identified at this point. Figure 2.2 shows the object model with attributes incorporated.

Organize and simplify object classes using inheritance. Inheritance can be added in two
directions: bottom-up (generalizing common aspects of existing class and creating a superclass)
and top-down (refining existing classes into specialized subclasses).

In our example, Cheque Accounts and Savings Accounts are subclasses of the superclass
Account.

Sometimes, when the same association name appears more than once with exactly the same
meaning, that suggests that the involved object classes can be generalized (bottom-up) by creating
a superclass. In our example Automatic Teller and Counter Teller are subclasses of the new
superclass Entry Station. Other Bank and Cheque could, at first sight, be mistaken as subclasses
of Entry Station, since both are the source of transactions to update an account. However, the
services they provide are very different from the ones provided by the tellers. When superclasses

8 Chapter 2. Automated banking system

Standing
Order

Ammount
Date
Bank_Name
Account_Number

updates

updates

is updated

updates

has

is accessed

is a

is a

is owned

authorized by

receives_
payment

is written by

Account

Number
Debit
Credit
Balance

Savings
Account

Period
Interest
Date

Other Bank

Name
Address
Phone

Card

Code
Expiry_Date

Cheque

Number
Amount
Date
Account_Number
Payable_To

Counter
Teller

Automatic
Teller

Client

Name
Address
Phone

Cheque
Account

1,2

initiates

is updated by

Figure 2.2: Object model with attributes

are identified, attributes and associations can suffer some changes in order to be added to the right
object class in the class hierarchy (see Figure 2.3).

Verify that access paths exist for likely queries. Now we should examine the object model

presented in Figure 2.3 and identify if there are any missing associations which are required to
respond to any question we would like the object model to answer. With this study, we can find
some missing information. By analysing the association initiates between Counter Teller and
Cheque a question arises: is that an association or a flow of control? We know that a cheque
transaction will be initiated by a counter teller, but we have not yet decided how autonomous
Cheque is going to be. In cases where we are not completely sure, we just leave it to be studied
later, when our knowledge about the problem has increased.

As Standing Order is created and cancelled by Counter Teller another association initiates

can be added to the model in Figure 2.3.

For any question we would like the system to answer it is necessary to evaluate whether or not
the necessary associations in the object model exist.

Some decisions are hard to make during the analysis phase. Whether an association is a rela-
tionship that is eventually going to be implemented as a pointer attribute, or if it only represents
some kind of visibility between objects, or any other kind of interaction, should not be taken too
seriously at this stage.

Many-to-many associations do not allow the single identification of the objects involved. We
can leave this kind of problem to be dealt with in the design phase.

Iterate and refine the model. Usually, an object model needs various iterations until the final
version is found.

2.2. The solution with OMT 9

Card

Code
Expiry_Date

Standing
Order

Ammount
Date
Bank_Name
Account_Number

updates
updates

belongs

is accessed

is owned by

authorized by

receives_
payment

Cheque
Account

Account

Number
Debit
Credit
Balance

Cheque

Number
Amount
Date
Account_Number
Payable_To

Client

Name
Address
Phone

updates

Entry
Station

is written
 by

Savings
Account

Period
Interest
Date

Automatic
Teller

Other Bank

Name
Address
Phone

updates

1,2
Counter
Teller

initiates

updates

initiates

Figure 2.3: Object model with inheritance

Group classes into modules. In our example, as we are only considering part of the real
problem, we do not really need to split the system into modules. However, it could be done.
The modules might be: external interfaces (counter tellers, automatic tellers, other banks) and

accounts (account, card and client) and complex operations (standing order and cheques).

2.2.2 The dynamic model

For this exercise, we will build the dynamic and functional models. The dynamic model gives
the dynamic structure of the system, by describing the dynamic behaviour of each object and the
interactions among objects. OMT proposes state diagrams to represent the dynamic model. They
are created in five steps:

1. Prepare a scenario.

2. Draw interface formats.

3. Identify events between objects.

4. Build a state diagram.

5. Match events between objects.

Prepare a scenario. A scenario gives typical dialogs between the outside world and the system.
This help us to understand the way the system should behave. Instead of trying to create the

10 Chapter 2. Automated banking system

AT offers services to the user (withdrawal, print mini statement);
user selects withdrawal and introduces the amount of cash.

AT verifies the user balance with the account object;
updates account and receives from it the new balance;

AT gives the money and prints a receipt.
AT offers services to the user (withdrawal, print mini statement);

Table 2.5: Automatic teller machine scenario

complete dynamic model of the system in one step, we should approach that model by writing
scenarios. Table 2.5 is an example of a scenario with the automatic teller interface (AT).

The services offered by a counter teller interface (CT) can be more complex than the ones
offered by automatic tellers, involving more object classes. Examples are the case of a cheque
deposit (see Table 2.6) and a transfer to another bank (see Table 2.7).

CT offers to the bank employee services (withdraw cash, deposit cash, withdraw cheque,
deposit cheque, give balance, open an account, close an account);

employee selects deposit cheque.
CT accepts cheque and sends the its information to object cheque;

object cheque identifies the cheque (cheque from this bank or from another bank);
cheque belongs to another bank;

cheque object withdraws the cheque from the right account and credits the payable account.
CT gives a receipt.

CT offers services to the bank employee.

Table 2.6: Deposit cheque scenario

CT offers to the bank employee services (withdraw cash, deposit cash, withdraw cheque,
deposit cheque, give balance, transfer money, open an account, close an account);

employee selects transfer money.
CT accepts the information about transfer and checks if client account has enough credit;

account has credit; correct amount is debited in object account;

sends transfer to the object other bank.
CT gives a receipt.

CT offers services to the bank employee.

Table 2.7: Transfer service scenario

Some scenarios will handle special cases (errors and exceptions). In general, we feel that this
part can be long, but should be added, to show complex sequences of operations about which we
need a more detailed study.

Interface formats. Interactions can usually be separated into a user interface and a logic ap-
plication. In the analysis phase we should concentrate on the flow of information and control,
rather than on the presentation format. However, for some applications, user interfaces are very
important. It is known that object-oriented programming languages are well suited to the design
of human interaction interfaces.

In our example we will not define the interface formats.

Identify events between objects. The scenarios help us identify events. Events include
signals, inputs, decisions, interrupts, etc. from the users or external devices. The event trace
diagram in Figure 2.4 summarizes some of the events between the automatic teller class and all
the other classes involved.

Each vertical line in the event trace diagram represents an object and the horizontal arrowed
lines are messages passed between processes. For a given process, input messages are events and
output messages are events sent to another process.

Some of the external counter teller events lead to a event trace diagram similar to the one
presented for automatic teller, but some others interact with other object classes, such as when a

2.2. The solution with OMT 11

ATM
 AT
(interface)

Accountservices offered

service selected

update account

account data

give receipt

services offered

Figure 2.4: Event trace diagram for automatic teller

cheque is credited. The event trace diagram in Figure 2.5 shows the relevant events when a cheque
deposit is initialized by a counter teller.

CT
 CT
(interface)

Account

services offered

cheque received
credit cheque

Cheque Other Bank

ask balance

receive balance

update
account

cheque deposit

services offered

update
succeeds

Figure 2.5: Event trace diagram for deposit cheque initiated by CT

Another external event which involves other object classes is a transfer to another bank, also
initiated by counter teller (see Figure 2.6).

CT
 CT
(interface) Account

services offered

transfer selected

update account

transfer succeed

Other Bank

account ok

sends
transfer

services offered

Figure 2.6: Event trace diagram for transfer initiated by CT

12 Chapter 2. Automated banking system

Error conditions can be incorporated into the event trace diagram. In this case, the diagram
is broken into another diagram which completes the first. We decided to use these diagrams to
represent the “optimistic” view and deal with errors in the state diagrams.

An alternative is to represent these events and the object classes involved, by drawing an event
flow diagram, such as the one shown in Figure 2.7. It does not give the order in which the events
occur. This diagram gives less information than a event trace diagram and so we only use the
latter.

User(ATM) Automatic
Teller

Account

service selected,
terminate

services offered,
dispense money,
give receipt,
other operations

new balanceupdate account

Figure 2.7: Event flow diagram for automatic teller

Build a state diagram. State diagrams represent the dynamic behaviour of each object class.
They are built from the information given in the event trace diagrams. For a given process, an
input message is an event represented as a transition from one state to another, and an output
message corresponds to an action inside a state which usually causes an event to be sent to another
process.

Automatic tellers have only two initial external events, a withdrawal request or a print bal-
ance and mini statement request. A general state diagram for an automatic teller is depicted in
Figure 2.8.

do:
 give receipt

transaction
succeeddo:

 offer services

do:
 display error
 message

terminate

service
selected

transaction
failed

wait 5 sec

do:
 update account

Figure 2.8: State diagram for automatic teller

Time is introduced here as a transition, to mean that an error will be displayed for 5 seconds,
before it is erased.

By analysing the external events suffered by a counter teller we realize that they all produce
similar event trace diagrams, even if they relate to different objects. Hence, a general state diagram
can be produced (see Figure 2.9). Of the external events that arrive at the counter teller, deposit
cheque affects it differently. Because of this we introduce a special path in the diagram. Notice
that at this stage we do not know whether or not a cheque transaction will be successful.

2.2. The solution with OMT 13

do:
 offer services

do:
 give receipt

do:
 display error
 message

terminate

service
selected

transaction failed

wait 5 sec

 do:
 cheque received;
 cheque transaction

terminate

[not (cheque service)]

[cheque service]

do:
 update account

transaction
succeeds

Figure 2.9: State diagram for counter teller

Another process that needs to be analysed is Cheque. We can identify some events in the
event trace diagrams in Figures 2.5 and 2.6. With the knowledge we already have of the system,
we can identify other events and resulting states. The high level state diagram is represented in
Figure 2.10. The activity cheque transaction in the diagram in Figure 2.9 can be seen as the
event that wakes up the process Cheque.

do:
 analyse request

do:
 display error
 message

do:
 cheque has
 funds

no balance

has balance
(kind operation)

wait 5 sec

[cheque processed]

[cheque not
 processed]

do:
 enquire

cheque
transaction do:

 update account

Figure 2.10: State diagram for cheque

We know that a withdraw or a deposit can only happen once in a cheque life time, but a
query to the state information can happen any time; this is shown in Figure 2.10. A nested state
diagram is used to decompose the state cheque has funds (see Figure 2.11).

It is not necessary to draw state diagrams for all the objects in the system. Some objects, such
as account, client and card, are passive and their response to events does not affect control. A list
of the input events for each of these objects and the output events sent in response to each input
event is enough.

Match events between objects. The goal of this step is to verify consistency between the state
diagrams. In our example, an account can be accessed concurrently by more than one external
device (automatic teller, counter teller and other bank). Access to each account should therefore
be controlled to ensure that no more than one operation at a time is allowed.

14 Chapter 2. Automated banking system

do:
 identify cheque

do:
 withdraw
 account

no balance

do:
 ask balance

local cheque
[deposit]

do:
 get balance

no local cheque
[deposit]

local cheque
[withdraw]

no balance

has balance

has balance

has balance

Figure 2.11: State diagram for cheque has funds

The set of state diagrams produced for object classes with important dynamic behaviour con-
stitute the dynamic model of the system.

2.2.3 The functional model

The functional model represents the computations in the system, i.e., shows how an input value is
transformed into an output value. DFDs are useful in representing a functional view which ignores
sequence or decision. A DFD process corresponds to activities or actions in the state diagrams.
A DFD data flow correspond to objects or attribute values in the object diagram.

The functional model is created in five steps:

1. Identify input and output values.

2. Build data flow diagrams.

3. Describe functions.

4. Identify constraints between objects.

5. Specify optimization criteria.

Identify input and output values. Input and output values can be identified in the state
diagrams. They are parameters of events between the system and the outside world. Some events
in the state diagrams do not suply any data, such as terminate and wait 5 sec.

Figure 2.12 shows the input and output values between the system and the external devices
(automatic tellers, counter tellers, other banks).

Build data flow diagrams. DFDs can now be constructed, showing how each output value
is produced from input values. Figure 2.12 can be seen as the context diagram of banking sys-
tem, where Automated Banking Application is our system and Counter Tellers (employee),
Automatic Teller Machines and Other Banks are the external entities with which the system
communicates. By expanding the process Automated Banking Application, we built the DFD
in Figure 2.13. (The notation followed is the one proposed by Gane and Sarson [7].)

The diagrams in Figure 2.14 and 2.15 show the processes accept transaction and perform

transaction, respectively.

The diagram in Figure 2.16 shows a detailed data flow diagram for the process deposit cheque

given in Figure 2.15. The data stores Account and Cheque are repeated only to improve readability.

2.2. The solution with OMT 15

Automatic
Teller
Machines

account number,
standing order number
cheque number,
amount, transaction kind

account number,
standing order number
messages, receipt

account number,
transaction kind,
amount

Automated
Banking
Application Other Banks

Counter
Tellers
(employee)

messages, receipt

account number,
transaction kind,
amount

account number,
transaction kind,
amount

Figure 2.12: Input and output values for the automated banking application

Automatic
Teller
Machines

acc_number,so_number
ch_number,amount,
transaction kind

acc_number,so_number
messages, receipt

acc_number,amount
transaction kind

Other Banks

Counter
Tellers
(employee)

messages, receipt

acc_number,amount,
transaction kind

accept
transaction

perform
transaction

generate
output

transaction kind,
amount,
acc_number

Account
balance

1
2

3

Counter
Tellers
(employee)

Automatic
Teller
Machines

Other Banks

ask balance

send transfer
balance

acc_number,amount,
transaction kind

Figure 2.13: Data flow diagram for automated banking application

The problem we are analysing does not have many computations and those it does have are
not complicated. For other kind of problems, the functional model (in particular the DFD) can
play a more important role.

Describe functions. The description of each function helps us to specify what each low level
process does. This can be done by using structured English, pseudocode, or a declarative descrip-

16 Chapter 2. Automated banking system

acc_number

Account

read
acc_number

1.1

select
account

1.2

acc_number bad account

Figure 2.14: Data flow diagram for accept transaction

new balance

no balance

acc_number_from,
acc_number_to,
so_number,
ch_number,amount,
transaction kind

Account

analyse
transaction

2.1

withdraw
(cash,
 cheque)

2.2

deposit
money

2.3

give balance
 and
mini−stat.

2.4

pay SO

2.5

deposit
cheque

2.6

new balance

no balance

Account

balance

send transfer

bad SO_number

Account

bad so_number

ask balance

balance

acc_number,
amount

acc_number,
amount

acc_number

so_number

S_Order

Cheque

acc_number_from,
acc_number_to,
ch_number,amount

Figure 2.15: Data flow diagram for perform transaction

tion which specifies the relationships between input and output values and the relationships among
the output values. Depending upon the detail we already have in the DFDs, this description can
be more or less complicated. In Table 2.8 we show a description for the process withdraw (cash

or cheque), by using pseudocode. A similar description could be done for each process in the
data flow diagrams.

Depending upon the kind of problem studied, some techniques are better suited than others.
In this example, we did not gain much advantage from using DFDs. In fact, we do not believe that
DFDs can really be helpful when an object-oriented approach is required. A DFD seems to go
against the fundamental idea of object-oriented thinking: operations are encapsulated by objects.
We can draw a diagram in a way that each process would only deal with one data store, but that

2.2. The solution with OMT 17

deposit
local cheque

2.6.3

deposit
no local
cheque

2.6.2

Account

cheque inf

ask balance

balance

Cheque

analyse
cheque

2.6.1

bad ch_number

cheque inf

bad ch_number

ch_number,amount,
acc_number_from,
acc_number_to

Figure 2.16: Data flow diagram for deposit cheque

withdraw cash and cheque (acc number, transaction kind, amount) − > new balance, message
If amount > current balance,

reject transaction
If amount <= current balance,

debit the account
If transaction = withdraw cheque,

create cheque

Table 2.8: Function description for withdraw (cash or cheque)

will not be useful for complex systems.

For other kind of problems DFDs are very helpful, but we do not believe that in those cases
the object oriented approaches should be used.

Identify constraints between objects. One constraint we could add to our system is about
whether or not a balance could be negative. If accounts with overdraft privileges were accepted,
more information should be added to the dynamic and functional models.

Specify optimization criteria. Optimizations, are usually difficult to specify completely at
this stage. However, when possible, it should be done. In our example, we could propose as
optimizations: minimize the number of physical messages between different sites and minimize
the time an account is locked for concurrency reasons.

Adding operations

In OMT, operations are given less emphasis than in other object-oriented methods, such as Coad
and Yourdon [5]. According to Rumbaugh, the list of operations we can define for each object
is open-ended and it is difficult to decide when to stop adding them. Rumbaugh refers to three
different kinds of operation, corresponding to queries about attributes or associations (selectors)
in the object model, to events in the dynamic model and to functions in the functional model.
These operations are discovered during the following steps:

• Operations from the Object Model.

• Operations from Events.

• Operations from State Actions and Activities.

18 Chapter 2. Automated banking system

• Operations from Functions.

• Shopping List Operations.

• Simplifying Operations.

Operations from the object model. Rumbaugh proposes that operations to read and write
attribute values and association links need not be made explicit in the object model. We think
that updating operations should be explicitly added to the object model. During the analysis it
is assumed that all attributes are visible. A “dot” notation can be used to indicate an attribute
access, such as “Account.balance”.

Operations from events. Each event sent to an object corresponds to an operation on that
object. Rumbaugh advocates that, during the analysis, events are better represented as labels in
the transitions in the state diagrams than as operations in the object model.

Operations from state actions and activities. Actions and activities in the state model can
be functions. If these functions are important, because they include interesting computations,
they should be represented as operations on the object model.

Operations from functions. Each function in a DFD corresponds to an operation on an ob-
ject or several objects (since, as we discussed, a process in a DFD does not directly correspond
to an operation in an object). These functions usually have interesting computations, and so
should be included in the object model. In Figure 2.15 the functions withdraw (cash, cheque),
deposit money, give balance and mini statement should be considered as operations in ob-
ject Account. The function pay SO belongs to the object Standing Order and the functions
deposit local cheque and deposit no local cheque are added to the object Cheque.

Sometimes we include functions in the DFD that only traverse the object model, without doing
any computation or giving any relevant information. This is the case with select account in
Figure 2.14 which should be omitted in the object model.

If the same sequence of pseudocode fragments appears in different functions, then they can be
grouped into a new operation to simplify the functional model.

Shopping list operations. “Shopping list” operations are defined by Meyer [10] as the oper-
ations that do not depend on a particular application, but are meaningful in their own right.
Shopping list operations allow us to consider future possible needs. They provide a way of going
beyond the narrow needs of a particular problem (we can see it as a way to incorporate reusability).

In our example, some of these operations are:

account :: close

counter-teller :: create-savings-account(customer) -> account

counter-teller :: create-cheque-account(customer) -> account

Simplifying operations. Use inheritance where possible to reduce the number of distinct oper-
ations, by introducing new superclasses as needed. But, be careful to not introduce inheritance
for the sake of it. We must avoid unnatural or forced superclass/subclass structures. Whenever
a new superclass is introduced it is necessary to locate operations in the right level of the class
hierarchy.

Our example is not complex enough to require this step.

2.3. Applying ROOA 19

Iterating Analysis

We should never consider our first analysis model as the final one. As we proceed with the problem,
our understanding increases and we then can iterate the analysis steps in order to refine the models
already built.

Rumbaugh propose three steps for refining analysis:

• Refining the Analysis Model.

• Restating the Requirements.

• Analysis and Design.

Refining the analysis model. It can happen that parts of the model do not fit well. Try to
fix it, by analysing each particular problem in more detail. Changes are easier to do early than
late, and so they should not be put off.

Sometimes a physical object can play more than one role in the problem. Split it, by creating
an object for each role played. This is the case with Cheque as we show in the next section.

Check the associations to see if they look right. If one appears strange, analyse it and decide
whether to keep it or not.

Restating the requirements. After constructing our object model, we should go back and
analyse the requirements. It is possible that some of the requirements specify performance criteria;
those should be stated in the optimization step. Other requirements can be considered solution
proposals; these should be separated and challenged, whenever possible.

The final model should be verified with the client (or user of the system). During the analysis
we can find requirements which are incorrect, incomplete or missing. These should be corrected
and discussed with the client. It is a good idea to give the model to people who know about the
real world problem for verification. The final model should be easy to understand for non-expert
computer people.

The final analysis model is a basis for the system design and implementation.

The original set of requirements should be revised to incorporate information discovered during
the analysis.

Analysis and design. The aim of analysis is to specify the problem domain without introducing
implementation dependencies, but they can be very difficult to avoid completely.

The frontier between the different phases in the software life cycle are still difficult to define.

2.3 Applying ROOA

Task 1: Build an object model

Already done, by applying the OMT method.

Task 2: Refine the object model

Our goal is to have an object model which includes:

• interface objects;

• class templates with services and attributes;

• conceptual relationships between objects and

• messages connections between objects.

20 Chapter 2. Automated banking system

We can collect all information from the OMT models in an OCT, as showed in Table 2.9.
Only a few of the services shown in column 2 were identified during the construction of the OMT
dynamic model, in particular in the event trace diagrams and the state charts. However, as we
discussed before, the OMT method does not emphasise services during the analysis phase, as we
do. Therefore, we have used the ROOA guidelines to identify services (and attributes). Also,
OMT does not deal with message connections in the object model. We see this as a problem, as
we may end up drawing associations in the object model which are in fact message connections.
To help us with this problem, we can use the event trace diagrams to identify message passing
between objects.

Class Offered Required Clients
Templates Services Services

Entry Station (ES) withdraw cash Account.withdraw External
Counter Teller (CT) open account Account.create External

close account Account.remove External
deposit cash Account.deposit External
give balance Account.balance External
deposit cheque Cheque.deposit External
ask transfer Account.withdraw External

Account.deposit
OB.send transfer

set standing order SO.create External
cancel standing order SO.cancel External

Automatic Teller (AT) mini statement Cheque Account.print mini stat External
Other Bank (OB) receive transfer Account.deposit External

send transfer CT, SO
cheque withdraw Cheque
remote withdraw Account.withdraw External

Standing Order (SO) create CT
cancel CT
debit Account.withdraw internal

Account.deposit
OB.send transfer

Cheque withdraw Account.withdraw CT
deposit Account.withdraw CT

Account.deposit
Account.perhaps deposit
OB.cheque withdraw
Account.full deposit

Account (A) create CT
remove CT
deposit CT, Cheque, OB, SO
withdraw CT, ES, Cheque,

OB, SO
balance CT
perhaps deposit Cheque
full deposit Cheque

Cheque Account (CA) print mini stat AT
Savings Account (SA) credit interest internal

update date internal

Table 2.9: OCT with class templates, services offered, services required and clients

The final object model is shown in Figure 2.17.

Task 3: Build the LOTOS formal model

LOTOS will give, in a single model, a formal and integrated view of the dynamic behaviour of
the system, including a formal and dynamic view of each object class. The static structure of
the dynamic model is the same as the object model. Furthermore, it will show the interactions
between object classes and the information passed.

To build a LOTOS specification we need to have more detailed information about the services
needed. Some of the services were already studied while building the OMT dynamic and functional
models. The event trace diagrams are a great help in specifying objects as LOTOS processes.

2.3. Applying ROOA 21

updates

belongs

is accessed

is owned by

receives_
payment

updates

0,2

Standing
Order

Amount
Date
Bank_Name
Account_Number

create
cancel
debit

Card

Number
Code
Expiry_Date

Client

Name
Address
PhoneOther Bank

Name
Address
Phone

Cheque
Account

print_mini_stat.

Savings
Account

Period
Interest

credit_interest
update_date

Cheque

Number
Amount
Date
Account_Number
Payable_To

withdraw
deposit

Entry
Station

Automatic
Teller

Counter
Teller

withdraw_cash

mini_statement

Teller

Bank_Account

open_account
close_account
deposit_cash
give_balance
deposit_cheque
ask_transfer
set_standing_order
cancel_standing_order

receive_transfer
send_transfer
cheque_withdraw
remote_withdraw

Account

Number
Balance

create
remove
withdraw
deposit
balance
perhaps_deposit
full_deposit

0,2

Figure 2.17: Final object model

Task 3.1: Create an Object Communication Diagram (OCD)

The first step is to complete the OCT (allocate the required gates in the fifth column) so that we
can build the OCD. The rules to build an OCD are fully described in [11]. Looking at the second
(Offered Services) and fourth (Clients) columns, we apply two rules to identify the gates:

• Give the same gate name for the object communications which require the same set, or
subset, of services; i.e. where there is an overlap between the set of services required by
different clients.

• Give different gate names for object communications which require a different set of services,
i.e. where there is no overlap between the set of services required by each client.

These two rules are the result of requiring that an object cannot use the same gate to com-
municate with both an object at the same level of abstraction and another object at a different
level of abstraction. (The OMT dynamic and functional models cannot help us on this.) The final
OCT is showed in Table 2.10. Based on this, we can build the initial OCD (see Figure 2.18).

Task 3.2: Specify class templates

The first step before we start writing the LOTOS specification is to decide which object classes 1

are going to be specified as processes plus ADTs and which ones are going to be simple abstract
data types.

To start with, we specify each node in the OCD which has connections, i.e. arcs, to other
nodes with a process and one or more ADTs, and each node without any arcs as a single ADT. In
later refinements we may change this decision, and add processes to the nodes specified as single
ADTs.

1In this chapter we sometimes use the object-oriented terms used by Rumbaugh et al., and not our own terms.
For example, we may use the term object class instead of class template.

22 Chapter 2. Automated banking system

Class Offered Required Clients Gates
Templates Services Services

Teller open account(CT) BA.create External t
[ES + CT + AT] close account(CT) BA.remove External t

deposit cash(CT) BA.deposit External t
withdraw cash(ES) BA.withdraw External t
give balance(CT) BA.balance External t
deposit cheque(CT) Cheque.deposit External t
mini statement(AT) BA.print mini stat External t
ask transfer(CT) BA.withdraw External t

BA.deposit
OB.send transfer

set standing order(CT) SO.create External t
cancel standing order(CT) SO.cancel External t

Other Bank (OB) receive transfer BA.deposit External ob1
send transfer Teller(CT), SO ob2
cheque withdraw Cheque ob3
remote withdraw BA.withdraw External ob1

Standing Order create Teller(CT) so
(SO) cancel Teller(CT) so

debit BA.withdraw internal
BA.deposit
OB.send transfer

Cheque withdraw BA.withdraw Teller(CT) c
deposit BA.withdraw Teller(CT) c

BA.deposit
BA.perhaps deposit
OB.cheque withdraw
BA.full deposit

Bank Account (A) create(A) Teller(CT) ba
[A + CA + SA] remove(A) Teller(CT) ba

deposit(A) Teller(CT), ba
Cheque, OB, SO

withdraw(A) Teller(ES,CT), ba
Cheque, OB, SO

balance(A) Teller(CT) ba
print mini stat(CA) Teller(AT) ba
perhaps deposit(A) Cheque ba
full deposit(A) Cheque ba
credit interest(SA) internal
update date(SA) internal

Table 2.10: OCT with gates

Other Bank

c
ba

ba

ob3

Savings Account

Cheque Account

ba

ba

so

Client

Card

ob1

Automatic Teller

Counter Tellert

Teller

Entry Station

Account

Bank Account

ob2
Cheque

Standing Order

ob2

t

t

t

ba

ba

ob2
c
so
ba

ba

ba

ba

Figure 2.18: Initial OCD

As an example, let us specify the class templates involved in the inheritance hierarchy for
accounts and, as an example of a class template which kept changing during Task 3, the class
template Cheque.

Account is an abstract superclass, and so it is modelled as a process with exit functionality,
as follows:

2.3. Applying ROOA 23

process Account[c](this˙account: State˙Account): exit(State˙Account) :=

c !deposit !Get˙Account˙Number(this˙account) ?m: Money;

exit(Credit˙Account(this˙account, m))

[]

c !withdraw !Get˙Account˙Number(this˙Account) ?m: Money;

(choice if˙money: Bool []

[if˙money] -> c !rtn˙withdraw !Get˙Account˙Number(this˙account) !true;

exit(Debit˙Account(this˙account, m))

[]

[not (if˙money)] -> c !rtn˙withdraw

!Get˙Account˙Number(this˙account) !false;

exit(this˙account)

)

[]

c !balance !Get˙Account˙Number(this˙account) !Get˙Balance(this˙account);

exit(this˙account)

[]

c !perhaps˙deposit !Get˙Account˙Number(this˙account) ?m: Money;

exit(Credit˙Pending(this˙account, m))

[]

c !full˙deposit !Get˙Account˙Number(this˙account) ?m: Money ?valid: Bool;

([valid] -> exit(Add˙Credit˙Pending(this˙account, m))

[]

[not (valid)] -> exit(Sub˙Credit˙Pending(this˙account, m))

)

endproc

the ADT where Account State is defined can be modelled as follows:

type Account˙Type is Account˙Number˙Set˙Type, Money˙Type, Balance˙Type

sorts State˙Account

opns Make˙Account : Account˙Number, Balance -> State˙Account

Credit˙Account : State˙Account, Money -> State˙Account

Debit˙Account : State˙Account, Money -> State˙Account

Credit˙Pending : State˙Account, Money -> State˙Account

Add˙Credit˙Pending : State˙Account, Money -> State˙Account

Sub˙Credit˙Pending : State˙Account, Money -> State˙Account

Credit˙Interest : State˙Account, Money -> State˙Account

Get˙Balance : State˙Account -> Balance

Get˙Account˙Number : State˙Account -> Account˙Number

eqns forall a: State˙Account, n: Account˙Number, m: Money

ofsort Account˙Number

Get˙Account˙Number(Make˙Account(n, m)) = n;

Get˙Account˙Number(Credit˙Account(a, m)) = Get˙Account˙Number(a);

Get˙Account˙Number(Debit˙Account(a, m)) = Get˙Account˙Number(a);

Get˙Account˙Number(Credit˙Pending(a, m)) = Get˙Account˙Number(a);

Get˙Account˙Number(Add˙Credit˙Pending(a, m)) = Get˙Account˙Number(a);

Get˙Account˙Number(Sub˙Credit˙Pending(a, m)) = Get˙Account˙Number(a);

Get˙Account˙Number(Credit˙Interest(a, m)) = Get˙Account˙Number(a);

ofsort Balance

Get˙Balance(a) = Some˙Balance;

endtype

where we only define equations for selectors which have to return a particular value; selectors
which do not have to return a particular value are specified with a dummy equation, such as the
equation for Get balance; modifiers are left without equations.

Account has two subclasses, Cheque Account and Savings Account. Cheque Account is spec-
ified as follows:

24 Chapter 2. Automated banking system

process Cheque˙Account[c](this˙account: State˙Account) : noexit :=

((Account[c](this˙account)

>> accept upd˙account: State˙Account in exit(this˙account)

)

[]

c !set˙mini˙statement !Get˙Account˙Number(this˙account) !this˙account;

exit(this˙account)

[]

c !remove !Get˙Account˙Number(this˙account); stop

) >> accept upd˙account: State˙Account in Cheque˙Account[c](upd˙account)

endproc

And Savings Account can be modelled in a similar way:

process Savings˙Account[c](this˙account: State˙Account, prd: Period,

int˙rate: Interest) : noexit :=

(hide credit˙interest, update˙date in

((Account[c](this˙account)

>> accept this˙account: State˙Account in

exit(this˙account, prd, int˙rate)

)

[]

credit˙interest;

exit(Credit˙Interest(this˙account, This˙Mon), prd, int˙rate)

[]

update˙date;

exit(this˙account, Update˙Date(prd), int˙rate)

[]

c !remove !Get˙Account˙Number(this˙account); stop

)

) >> accept upd˙account: State˙Account, upd˙prd: Period, upd˙int˙rate: Interest

in Savings˙Account[c](upd˙account, udp˙prd, upd˙int˙rate)

endproc

The three class templates form the subsystem Bank Account. Supposing that we are only
dealing with one savings account and one cheque account:

process Bank˙Account[c] : noexit :=

(Savings˙Account[c](Make˙Account(id1 of Account˙Number, Some˙Balance),

This˙Prd, This˙Inter)

———

Cheque˙Account[c](Make˙Account(id2 of Account˙Number, Some˙Balance))

)

where

process Savings˙Account ... endproc

process Cheque˙Account ... endproc

endproc

The class template Cheque is modelled by using the two auxiliary processes: Active Cheque

and Passive Cheque.

process Cheque[c, ob3, ba](ch: Cheque˙Number) : noexit :=

(Active˙Cheque[c, ob3, ba](ch)

>> accept this˙cheque: State˙Cheque in Passive˙Cheque[c](this˙cheque)

)

endproc

Notice that the parameter defined in Cheque is not exactly the kind of sort we would expect.
This was the first solution we thought of to deal with cheques. To start with, we only define a

2.3. Applying ROOA 25

simple ADT which is composed of the attribute Cheque Number. Only then does the template
Passive Cheque deal with the full state of cheques. Secondly, notice that we cannot access
Passive Cheque until Active Cheque is finished. This sequentiality is introduced by the enable
operator >>.

Active Cheque is then specified as follows:

process Active˙Cheque[c, ob3, ba](ch: Cheque˙Number) : exit(State˙Cheque) :=

((c !deposit ?id: Id˙Tellers ?bk: Bank˙Name

?ch˙from: Account˙Number ?ch˙to: Account˙Number !ch ?m: Money;

ba !perhaps˙deposit !ch˙to !m;

([bk eq This˙Bank] ->

(ba !withdraw !ch˙from !m;

ba !rtn˙withdraw !ch˙from ?cheque˙valid: Bool;

ba !full˙deposit !ch˙to !m !cheque˙valid;

exit(Make˙Cheque(ch, ch˙from, ch˙to, bk, m))

)

[]

[bk ne This˙Bank] ->

(ob3 !cheque˙withdraw !bk !ch˙from !ch !m; (* to other banks *)

ob3 !rtn˙cheque˙withdraw !bk !ch˙from !ch !m ?cheque˙valid: Bool;

ba !full˙deposit !ch˙to !m !cheque˙valid;

exit(Make˙Cheque(ch, ch˙from, ch˙to, bk, m))

)))

[]

(c !withdraw ?id: Id˙Tellers ?bk: Bank˙Name

?n: Account˙Number !ch ?m: Money; ... (* with my cheque in my bank *)

))

endproc

When an instance of Active Cheque asks for the service full deposit from an instance of
Cheque Account, the behaviour of Cheque Account depends upon the value of the boolean vari-
able cheque valid. If this variable takes the value ‘true’, the amount m is added to the current
balance, otherwise it is not.

Finally, Passive Cheque can be:

process Passive˙Cheque[c](this˙cheque: State˙Cheque) : noexit :=

(c !enquire˙cheque ?id: Id˙Tellers

!Get˙Cheque˙Number(this˙cheque) !this˙cheque;

exit(this˙cheque)

) >> accept update˙cheque: State˙Cheque in

Passive˙Cheque[c](update˙cheque)

endproc

Having discovered one more service (enquire˙cheque), we have to update the OCTs and the
refined object model accordingly.

Task 3.3: Compose the objects into a behaviour expression

During the first iteration of ROOA we deal, in general, with single instances of each class template.
(There are situations, as we will see in Chapter 3, where we may want to define object generators
in the first iteration.)

After specifying each class template, we can compose them by following the algorithm presented
in [3]:

(Other˙Bank[ob1, ob2, ob3, ba](Make˙Bank(...))

—[ob2, ob3]—

(Teller[t, ob2, c, so, ba]

—[c, so]—

26 Chapter 2. Automated banking system

(Cheque[ob3, c, ba](Make˙Cheque(...))

———

Standing˙Order[ob2, so, ba](Make˙SO(...))

))

—[ba]—

Bank˙Account[ba]

)

where ...

Before we can start the next task, we have to model the interface scenarios and compose them,
one at a time, with the behaviour expression above. Here, the scenarios proposed by the OMT
method do not help much, as we are only interested in the required services with the respective
answers.

Consider the following part of an interface scenario for the banking system:

process Interface˙Scenario[t, ob1]: noexit :=

(* create an automatic teller and a counter teller *)

t !create ?idc: Id˙Tellers;

t !create ?ida: Id˙Tellers;

(* open a cheque account from counter teller *)

t !open˙account !idc !cheque;

t !rtn˙open˙account !idc ?nc: Account˙Number;

(* deposit from counter teller *)

t !deposit˙cash !idc !nc !This˙Mon;

t !rtn˙deposit˙cash !idc !nc !This˙Mon;

(* balance from automatic teller*)

t !print˙mini˙statement !ida !nc;

t !rtn˙print˙mini˙statement !ida !nc ?a: Account;

(* withdrawal from automatic teller *)

t !withdraw˙cash !ida !nc !This˙Mon;

t !rtn˙withdraw˙cash !ida ?val: Bool;

...

(hide success in success; stop)

endproc

The Interface Scenario process acts as if it were the client of the whole system. It initiates calls
to the tellers on gate t and to other banks on gate ob1, and waits for the respective answers. We
compose it in parallel with the above behaviour expression, by using gates t and ob1, as follows:

((Other˙Bank[ob1, ob2, ob3, ba](Make˙Bank(...))

...

)

—[ba]—

Bank˙Account[ba]

)

—[t, ob1]—

Interface˙Scenario[t, ob1]

In later iterations, when object generators are introduced to deal with multiple instances, the
composed behaviour expression is refined and built from a combination of object generators and
single objects (in cases where generators are not required).

We may decide to deal only with part of the system and then, in further iterations, add more
objects until the whole system is considered.

Task 3.4: Prototype the specification

We use the LITE tools to check the syntax and static semantics of the LOTOS specification. Any
errors, omissions or inconsistencies found during the simulation will lead us to iterate Tasks 2 and
3 and to update the original requirements document, the object model, the OCT and the OCD.

2.3. Applying ROOA 27

In the first iteration, as the emphasis is on ensuring that the individual class templates have
been correctly specified, a behaviour expression consisting of single instances of class templates is
prototyped. In later iterations, multiple instances are dealt with and we check that the complete
system has been properly specified.

Task 3.5: Refine the specification

During successive refinements of the LOTOS specification we may:

1. Model static relationships.

2. Introduce object generators.

3. Identify new higher level objects.

4. Demote an object to be specified only as an ADT.

5. Promote an object from an ADT to a process and an ADT.

6. Refine processes and ADTs by introducing more detail.

Task 3.5.1: Model static relationships

Static relationships can be modelled as attributes and given as parameters of the processes defining
the corresponding class templates.

For example, Cheque Account has a many-to-many relationship with Standing Order. We
must add to Cheque Account the parameter sos of sort SO Number Set. The value of sos is the
set of standing order numbers associated with that account. Any time a standing order is created,
its identifier should be given to the corresponding account. (This is supposing that accounts know
about standing orders. It could be that only standing orders had to know about accounts.)

The template Cheque Account with the extra argument sos is given below:

process Cheque˙Account[c](this˙account: State˙Account,

cards: Card˙Number˙Set, sos: SO˙Number˙Set) : noexit :=

((Account[c](this˙account)

>> accept upd˙account: State˙Account in exit(upd˙account, cards, sos)

)

[]

...

) >> accept upd˙account: State˙Account, upd˙cards: Card˙Number˙Set,

upd˙sos: SO˙Number˙Set

in Cheque˙Account[c](upd˙account, upd˙cards, upd˙sos)

endproc

The instantiation of Cheque Account is now:

Cheque˙Account[g](Make˙Account(id2 of Account˙number, Some˙Balance),

–˝ of Card˙Number˙Set, –˝ of SO˙Number˙Set)

Task 3.5.2: Introduce object generators

During a first iteration we deal only with a single instance of each class template. This simplifies
the problem and allows us to prototype with a specific number of objects. However, in general,
several instances of the same class may be required. This is achieved by defining an object generator
for a class template.

When dealing with subsystems, we can decide to define an object generator for each component,
or else define an object generator for the whole subsystem. Which is to be preferred depends on
each particular situation.

ROOA allows variations of object generators. One example, is the one defined for Cheque

Account:

28 Chapter 2. Automated banking system

process Cheque˙Accounts[g](accs: Account˙Number˙Set) : noexit :=

g !create ?acc˙counter: Account˙Number !cheque

[(acc˙counter notin accs) and Is˙Cheque˙Acc(acc˙counter)];

(Cheque˙Account[c](Make˙Account(acc˙counter, Some˙Balance),

–˝ of Card˙Number˙Set, –˝ of SO˙Number˙Set)

———

Cheque˙Accounts[c](Insert(acc˙counter,accs))

)

endproc

!cheque is required to give the type of account we want to create. The object generator holds the
set of identifiers already allocated and the selection predicate:

[(acc˙counter notin accs) and Is˙Cheque˙Acc(acc˙counter)];

imposes the condition that the new object identifier is different from all existing ones and Is˙Cheque

˙Acc(acc˙counter) guarantees that the new object identifier belongs to the correct subrange of
Account˙Number.

Because Cheque Account and Savings Account are subclasses of the abstract class template
Account, their identifiers have to be of the sort Account Number in order to inherit from the
same superclass. This is why we divided the identifiers defined in the ADT Id Type into several
groups (see [11]). Therefore, the ADT Account˙Number˙Set˙Type needs to be changed in order
to include this information:

type Account˙Number˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Account˙Number for Id

Account˙Number˙Set for Set

opnnames Is˙Cheque˙Acc for First˙Set

Is˙Savings˙Acc for Second˙Set

endtype

Is˙Cheque˙Acc and Is˙Savings˙Acc establish the set of identifiers which can be used to create
cheque accounts and savings accounts, respectively.

In situations where there is no inheritance involved, the parameter corresponding to cheque

will not exist.
An object generator for Cheque will look different from Cheque Accounts. During later refine-

ments of the LOTOS specification, this class template was one of the class templates that suffered
more changes. One of the important changes was to consider that we had two kinds of cheque:
the ones to withdraw and the ones to deposit. So, we split Cheque into a Cheque˙Withdraw and
Cheque˙Deposit. Another difference in cheques is that the object identifier is not generated by
the system. These lead us to define an object generator which can be used to create objects of
both kinds:

process Cheques[c, ob3, ba] : noexit :=

c !create˙cheque ?ch: Cheque˙Number ?bk: Bank˙Name

?from˙acc: Account˙Number ?to˙acc: Account˙Number ?m: Money;

(Cheque˙Deposit[c, ob3, ba](Make˙Cheque(ch, from˙acc, to˙acc, bk, m))

———

Cheques[c, ob3, ba]

)

[]

c !create˙cheque ?ch: Cheque˙Number ?bk: Bank˙Name

?n: Account˙Number ?m: Money;

(Cheque˙Withdraw[c, ob3, ba](Make˙Cheque(ch, n, n, bk, m))

———

Cheques[c, ob3, ba]

)

endproc

2.3. Applying ROOA 29

The object generator now has no parameters, but each branch of the choice still has the same
structure of the object generators discussed in [11].

Task 3.5.3: Identify new higher level objects

The identification of new higher level groupings (subsystems and aggregates) leads us to change
both the initial OCD and the OCT in order to incorporate the new objects. Therefore we should
apply again Tasks 3.1, 3.3 and 3.4.

We grouped Cheques with Standing Orders to form the subsystem Financial Instruments.
These two class templates were grouped because they have the same servers and are servers of the
same clients. (See the rules given in [11].) These changes can be seen in the OCT represented in
Table 2.11.

Class Offered Required Clients Gates
Templates Service Service

Teller open account(CT) BA.create External t
...

Other Bank (OB) receive transfer BA.deposit External ob1
send transfer Teller(CT), FI(SO) ob2
cheque withdraw FI(Cheque) ob2
remote withdraw BA.withdraw External ob1

Financial Instrument (FI) create(SO) Teller(CT) cs
[SO + Cheque] cancel(SO) Teller(CT) cs

debit(SO) BA.withdraw internal
BA.deposit
OB.send transfer

withdraw(Cheque) BA.withdraw Teller(CT) cs
deposit(Cheque) BA.withdraw Teller(CT) cs

BA.deposit
BA.perhaps deposit
OB.cheque withdraw
BA.full deposit

...
Bank Account (BA) create Teller(CT) ba

remove Teller(CT) ba
deposit Teller(AT,CT), OB, ba

FI(Cheque, SO)
withdraw Teller(ES,CT), OB, ba

FI(Cheque, SO)
balance Teller(CT) ba
...

Table 2.11: Refined OCT

The revised OCD, based on Table 2.10 but after we have introduced object generators, is
depicted in Figure 2.19.

ba

Savings
Accounts

Cheque
Accounts

ba
Other
Banksob1

Bank Accounts
ob2

ob2

ba

ba

ba

cs

Cheques

Standing
Orders ba

ba

Financial Instruments

ob2

ob2

cs

cs
Counter
Tellers

t

Tellers

t

t Automatic
Tellers ba

ob2
cs
ba

Figure 2.19: Final OCD

Now, the composition of the object generators in the OCD takes the form:

30 Chapter 2. Automated banking system

(Other˙Banks[ob1, ob2, ba](Insert(This˙Bank, –˝ of Bank˙Name˙Set))

—[ob2]—

(Tellers[t, ob2, cs, ba]

—[cs]—

Financial˙Instruments[ob2, cs, ba]

))

—[ba]—

Bank˙Accounts[ba]

Task 3.5.4 and 3.5.5: Demote and promote an object to be specified as ADTs or as
processes

If an object plays a secondary role in the system, i.e. it only acts as an attribute of other objects,
it should be specified as a single ADT.

In this case, delete that object from the OCD. This affects Task 3.1, 3.2, 3.3 and 3.4. Note
that in Task 3.2 we only need to delete the process corresponding to that object.

In this example, Client was specified with a single ADT.

Task 3.5.6: Refine processes and ADTs

The complete definition of a process or an ADT can be done incrementally. In each refinement we
can add more detail to the specification. When more information is added to the formal model,
more static relationships, attributes, services, and message connections can be identified. In this
case, add them all to the object model and apply again Tasks 2 and 3.

In the specifications we developed using ROOA, there were major differences between the
initial ones and the final ones. These differences are of two kinds: structure and detail. The
structure of a specification can change according to the extra complex objects and subsystems we
find during refinement. The detail involved when specifying each class template for the first time
depends on the experience already acquired with ROOA. Even then, we advise complex objects
to be specified incrementally. Start by just using the services (and attributes) we understand,
leaving for further iterations the ones which we do not understand well. A good example of this
was the class template Cheque. It kept changing during the application of the method. The final
version of the process specifying Cheque Deposit is as follows:

process Cheque˙Deposit[cs, ob2, ba](this˙cheque: Cheque) : noexit :=

(Cheque˙Deposit˙1[cs, ob2, ba](this˙cheque)

>> accept this˙cheque: Cheque in Passive˙Cheque˙Deposit[cs](this˙cheque)

)

where

process Cheque˙Deposit˙1[cs, ob2, ba]

(this˙cheque: Cheque) : exit(Cheque) :=

ba !perhaps˙deposit !Get˙Acc˙To(this˙cheque)

!Get˙Amount(this˙cheque);

([Get˙Bank(this˙cheque) eq This˙Bank] ->

(ba !withdraw !Get˙Acc˙From(this˙cheque) !Get˙Amount(this˙cheque);

ba !rtn˙withdraw˙ok !Get˙Acc˙From(this˙cheque) ?cheque˙valid: Bool;

ba !full˙deposit !Get˙Acc˙To(this˙cheque)

!Get˙Amount(this˙cheque) !cheque˙valid;

exit(this˙cheque)

)

[]

[Get˙Bank(this˙cheque) ne This˙Bank] ->

(ob2 !cheque˙withdraw !Get˙Bank(this˙cheque)

!Get˙Acc˙From(this˙cheque) !Get˙Cheque˙Number(this˙cheque)

!Get˙Amount(this˙cheque); (* to other banks *)

...

))

2.4. Conclusions 31

endproc (* Cheque˙Deposit˙1 *)

process Passive˙Cheque˙Deposit[cs](this˙cheque: Cheque) ... endproc

endproc (* Cheque˙Deposit *)

With the refinement of the template we had to refine also the ADT Cheque Type so that
operations such as Get Amount were defined.

2.4 Conclusions

This chapter discussed the application of ROOA to a simple automated banking system. It started
by applying the OMT method and then used the results as an input to the application of ROOA.

The banking system has a simple pattern of communication, but it involves interesting objects
such as Cheque and it is a good example to discuss inheritance. As we can appreciate from the
results, inheritance can be simply modelled in ROOA by using the standard LOTOS constructs.
However, this simplicity is only kept when we do not require redefinition of services. When a
service needs to be redefined, and in order to guarantee behavioural inheritance, the resulting
LOTOS specification is more complex and LOTOS proves itself of little use for this task (see [4]
for more details).

At the end of this exercise we could ask ourselves the question: is there any advantage in using
a method such as OMT, build all the models and then apply ROOA? The answer to this question
is “no”. If the models (dynamic and functional) already exist, then we can use them to identify
useful information to build the OCT and then the LOTOS specification. However, if those models
do not exist yet, it is not worthwhile to build them before applying ROOA. ROOA gives good
guidelines to identify services and to start writing a LOTOS specification. And, for a developer
with some experience, LOTOS is a better tool to model dynamic and functional behaviour than
state diagrams and data flow diagrams.

The LOTOS specification for the automated banking system is given in Appendix A.

32 Chapter 2. Automated banking system

Chapter 3

Warehouse management system

3.1 Introduction

In the first case study, the banking system, the object model dominated. In this second case study,
the problem has a much stronger dynamic component. Also, in the first case study, we applied a
complete analysis method, so that we would see how ROOA behaved. In this second case study,
we started from an object model created by someone else and then we applied ROOA.

The chosen problem is the warehouse management system described by Jacobson [9].

3.2 Applying ROOA

Task 1: Build an object model

The method proposed by Jacobson [9] consists of the construction of the requirements model and
the analysis model. Our interest is not to apply the OOSE method, but only to take an object
model and use it as a basis to build a LOTOS formal model. Figure 3.1 depicts a simplified version
of the case study presented in [9].

The OOSE method includes entity objects, interface objects and control objects. Although
these three kinds of object are useful in many situations, in order to fully understand them we
need to define them in terms of their services and attributes. Jacobson argues that because the
operations change a lot in the design model, it is better not to have them so early in the analysis.
We believe that operations (together with attributes) are the way to understand the meaning of
an object. A name and a symbol is not enough, especially for control objects. Of course, we have
the use cases, but the objects are spread amongst them and it is often difficult to understand why
the analyst opted for some of the objects.

In the analysis model of the example given in [9], the necessity for objects such as Interware-
house Transporter and Local Warehouse Transporter is difficult to understand. We can iden-
tify three reasons for this difficulty: (i) many of the objects identified by Jacobson are graphical
user interface objects; (ii) the class templates do not have services (and attributes); (iii) some
of the objects identified are in reality actors of the system, i.e. part of the environment, and not
objects which we want to model. We solved this problem by removing from the model references to
the graphical interface objects and the interactions between external objects. The revised problem
is:

A company has a set of warehouses, distributed throughout the country. Each ware-
house has a set of warehouse places where items may be stored. Clients may deliver
items to one warehouse and, at a later date, collect them from the same or another
warehouse.

When clients wish to enter or remove an item, they contact the office which sends
requests to the system to ensure that the item is expected or is available for collection

33

34 Chapter 3. Warehouse management system

Warehouse
Place

Warehouse

Truck

Transportation
Request

Transportation
Plan

Redistribution

Number Of

Item

place[1..M]

item[1]

moved
item[1]

from[1]

to[1]

places[1..M]

warehouse[1]

plan[1]

planned
request[0..M]

planned
truck[1]

plan[1]

requested
transportation[1]

Redistribution
Window

stored
item[1..M]

warehouse
place[1]

Interwarehouse
Transporter

Customer

owned
item[0..M]

owner[1]

Foreman
Redistribution

inherits

Planning

Local Warehouse
Transporter

Truck Radio

Warehouse
Truck Radio

Insert Item

Figure 3.1: Simplified object analysis diagram produced by Jacobson

at the correct place and time. Items may be moved from one warehouse to another if
a warehouse is becoming full.

After receiving requests, a computer planning system controls when the requests should
be carried out by sending appropriate orders to truck drivers (for inter-warehouse
movement) or to forklift drivers to move items between the loading bay and a warehouse
place. A local planning system within each warehouse allocates items to warehouse
places.

The system should be as decentralized as possible.

Task 2 in ROOA refines the object model created from other OOA methods (Task 1) adding
to it:

• interface objects;

• class templates with services and attributes;

• conceptual relationships between objects and

• messages connections between objects.

Task 2: Refine the object model

This task is composed of three main subtasks: complete the object model, initial identification of
dynamic behaviour and structure the object model. To complete the object model, we identify
interface objects, add static relationships and add attributes and services. Most of the services

3.2. Applying ROOA 35

may be identified in the subtask which is concerned with the initial identification of dynamic
behaviour. To accomplish this we define interface scenarios, create event trace diagrams and
start the construction of the OCT, and add message connections to the object model. Then, we
structure the object model, if necessary, by using aggregates, inheritance and subsystems.

Our first problem was to identify attributes and services. For many of the class templates
shown in the object model in Figure 3.1, we could not easily identify attributes or services. So, we
realised that we did not yet fully understand the object model. The reason was that the warehouse
problem is mainly a process-oriented, rather than a data-oriented problem. Therefore, it is much
more difficult to build the object model.

In general, to understand a data-oriented problem, we can start drawing object models, but,
as process-oriented problems have their focus on dynamic behaviour, that approach does not quite
fit. With process-oriented problems, the dynamic aspects of the system must be investigated to
help identify the static object structure. We found that event trace diagrams were very useful in
discovering what the system is supposed to do.

So, we started drawing event trace diagrams for the main services of the whole system. The
more important ones are:

• initiate enter new item which reserves space in a warehouse and creates a request (see
Figure 3.2).

WarehouseOffice Network Local_Plan Insert_Req

init_new_item
reserve_space

reserve_space
reserve_space

rtn_ok rtn_ok
rtn_ok

rtn_init_new_item
if ok create_insert_req

Figure 3.2: Initiate enter new item

• execute enter new item which places a new item in a place in a warehouse (see Figure 3.3).

Warehouse
Insert_Request

Local_Plan

Item

Place

insert_query
check_expected

if ok get_position

rtn_get_position

create_item

rtn_create_item

rtn_check_expected
rtn_insert_query

insertgive_place_item

Figure 3.3: Execute enter new item

• initiate remove item which initiates a removal of an item from a warehouse (see Fig-
ure 3.4). This can include the initiation of a redistribution request.

• execute remove item which removes an item from a warehouse (see Figure 3.5).

36 Chapter 3. Warehouse management system

init_remove_item
Office Item

Network Warehouse Local_Plan

check_item

rtn_check_item

if (ok & source \= dest) reserve_space reserve_space
reserve_space

Redis_Request Planning

rtn_reserve_space
rtn_reserve_space

rtn_reserve_space

if ok create_red_req
add_redis_req

mark_move

rtn_init_remove_item

Remove_Request

create_rem_req
add_rem_req

mark_remove

Figure 3.4: Initiate remove item

Warehouse

Local_Plan

Item

Place

Planning Removal_Req

choose_rem

rm_fetch_items

get_place

rtn_get_place

fetch
remove

remove

return_space

Figure 3.5: Remove item

• initiate redistribution which initiates the move of one item from one warehouse to
another (see Figure 3.6).

init_move_item

Item Network Warehouse

check_item

rtn_check_item

if ok reserve_space reserve_space reserve_space

Redis_Request Planning

rtn_reserve_space rtn_reserve_space
rtn_reserve_space

if ok create_red_r
add_redis_req

mark_movertn_init_move_item

Warehouse Local_Plan

Figure 3.6: Initiate redistribution

• execute redistribution which moves an item from one warehouse to another (see Fig-

3.2. Applying ROOA 37

ure 3.7).

Local_Plan

Planning Redis_RequestTruck_Interf

get_trans_req get_trans_req choose_red

request_eta
get_eta

rtn_get_eta rtn_request_eta

Warehouse
 (source)

Warehouse
 (dest)

fetch_items

Item Place
get_place

rtn_get_place

remove

return_space

fetch

request_eta
get_eta

rtn_get_eta
rtn_request_eta

warn_warehouse
warn_arrival

is_deliveredconfirm_delivered

rtn_confirm_delivered rtn_iis_delivered

confirm_inserted

get_position

rtn_get_position

insert

update_item
give_place_item

rtn_confirm_inserted

Figure 3.7: Execute redistribution

The information given in the event trace diagrams is collected in an OCT (see Tables 3.1
and 3.2) which is then used to build the final version of the object model. At this point, only the
first four columns of the OCT are filled. The fifth column is filled in Task 3.

During this task we also decided that we could group the class templates Remove Request,
Redis Request and Insert Request to form a subsystem. The OCT in Table 3.1 shows this
grouping.

With our better understanding of the system, and with the information in the OCT we were
able to build the object model which is represented in Figure 3.8

Task 3: Build the LOTOS formal model

Task 3.1: Create an Object Communication Diagram (OCD)

The first step to be accomplished in this task is to build an object communication diagram (OCD).
An OCD is a graph where each arc represents communication between objects and each node
represents either an instance of a class template or an object generator.

To be able to build the OCD we have to fill in column five of the OCT, so that we can decide
about the gates that are going to be needed. Column 5 of the OCT is filled in according to the

38 Chapter 3. Warehouse management system

Class Offered Required Clients Gates
Templates Service Service

Office init new item Network.reserve space External usr3

Request.create i r
init remove item Item.check item External usr3

Network.reserve space
Request.create red r

Item.mark move
Request.create rem r
Item.mark remove

Warehouse init move item Item.check item External usr1

[+ Place + Local Plan] Network.reserve space
Request.create red r
Item.mark move

confirm inserted Local Plan.get position Request(Redis R) req1
Place.insert
Item.update item
External.give place item

fetch items Item.get place Request(Redis R) req1
External.fetch
Place.remove
Local Plan.return space

rm fetch items Item.get place Request(Rem R) req1
External.fetch

Place.remove
Item.remove
Local Plan.return space

insert query Request.check expected External usr1
Local Plan.get position
Item.create
Place.insert

External.give place item
warn warehouse External.warn arrival Request(Redis R) req1

reserve space Local Plan.reserve space Network from n
insert(Place) Warehouse wp
remove(Place) Warehouse wp

get position(Local Plan) Warehouse w lp
reserve space(Local Plan) Warehouse w lp

return space Warehouse w lp

Table 3.1: The OCT for the warehouse system

rules already discussed in Chapter 2. The result in presented in Tables 3.1 and 3.2. The OCD,
built from the OCT, is depicted in Figure 3.9.

Task 3.2: Specify class templates

We now start writing the LOTOS specification. Each node in the OCD is specified by a process
and one or more ADTs. We can start by specifying processes first or ADTs first. Then all the
processes are put together by using the LOTOS parallel operators and by following the algorithm
in [3].

Let us take as an example the class templates which participate in the Warehouse aggrega-
tion relationship and show how they can be modelled in LOTOS. The aggregate is composed of
two hidden components, Place and Local Plan, and one shared component, Item. The process
defining the class template Local Plan, for example, can take the form:

process Local˙Plan[w˙lp](l˙plan˙id: Local˙Plan˙id,

ids: Item˙Place˙Id˙Set) : noexit :=

w˙lp !get˙position !l˙plan˙id ?ip: Item˙Place˙Id [ip isin ids];

Local˙Plan[w˙lp](l˙plan˙id, ids)

[]

w˙lp !reserve˙space !l˙plan˙id ?ok: Bool;

3.2. Applying ROOA 39

Class Offered Required Clients Gates
Templates Service Service

Planning add redis req Request(Redis R) p2

add rem req Request(Rem R) p2
get trans req Request.choose red Truck p tr

Request create i r(I R) Office req2
[I R + Redis R + Rem R] create red r(Redis R) Planning.add redis req Office, Warehouse req2

create rem r(Rem R) Planning.add rem req Office req2
check expected(I R) Warehouse req2
choose rem(Rem R) Warehouse.rm fetch items Planning p1
choose red(Redis R) Truck.request eta Planning p1

Warehouse.fetch items
Warehouse.warn warehouse
Truck.is delivered
Warehouse.confirm inserted

Item create Warehouse it1
check item Warehouse, Office it1
remove Warehouse it1

get place Warehouse it1
update item Warehouse it1
mark move Warehouse, Office it1
mark remove Office it1

Truck get trans req Planning.get trans req External usr2
request eta External.get eta Request(Redis R) tr r

is delivered External.confirm delivered Request(Redis R) tr r

Network reserve space Warehouse.reserve space Warehouse, Office to n

Table 3.2: The OCT for the warehouse system (continued)

Local˙Plan[w˙lp](l˙plan˙id, ids)

[]

w˙lp !return˙space !l˙plan˙id;

Local˙Plan[w˙lp](l˙plan˙id, ids)

endproc (*Local˙Plan*)

l˙plan˙id and ids are attributes of Local˙Plan and are specified as ADTs. We could have incor-
porated them into a single ADT, say Local Plan State, and then use this ADT as a parameter
of the process. For simplicity of the exercise we show both attributes individually.

Another example is Item:

process Item[it1](it: Item˙State) : noexit :=

it1 !check˙item !Get˙It˙Id(it) !Can˙Move(it) !Get˙Ware(it);

Item[it1](it)

[]

it1 !update˙item !Get˙It˙Id(it) ?w: Warehouse˙Id ?ip: Item˙Place˙Id;

Item[it1](Move(w, ip, it))

[]

it1 !get˙place !Get˙It˙Id(it) !Get˙Place˙Id(it);

Item[it1](it)

[]

it1 !mark˙move !Get˙It˙Id(it);

Item[it1](Mark˙m(it))

[]

it1 !mark˙remove !Get˙It˙Id(it);

Item[it1](Mark˙r(it))

[]

it1 !remove !Get˙It˙Id(it) !Get˙Ware(it) !Get˙Place˙Id(it);

stop

endproc (* Item *)

The ADT defining ItemState is specified as follows:

40 Chapter 3. Warehouse management system

Network

reserve_space

Local_Plan

Places_Set

get_position
reserve_space
return_space

1

n

1

1

Warehouse

init_move_item
confirm_inserted
fetch_items
rm_fetch_items
insert_query
warn_warehouse
reserve_space

Customer

Name
Address
Phone

create
modify

1 1

11
1

n

Redis_Request

Time

create_red_req
choose_red1

1

1

1

Place

Status

insert
remove

1

n

1

1

1

n

Insert_Request

Time

create_ins_req
check_expected

2

Remove_Request

Time

create_rem_req
choose_rem

Item

Status

check_item
create
remove
get_place
update_item
mark_move
mark_remove

2 2

22

Network

reserve_space

Planning

Set_Red_Reqs
Set_Rem_Reqs

add_redis_req
add_rem_req
get_trans_req

1

n

1

n

Redis_Request

Time

create_red_req
choose_red

Office

init_new_item
init_remove_item

Insert_Request

Time

create_ins_req
check_expected

Remove_Request

Time

create_rem_req
choose_rem

Truck

get_trans_req
request_eta
is_delivered

2 2

22

Figure 3.8: Warehouse object model

Item

Office

Network

PlanningTruck

Request

Warehouse

usr1
w_lp w_p

to_n

to_n from_n

req2

req2

req1

p1 p2tr_r

it1

Insert_Requestreq2

p_tr

usr3

it1

usr2

to_n from_n

Redis_Request
p1
p2
tr_r

req1
req2

Remove_Request
p1
p2

req1
req2req1

req2usr1 Warehouse

Local_Plan Place

Customer

it1

Figure 3.9: Initial OCD for the warehouse system

type Item˙Type is Item˙Id˙Set˙Type, Item˙Place˙Id˙Set˙Type,

Warehouse˙Id˙Type, Boolean

sorts Item˙State

opns Make˙Item : Item˙Id, Warehouse˙Id, Item˙Place˙Id, Bool, Bool

-> Item˙State

Get˙It˙Id : Item˙State -> Item˙Id

Get˙Ware : Item˙State -> Warehouse˙Id

3.2. Applying ROOA 41

Get˙Place˙Id :Item˙State -> Item˙Place˙Id

Can˙Move :Item˙State -> Bool

Move : Warehouse˙Id, Item˙Place˙Id, Item˙State -> Item˙State

Mark˙m : Item˙State -> Item˙State

Mark˙r : Item˙State -> Item˙State

eqns forall it: Item˙Id, ip, nip: Item˙Place˙Id, w, nw: Warehouse˙Id,

s1, s2: Bool

ofsort Item˙Id

Get˙It˙Id(Make˙Item(it, w, ip, s1, s2)) = it;

ofsort Item˙Place˙Id

Get˙Place˙Id(Make˙Item(it, w, ip, s1, s2)) = ip;

ofsort Warehouse˙Id

Get˙Ware(Make˙Item(it, w, ip, s1, s2)) = w;

ofsort Item˙State

Move(nw, nip, Make˙Item(it, w, ip, s1, s2))

= Make˙Item(it, nw, nip, true, s2);

Mark˙m(Make˙Item(it, w, ip, s1, s2))

= Make˙Item(it, w, ip, false, s2);

Mark˙r(Make˙Item(it, w, ip, s1, s2))

= Make˙Item(it, w, ip, s1, false);

ofsort Bool

Can˙Move(Make˙Item(it, w, ip, s1, s2)) = s1 and s2;

endtype

The ADT Item˙Id˙Set˙Type is the ADT where the sort of the identifier for objects of the
class template Item are defined. It is as follows:

type Item˙Id˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Item˙Id for Id

Item˙Id˙Set for Set

endtype

Set˙Id˙Type is defined as discussed in [11] and is present in the library.
Finally, the aggregate can be defined as:

process Warehouse[usr1, req1, req2, it1, to˙n, from˙n]

(wid: Warehouse˙id) : noexit :=

hide wp, w˙lp in

Warehouse[usr1, req1, req2, it1, wp, w˙lp, to˙n, from˙n](wid)

—[wp, w˙lp]—

(Place[wp](..)

———

Local˙Plan[w˙lp](id14 of Local˙Plan˙Id, Insert(id7, Insert(id8,

Insert(id9, –˝ of Item˙Place˙Id˙Set))))

)

where

process Warehouse[usr1, req1, req2, it1, wp, w˙lp, to˙n, from˙n]

(wid: Warehouse˙id) : noexit :=

(usr1 !insert˙query !wid ?ir:Ins˙Req˙Id ?t:Time;

req2 !check˙expected !ir ?ok:Bool !wid !t;

usr1 !rtn˙insert˙query !wid !ok !ir;

([ok] ->

w˙lp !get˙position ?lp˙id: Local˙Plan˙Id ?ip:Item˙Place˙Id;

it1 !create ?it: Item˙id !wid !ip;

wp !insert !ip !it;

usr1 !give˙place˙item !wid !it !ip;

exit(wid)

[]

42 Chapter 3. Warehouse management system

[not(ok)] ->

exit(wid)

)

[]

usr1 !init˙move˙item !wid ?it: Item˙Id ?t:Time ?dest: Warehouse˙Id;

it1 !check˙item !it ?ok:Bool ?w: Warehouse˙Id;

([not(ok)] -> usr1 !rtn˙init˙move˙item !wid !ok;

exit(wid)

[]

[ok] -> ([w ne dest] ->

to˙n !reserve˙space ?net:Network˙Id !dest;

to˙n !rtn˙reserve˙space !net !dest ?is˙space:Bool;

([is˙space] ->

req2 !create˙red˙r ?id: Red˙Req˙Id !it !w !dest !t;

it1 !mark˙move !it;

usr1 !rtn˙init˙move˙item !wid !true;

exit(wid)

[]

[not(is˙space)] ->

usr1 !rtn˙init˙move˙item !wid !false;

exit(wid)

)

[]

[w eq dest] ->

usr1 !rtn˙init˙move˙item !wid !false;

exit(wid)

)

)

[]

req1 !warn˙warehouse !wid ?t: Time;

usr1 !warn˙arrival !wid !t;

exit(wid)

[]

req1 !confirm˙inserted !wid ?it:Item˙Id;

w˙lp !get˙position ?lp˙id: Local˙Plan˙Id ?ip:Item˙Place˙Id;

wp !insert !ip !it;

it1 !update˙item !it !wid !ip;

usr1 !give˙place˙item !wid !it !ip;

req1 !rtn˙confirm˙inserted !wid;

exit(wid)

[]

...

) >> accept id: Warehouse˙Id

in Warehouse[usr1, req1, req2, it1, wp, w˙lp, to˙n, from˙n](id)

endproc (* Warehouse *)

process Place ... endproc (* Place *)

process Local˙Plan ... endproc (* Local˙Plan *)

endproc (* Warehouse *)

As Place and Local Plan are hidden components, their specification process is internal to
the process specifying Warehouse (see above). The same does not happen with the aggregate
component Item. Since it is a shared component, it appears in the LOTOS top-level behaviour
expression as an object which is related with the aggregate as a whole. For example:

((hide it1, to˙n, from˙n in

(...

———

Warehouse[usr1, req1, req2, it1, to˙n, from˙n](id2 of Warehouse˙id)

)

3.2. Applying ROOA 43

—[it1, to˙n, from˙n]—

(Item[it1](...) ——— Network[to˙n, from˙n](id6 of Network˙Id))

)

Task 3.3: Compose the objects into a behaviour expression

Having the class templates specified we can compose them to form the top-level behaviour expres-
sion.

(hide req1, req2, usr1, usr2, usr3 in

((hide it1, to˙n, from˙n in

(Office[usr3, req2, it1, to˙n, from˙n](id1 of Office˙Id)

———

Warehouse[usr1, req1, req2, it1, to˙n, from˙n](id1 of Warehouse˙id)

———

Warehouse[usr1, req1, req2, it1, to˙n, from˙n](id2 of Warehouse˙id)

)

—[it1, to˙n, from˙n]—

(Item[it1](...) ——— Network[to˙n, from˙n](id6 of Network˙Id))

)

—[req1, req2]—

(hide p1, p2, tr˙r in

Request[req1, req2, p1, p2, tr˙r]

—[p1, p2, tr˙r]—

(hide p˙tr in

Truck[usr2, tr˙r, p˙tr](id1 of Truck˙Id)

—[p˙tr]—

Planning[p1, p2, p˙tr](id1 of Plan˙Id, –˝ of Red˙Req˙Id˙Set,

–˝ of Rem˙Req˙Id˙Set)

)

)

)

—[usr1, usr2, usr3]—

Interface˙Scenario[usr1, usr2, usr3])

Task 3.4: Prototype the specification

To prototype the specification, we use the LITE tools. Also, we describe in LOTOS the interface
scenarios so that we can required services from the system and receive the respective answers.

An interface scenario to check part of the functionality of the system could be defined as
follows:

process Interface˙Scenario[usr1, usr2, usr3] : noexit :=

(* Initialize the system *)

usr3 !init˙new˙item ?oid:Office˙Id !This˙Time ?w: Warehouse˙Id;

usr3 !rtn˙init˙new˙item !oid ?ins˙req˙id: Ins˙Req˙Id !true;

usr1 !insert˙query !w !ins˙req˙id !This˙Time;

usr1 !rtn˙insert˙query !w !true !ins˙req˙id;

usr1 !give˙place˙item !w ?it˙id: Item˙Id ?ip: Item˙Place˙Id;

usr1 !init˙move˙item !w !it˙id !This˙Time ?w2: Warehouse˙Id [w ne w2];

usr1 !rtn˙init˙move˙item !w !true;

usr2 !get˙trans˙req ?tr˙id: Truck˙Id;

usr2 !get˙eta !tr˙id !This˙Time ?wh: Warehouse˙Id ?it1˙id: Item˙Id;

usr1 !fetch !wh ?it2˙id: Item˙Id ?pl˙id: Item˙Place˙Id;

usr2 !get˙eta !tr˙id !This˙Time ?wh2: Warehouse˙Id !it1˙id;

usr1 !warn˙arrival !w2 ?t: Time;

usr2 !confirm˙delivered !tr˙id !it1˙id !wh2;

usr1 !give˙place˙item !w2 ?it2˙id: Item˙Id ?ip2: Item˙Place˙Id;

44 Chapter 3. Warehouse management system

usr3 !init˙remove˙item !oid !it˙id !This˙Time !w2;

usr3 !rtn˙init˙remove˙item !oid !true;

usr1 !fetch !w2 ?it3˙id: Item˙Id ?pl2˙id: Item˙Place˙Id;

(hide success in success; stop)

endproc (* Interface˙Scenario *)

Task 3.5: Refine the specification

To refine our specification we model static relationships (we have already modelled some of them),
we introduce object generators, so that we can deal with multiple instances of class templates, we
identify higher level objects, we take final decisions about whether or not a given object should be
modelled as a process or as an ADT, and we refine each process and ADT by adding more detail,
if necessary.

The main decision here is to define object generators for some of the class templates. We
decided that the class templates Office, Network, Planning and Local˙Plan do not need an
object generator. The final OCD is depicted in Figure 3.10

Items

Office

Network

Planning

Requests

Warehouses

usr1 w_lp w_p

to_n

to_n from_n

req2

req2

req1

p1 p2

it1
Insert_Requestsreq2

usr3

it1

Trucksusr2

to_n from_n

Redis_Requests
p1
p2
tr_pr

req1
req2

Remove_Requests p1
p2

req1
req2

req1
req2Warehouses

Local_Plan Places

req2

tr_pr

tr_pr

tr_pr

req1

Plan_Requests

usr1
it1

Figure 3.10: Final OCD

An example of an object generator is the process Items:

process Items[it1](ids: Item˙Id˙Set) : noexit :=

it1 !create ?id: Item˙Id ?w: Warehouse˙Id ?ip: Item˙Place˙Id

[(id notin ids)];

(Item[it1](Make˙Item(id, w, ip, true, true))

———

Items[it1](Insert(id, ids))

)

[]

it1 !check˙item ?id: Item˙Id !false ?w: Warehouse˙Id [(id notin ids)];

Items[it1](ids)

where

process Item[it1](it: Item˙State) ... endproc (* Item *)

endproc (* Items *)

Sending a create message to Items causes a new Item to be created. Items holds the set of item
identifiers already allocated and the selection predicate [(id notin ids)] guarantees that each
id generated is different from the existing ones. The event

it1 !check˙item ?id: Item˙Id !false ?w: Warehouse˙Id [(id notin ids)];

catches the situations where an attempt is made to synchronize with a non-existent item.

3.3. Conclusions 45

3.3 Conclusions

This chapter discussed the application of ROOA to the warehouse management problem present
by Jacobson [9]. We found many difficulties in understanding Jacobson’s object model. In our
opinion a class template cannot be fully understood until we define its services and attributes
(although Jacobson does not include them). We used the use cases to identify the information
that was missing in the object model, but this was a difficult task.

Jacobson includes in his object model a system of window interfaces and objects which were
part of the environment rather than the system. We eliminated some of those objects, for example
Warehouse Truck Radio and Truck Radio, as they were not of much use for our exercise.

The warehouse management system has a more complex pattern of communication than the
banking system discussed in the previous chapter. This led us to make more use of event trace
diagrams, as an auxiliary technique to understand and refine the object model.

Also, this problem can be seen as complementary to the banking system, since it deals with
the other interesting object-oriented concept for structuring systems. The banking system focused
on inheritance while the warehouse focused on aggregation. Aggregation with either hidden or
shared components is easily modelled in LOTOS, as can be seen from this chapter. (For more
information on aggregation, please see [11, 15].)

The LOTOS specification for the warehouse management system is given in Appendix B.

46 Chapter 3. Warehouse management system

Chapter 4

A car rental system

4.1 Introduction

This chapter illustrates one more case study, using ROOA. The problem is to analyse a simple
car rental system. The car rental system was first proposed as a final example to check the
general characteristics of ROOA. Therefore, in this document we only discuss the more interesting
functionality of the problem.

4.2 The car rental system requirements

An outline of the requirements is:

A car rental company wishes to introduce a new automatic rental and billing sys-
tem. The hardware has already been chosen and consists of a central computer which
operators access via terminals at the different branches of the company.

Each terminal is positioned in a branch and a branch may have more than one terminal.

Vehicles may be booked in advance or rented immediately. Booking and renting occur
via the terminals. A vehicle may only be rented at a terminal positioned in the branch

from which the vehicle is to be taken, but it may be booked at any terminal. Vehicles
may be taken from one branch and returned to another, provided that this is agreed
when the rental contract is issued.

Clients can be corporate clients or ordinary clients. Corporate clients (companies) have
accounts with the car rental firm. Bills for such rentals are sent to the company after
the car is returned and do not have to be paid for directly by the person renting the
car. For ordinary clients:

• When a vehicle is booked in advance, a deposit must be paid. If the advance
booking is cancelled, the deposit is forfeited.

• When a vehicle is rented the normal costs have to be paid.

• When a vehicle is returned, any extra costs (e.g. mileage excess) must be paid.

If an ordinary client has not rented a car before, they must prove their identity and
show a driving licence before driving away the car. This information is then stored.
This is not necessary when it is a known client although information about the new
rental will be added to the information held. If a previous client is a bad risk then
such information will be held and their custom will be refused.

The system keeps a list of the types of car on offer – model, engine capacity, number of
doors, automatic or manual transmission, daily cost of rental. Car types are grouped

47

48 Chapter 4. A car rental system

into price classes. The system must keep track of the actual cars available at the
different branches.

When a client wishes to book or rent a car, they are given a list of up to two cars
which meet their requirements and which are available. They then decide on one of
the cars or decline the offer during that terminal transaction. If a car is accepted, a
rental contract with the client is generated. Multiple terminals are available. Each
terminal will only deal with one customer at a time. While a car is being offered to
one client at a terminal, it cannot be offered to another client at another terminal.

When a car is returned, this is noted. The car is not available for rental until after it
has been checked for defects.

The system must allow terminals, vehicle types, actual cars and company accounts to
be added or removed from the system. It must also be possible to record the movement
of a car from one branch to another.

The system must keep a record of all transactions so that statistics can be produced
on, for example, the performance of each branch.

4.3 Applying ROOA

Task 1: Build an object model

The first task is to apply any of the existing OOA methods to create an object model. An initial
object model created by following Coad and Yourdon’s method is depicted in Figure 4.1.

Client

Client_Nr
Address
Type_Client

1,n

1

1

0,1

Desk

Desk_Nr

make_reservation
cancel_reservation
rent_car
receive_payment
return_car
extra_payment
new_client

0,n

1
Reservation

Reservation_Nr
Date

create
cancel 0,1

1

Account

Account_Nr
Balance

open
add

Price_Class
Car

Plate_Nr
Model
Engine
Capacity
Nr_Doors
Transmission_Type
Daily_Cost
Availability

insert
reserve
remove
set_free

Contract

Contract_Nr
Date
Local_Departure
Local_Delivery

create

1

1

1,n

1

0,n

1

1

0,1

1

1,n

0,n

1

0,1

1

1

1,n

Initialization

add_car
change_price_class
add_branch
remove_branch
remove_car

Price_Class

1

1,n

Initialization

add_car
change_price_class
add_branch
remove_branch
remove_car

Branch

Name
Location

1,n

1

0,n

1
Individual_Client

Client_Company

Contract

Contract_Nr
Date
Local_Departure
Local_Delivery

create

1

1

1,n

1

Payment

Amount
Date

pay

0,n

1

Client_Company

Figure 4.1: Initial object model

Task 2: Refine the object model

This task is composed of three subtasks: complete the object model, initial identification of
dynamic behaviour, structure the object model.

4.3. Applying ROOA 49

Task 2.1: Complete the object model

This subtask guarantees that the object model contains interface objects, static relationships and
attributes. The object model presented in Figure 4.1 already contains this information.

Task 2.2: Initial identification of dynamic behaviour

This subtask plays special attention to the dynamic behaviour of each class template and of the
system as a whole.

Here we define interface scenarios. Interface scenarios help us identify the services required
from the system. Also, they help us navigate through the object model in order to identify services
and message connections. Each interface scenario will later be translated to LOTOS; now we rep-
resent it textually. During this study we identified three main transactions: make a reservation,
rent a car, return the car. We define one interface scenario for each transaction. Table 4.1 shows
an example of an interface scenario.

A client goes to the desk and asks for a car reservation;
(The client gives information about the kind of car desired.)
If the reservation succeeded, the client pays the deposit and receives a receipt.
If it is a new client, a new client record is created.

Table 4.1: Interface scenario for Reservation

This interface scenario only shows the interface between the clients and the system. We use
event trace diagrams to show what happens inside the system when the interface scenario requires
a service. Figure 4.2 shows the event trace diagram which corresponds to making a reservation
(and cancelling it). Figure 4.3 shows the event trace diagram which corresponds to renting a car,

Interface
Scenario Desk Reservation Car

make_reservation
create reserve

rtn_car_nr
reservation_nr

rtn_make_reservation

cancel_reservation
cancel

set_free

pay_deposit
pay_deposit

add_client

Client

add

rtn_pay_deposit

rtn_add_client
rtn_add

Figure 4.2: Event trace diagram for reservation transaction

with or without a reservation. Figure 4.4 shows the event trace diagram which corresponds to the
delivery of the car.

As we build the event trace diagrams and interface scenarios, we can collect the information
in an OCT. Some of the information was already in the initial object model. However, the object
model is changed as we understand the system better from the information gained by defining
interface scenarios and event trace diagrams. The initial OCT is shown in Table 4.2.

The creation of the interface scenarios, event trace diagrams and OCTs should be done in
parallel. Each one behaves as a check list for the others, and they help validate each other.

50 Chapter 4. A car rental system

Interface
Scenario Desk Reservation

Car

Contract

rent_car
get_reservation

rtn_get_reservation

create

rtn_get_amount_paid

Payment

Accountreceive_payment
pay

add

contract

add_client
Client

add

rtn_client_nr

rtn_contract_nr

ask_rest_payment

get_amount_paid

rtn_add_client

rtn_receive_payment

Figure 4.3: Event trace diagram for rental transaction

Interface Scenario Desk Car

return_car

Contract

ask_extra_payment

extra_payment

Payment

Accountpay

add
rtn_extra_payment

complete
set_free

get_mileage

rtn_get_mileage

get_las_pay

rtn_get_las_pay

Figure 4.4: Event trace diagram for return transaction

Task 2.3: Structure the object model

In this subtask we propose subsystems and we look for complex relationships such as inheri-
tance and aggregation. We have already identified one inheritance relationship, namely Client.
As ROOA proposes, this is a good candidate for a subsystem. We could then group Client,
Client Company and Individual Client to form the subsystem Customer.

After the first iteration, and based on the information contained in the event trace diagrams,
and OCT, the object model is refined to take the form illustrated in Figure 4.5.

4.3. Applying ROOA 51

Class Offered Required Clients Gates
Templates Service Service

Desk make reservation Reservation.create External d
pay deposit Reservation.pay deposit External d
cancel reservation Reservation.cancel External d
rent car Reservation.get reservation External d

Client.add
Contract.create
Reservation.get amount paid

receive payment Account.add External d
Payment.pay

return car Contract.complete External d
Car.get mileage
Payment.get last payment
Account.get last payment

extra payment Payment.pay External d
Account.add

add client Client.add External d
Reservation create Car.reserve Desk r

cancel Car.set free Desk r
pay deposit Desk r
get amount paid Desk r
get reservation Desk r

Contract create Desk c
complete Car.set free Desk c

Car insert Initialization c1
remove Initialization c1
reserve Reservation c2
contract Contract c2
set free Reservation, Contract c2
get mileage Desk ?

Branch insert Initialization b
remove Initialization b

Initialization add car Car.insert External n
remove car Car.remove External n
add branch Branch.insert External n
remove branch Branch.remove External n
change price class Price Class.change External n
add price class Price Class.add External n
remove price class Price Class.remove External n

Account open Desk a
add Desk a
get last payment Desk a

Payment pay Desk p
get last payment Desk p

Price Class add Initialization pc
change Initialization pc
remove Initialization pc

Client remove Desk cl
Client Company add Desk cl
Individual Client add Desk cl

Table 4.2: An OCT for the car rental system

Task 3: Build the LOTOS formal model

In the first iteration, we need to accomplish four main subtasks: create an object communication
diagram, specify class templates, compose the objects into a behaviour expression and prototype
the specification. The following subsections show the results.

Task 3.1: Create an Object Communication Diagram (OCD)

From the OCT we can draw an OCD which shows the structure of the object model and, at the
same time, shows the communications between the objects in the system.

In the first iteration each node in the OCD represents an object. Figure 4.6 depicts an OCD
for the problem we are studying.

52 Chapter 4. A car rental system

Account

Account_Nr
Balance

open
add
get_last_payment

Reservation

Reservation_Nr
Date

create
cancel
pay_deposit
get_amount_paid
get_reservation

Client

Client_Nr
Address
Type_Client

remove

0,n

1

Desk

make_reservation
cancel_reservation
rent_car
receive_payment
return_car
extra_payment
add_client
pay_deposit

1

0,1

0,1

1

1,n

1

1 1

11

Initialization

add_car
change_price_class
add_branch
remove_branch
remove_car
add_price_class
remove_price_class

Price_Class

price

add
change
remove

Car

Plate_Nr
Model
Engine
Capacity
Nr_Doors
Transmission_Type
Daily_Cost
Availability

insert
reserve
remove
set_free
contract
get_mileage

1

1,n

Contract

Contract_Nr
Date
Local_Departure
Local_Delivery

create
complete

0,n

1

0,n

1

1

1,n

1

0,1

0,1

1

1,n

1

1 1

11

Initialization

add_car
change_price_class
add_branch
remove_branch
remove_car
add_price_class
remove_price_class

Price_Class

price

add
change
remove

1

1,n

Branch

Name
Location

insert
remove

0,n

1

Client

Client_Nr
Address
Type_Client

remove

Client_Company

add

1

0,1

Individual_Client

add

0,1

1

1,n

1

1 1

11

Payment

Amount
Date

pay
get_last_payment

0,n

1 1

1

Contract

Contract_Nr
Date
Local_Departure
Local_Delivery

create
complete

Client_Company

add

0,n

1
1

0,1

0,1

1

1,n

1

1 1

11

Figure 4.5: Final object model

Car

Desk

Client

Client
Company

Individual
Client

Costumer

cl

cl

cl

Account

Payment

Reservation

Contract

Branch

Price_Class

Initialization

a

p

cl

r

c

c2

c2

c1

b

pc

n

d

Figure 4.6: An OCD for the car rental system

Task 3.2: Specify class templates

In general, a class template is specified by using a process and one or more ADTs. An example of
a class template is Car:

4.3. Applying ROOA 53

process Car[c2](this˙car: State˙Car): noexit :=

(c2 !reserve !Get˙Car˙Id(this˙car);

exit(Change˙State(this˙car, reserved of Availability))

[]

c2 !set˙free !Get˙Car˙Id(this˙car);

exit(Change˙State(this˙car, free of Availability))

[]

c2 !contract !Get˙Car˙Id(this˙car);

exit(Change˙State(this˙car, contracted of Availability))

[]

c2 !get˙mileage !Get˙Car˙Id(this˙car) !Get˙Mileage(this˙car);

exit(this˙car)

) >> accept this˙car: State˙Car in Car[c2](this˙car)

endproc (* Car *)

And the ADT where the sort State Car defined, is specified as follows:

type Car˙Type is Car˙Id˙Set˙Type, Availability˙Type, Mileage˙Type

sorts State˙Car

opns

Make˙Car : Car˙Id, Availability, Mileage -> State˙Car

Change˙State : State˙Car, Availability -> State˙Car

Get˙Mileage : State˙Car -> Mileage

Get˙Car˙Id : State˙Car -> Car˙Id

eqns forall c: State˙Car, n: Car˙Id, v: Availability, m: Mileage

ofsort Car˙Id

Get˙Car˙Id(Make˙Car(n,v,m)) = n;

Get˙Car˙Id(Change˙State(c,v)) = Get˙Car˙Id(c);

ofsort Mileage

Get˙Mileage(c) = Some˙Mileage;

endtype

Task 3.3: Compose the objects into a behaviour expression

From the OCD depicted in Figure 4.6, and by following the algorithm presented in [3], we can
build a behaviour expression which shows how all the objects in the system interact with each

other.

hide d, c, c1, c2, r in

((Desk [d, r, c](id1 of Desk˙Id)

—[r, c]—

(Reservations[r, c2](–˝ of Reservation˙Id˙Set)

———

Contracts[c, c2](–˝ of Contract˙Id˙Set)

)

)

—[c1, c2]—

Cars[c1, c2](–˝ of Car˙Id˙Set)

)

—[d]—

Interface˙Scenario[d]

(...)

Task 3.4: Prototype the specification

As with the specifications discussed in Chapters 2 and 3, we use the Lite tools to prototype the
specification created for the car rental system. This helps us find syntax and semantic errors and
enables us to execute the specification to validate the results against the requirements.

54 Chapter 4. A car rental system

Task 3.5: Refine the specification

As we said before, we used this exercise to test the general characteristics of ROOA. Therefore,
we have not been interested in refining and completing the final specification.

Among the list of tasks we can accomplish here we specified conceptual relationships between
objects and introduced object generators.

An example of an object generator for class template Car, is as follows:

process Cars[c1, c2](cs: Car˙Id˙Set): noexit :=

(c1 !create ?c˙id: Car˙Id [c˙id notin cs];

(Car[c2](Make˙Car(c˙id, free of Availability, Some˙Mileage))

———

Cars[c1, c2](Insert(c˙id, cs))

)

)

where

process Car ... endproc

4.4 Conclusions

The car rental system was proposed to check the general characteristics of ROOA, and not to
analyse the details of a specification (for that purpose we already have the banking system and the
warehouse management problem). This is why, in this document, we only discuss the functionality
of the problem which involved communication between a large number of objects.

Applying ROOA to this problem was an useful exercise, to make us feel more comfortable
with our method. We tested how the various ROOA techniques interact and help each other as
validation tools. In particular, we tested each task and subtask. The car rental system has some
interesting communication patterns. This helped us to evaluate once more the need for the event
trace diagrams, as an intermediate technique to help build the object model. Once more, the event
trace diagrams were also very useful in helping us build the object communication tables which
then were the major source of information in the creation of the object communication diagram.

After applying ROOA to this problem we have drawn an important conclusion: object model,
event trace diagrams, object communication tables, object communication diagram and the LO-

TOS specification were being used many times to improve each other. All these techniques are
integrated in the sense that, at a given stage, we were using all of them at the same time, in a paral-
lel and interactive way. For example, from the event trace diagrams and the object-communication
table we started writing the LOTOS specification. As this advanced, we identified more services
and communications which had not been fully identified in the previous tasks.

A simple version of the LOTOS specification for this problem is presented in Appendix C.

Chapter 5

Conclusions

ROOA enables a formal object-oriented analysis model to be devised from a set of informal require-
ments, and results in a formal requirements specification expressed in LOTOS. ROOA consists of
three main tasks: building an object model, refining the object model, and building the formal
LOTOS OOA model. Each of these tasks involves multiple passes through subtasks. The three
tasks are not necessarily sequential: some parts of the model may be built through to the LOTOS
specification before other parts of the model are analysed.

The first task, building the object model, may be accomplished in the first pass by using any
of the usual object-oriented analysis methods, such as the methods of Coad and Yourdon [5],
Rumbaugh et al. [17] and Jacobson [9]. The object model is refined in the second task by pass-
ing through three subtasks: completing the object model, identifying the initial identification of
dynamic behaviour, structuring the object model. The formal LOTOS OOA model integrates the
static, dynamic and functional properties of the system, and consists of five subtasks: creating
the object communication diagram (OCD); specifying the class templates as LOTOS processes
and ADTs; composing objects; prototyping the object model by executing the LOTOS specifica-
tion; and refining the specification according to the results of this rapid prototyping. (For a full
description of the ROOA method, please see [11, 12, 13, 14, 16].)

This document showed how ROOA can be applied to a problem so that an initial formal
requirements specification can be created. ROOA has been applied to database oriented problems
with simple communication patterns and to problems with a more complex dynamic behaviour.
Also, it was used together with the methods by Rumbaugh et al. [17], Jacobson [9] and Coad and
Yourdon [5]. This helped us identify system development requirements and object models with
which ROOA had be compatible.

We have discussed three problems: an automated banking system, a warehouse management
system and a car rental system. The banking system and the warehouse were the two most
interesting problems, so we have discussed them in more detail.

The banking system is basically a database-oriented problem, with a simple dynamic behaviour.
It was important to show how ROOA models class templates, creates multiple instances of a class
template and deals with inheritance.

The warehouse management system was first described and analysed by Jacobson [9]. This
problem has a more complex dynamic behaviour. It shows the advantage of using event trace
diagrams within ROOA. Another important object-oriented concept dealt with in this problem is
aggregation.

The car rental system is mainly a dynamic-oriented problem, but it is not as interesting as the
warehouse system.

Each of these problems deal with issues which are important when specifying systems, mainly,
the static versus dynamic problems and inheritance versus aggregation. In this document we
showed how ROOA behaves when applied to these kind of problems. Because ROOA uses LOTOS,
it is specially good at describing the dynamic behaviour of systems, but also, it shows the static
structure of a system.

55

56 Chapter 5. Conclusions

The LOTOS specifications for the three problems, the banking system, the warehouse system
and the car rental system, are given in Appendices A, B and C.

Bibliography

[1] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS.
Computer Networks and ISDN Systems, 14(1):25–59, 1987.

[2] E. Brinksma (ed). Information Processing Systems — Open Systems Interconnection —
LOTOS — A Formal Description Technique Based on the Temporal Ordering of Observation
Behaviour, ISO 8807, 1988.

[3] R.G. Clark. Construction of LOTOS Behaviour Expressions from Network Diagrams. Tech-
nical Report CSM-124, Department of Computing Science and Mathematics, University of
Stirling, Scotland, 1994.

[4] R.G. Clark and A.M.D. Moreira. Behavioural Inheritance in ROOA. In R. Wieringa and
R. Feenstra, editors, Workshop on Information Systems - Correctness and reusability (IS-
CORE’94), pages 346–356, Amsterdam, The Netherlands, September 1994.

[5] P. Coad and E. Yourdon. Object Oriented Analysis. Yourdon Press, Prentice-Hall, 2nd edition,
1991.

[6] H. Eertink and D. Wolz. Symbolic Execution of LOTOS Specifications. In M. Diaz and
R. Groz, editors, Formal Description Techniques, V, pages 295–310. North-Holland, 1993.

[7] C. Gane and T. Sarson. Structured Systems Analysis: Tools and Techniques. Prentice-Hall,
1979.

[8] ISO. Information Processing Systems – Open Systems Interconnection – LOTOS : A Formal
Description Technique Based on the Temporal Ordering of Observational Behavior, Interna-
tional Standard 8807. ISO, 1988.

[9] I. Jacobson. Object-Oriented Software Engineering — A Use Case Driven Approach. Addison-
Wesley, 1992.

[10] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1988.

[11] A.M.D. Moreira. Rigorous Object-Oriented Analysis. PhD thesis, Department of Computing
Science and Mathematics, University of Stirling, Scotland, August 1994.

[12] A.M.D. Moreira and R.G. Clark. LOTOS in the Object-Oriented Analysis Process. In BCS-
FACS Workshop on Formal Aspects of Object-Oriented Systems, Imperial College, London,
December 1993. BCS-FACS (British Computer Society – Formal Aspects of Computing Sci-
ence).

[13] A.M.D. Moreira and R.G. Clark. ROOA: Rigorous Object-Oriented Analysis. Technical
Report CSM-109, Department of Computing Science and Mathematics, University of Stirling,
Scotland, October 1993.

[14] A.M.D. Moreira and R.G. Clark. Combining Object-Oriented Analysis and Formal Descrip-
tion Techniques. In M. Tokoro and R. Pareschi, editors, ECOOP’94, volume 821 of Lecture
Notes in Computer Science, pages 344–364. Springer-Verlag, 1994.

57

58 Bibliography

[15] A.M.D. Moreira and R.G. Clark. Complex Objects: Aggregates. Technical Report CSM-123,
Department of Computing Science and Mathematics, University of Stirling, Scotland, May
1994.

[16] A.M.D. Moreira and R.G. Clark. Rigorous Object-Oriented Analysis. In E. Bertino and
S. Urban, editors, International Symposium on Object-Oriented Methodologies and Systems
(ISOOMS), volume 858 of Lecture Notes in Computer Science, pages 65–78. Springer-Verlag,
1994.

[17] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Mod-
elling and Design. Prentice-Hall, 1991.

[18] S. Shlaer and S.J. Mellor. An Object-Oriented Approach to Domain Analysis. ACM Software
Engineering Notes, 14(5):66–77, July 1989.

Appendix A

LOTOS specification for the

banking system

specification Automated˙Bank [t, ob1]: noexit

library

Boolean, NaturalNumber, Set

endlib

type Id˙Type is Boolean, NaturalNumber

sorts Id

opns id1, id2, id3, id4, id5, id6,

id7, id8, id9, id10, id11,

id12, id13, id14, id15, id16,

id17, id18, id19, id20 : -> Id

h : Id -> Nat

˙eq˙, ˙ne˙, ˙lt˙ : Id, Id -> Bool

First˙Set : Id -> Bool

Second˙Set : Id -> Bool

Third˙Set : Id -> Bool

Fourth˙Set : Id -> Bool

eqns forall n1, n2: Id

ofsort Nat

h(id1) = 0;

h(id2) = succ(h(id1));

h(id3) = succ(h(id2));

h(id4) = succ(h(id3));

h(id5) = succ(h(id4));

h(id6) = succ(h(id5));

h(id7) = succ(h(id6));

h(id8) = succ(h(id7));

h(id9) = succ(h(id8));

h(id10) = succ(h(id9));

h(id12) = succ(h(id11));

h(id13) = succ(h(id12));

h(id14) = succ(h(id13));

h(id15) = succ(h(id14));

h(id16) = succ(h(id15));

h(id17) = succ(h(id16));

h(id18) = succ(h(id17));

h(id19) = succ(h(id18));

h(id20) = succ(h(id19));

59

60 Appendix A. LOTOS specification for the banking system

ofsort Bool

n1 eq n2 = h(n1) eq h(n2);

n1 ne n2 = h(n1) ne h(n2);

n1 lt n2 = h(n1) lt h(n2);

First˙Set(n1) = h(n1) lt h(id5);

Second˙Set(n1) = not(h(n1) lt h(id5)) and (h(n1) lt h(id10));

Third˙Set(n1) = not(h(n1) lt h(id10)) and (h(n1) lt h(id15));

Fourth˙Set(n1) = not(h(n1) lt h(id15)) and (h(n1) lt h(id20));

endtype

type Set˙Id˙Type is Set actualizedby Id˙Type using

sortnames Id for Element

Bool for FBool

endtype

(*--

Abstract data types

Although there is a library where data types are predefined, almost all data types in LOTOS must
be specified. All the following data types are defined based on the ones exported by the library.
Each object needs an identifier to allow it to be referenced by other objects or by the external
world. Instead of defining from scratch an identifier for each object, we have included the abstract
data types Id Type and Set Id Type to be used as a starting point. The Id Type is an identifier
definition. The Set Id Type will be used to define sets of Id Type. The definition of the new
abstract data types is made by renaming the type defined in the library.

--*)

type Account˙Number˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Account˙Number for Id

Account˙Number˙Set for Set

opnnames Is˙Cheque˙Acc for First˙Set

Is˙Savings˙Acc for Second˙Set

endtype

type Client˙Number˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Client˙Number for Id

Client˙Number˙Set for Set

endtype

type Card˙Number˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Card˙Number for Id

Card˙Number˙Set for Set

endtype

type Cheque˙Number˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Cheque˙Number for Id

Cheque˙Number˙Set for Set

endtype

type SO˙Number˙Set˙Type is Set˙Id˙Type

renamedby

sortnames SO˙Number for Id

SO˙Number˙Set for Set

endtype

61

type Bank˙Name˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Bank˙Name for Id

Bank˙Name˙Set for Set

opnnames This˙Bank for id1

endtype

type Id˙Tellers˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Id˙Tellers for Id

Id˙Tellers˙Set for Set

opnnames Is˙ATM for First˙Set

Is˙CT for Second˙Set

endtype

(*--

The Account Number Set Type, Client Number Set Type, Cheque Number Set Type, Card Number

Set Type, SO Number Set Type, Bank Name Set Type and Id Tellers Set Type are renamed

types of the type Set Id Type. Is Cheque Acc and Is Savings Acc are boolean operations

that are going to be used to decide if a given account number is a chequing account

or a savings account. Is ATM and Is CT are equivalent operations for the tellers.

--*)

type Kind˙Account˙Type is

sorts Kind˙Account

opns saving, chequing : -> Kind˙Account

endtype

type Money˙Type is

sorts Money

opns This˙Mon : -> Money

endtype

type Interest˙Type is

sorts Interest

opns This˙Inter : -> Interest

endtype

type Period˙Type is

sorts Period

opns This˙Prd : -> Period

Update˙Date: Period -> Period

endtype

type Date˙Type is

sorts Date

opns This˙Date : -> Date

endtype

type Balance˙Type is

sorts Balance

opns Some˙Balance : -> Balance

endtype

(*--

In each of the above types we have defined constants. In the Bank Type we are going to define the
equation

62 Appendix A. LOTOS specification for the banking system

Get˙Bank˙Name(Init˙Bank(bk)) = bk

which give us the name of a bank. The value This Bank is going to be used as a constant that
gives our bank name.

--*)

type Bank˙Type is Bank˙Name˙Set˙Type

sorts Bank

opns Init˙Bank : Bank˙Name -> Bank

Get˙Bank˙Name : Bank -> Bank˙Name

eqns forall bk: Bank˙Name

ofsort Bank˙Name

Get˙Bank˙Name(Init˙Bank(bk)) = bk;

endtype

(*--

For a standing order we need to define some more equations. As our aim in this phase is only to
introduce the services together with their functionality, we will not show full calculations, since
we believe that that is too much detail for the analysis phase.

Notice that the relationships between Standing Order and Account and between Standing

Order and Other Banks (Figure2.17) are modelled in the abstract data type. The constructor

Make˙SO: SO˙Number, Account˙Number,

Account˙Number, Bank˙Name, Money -> State˙Standing˙Order

shows that.

--*)

type Standing˙Order˙Type is SO˙Number˙Set˙Type, Money˙Type,

Account˙Number˙Set˙Type, Bank˙Name˙Set˙Type

sorts State˙Standing˙Order

opns Make˙SO: SO˙Number, Account˙Number, Account˙Number,

Bank˙Name, Money -> State˙Standing˙Order

Get˙SO˙Number : State˙Standing˙Order -> SO˙Number

Get˙Paying˙Client : State˙Standing˙Order -> Account˙Number

Get˙Receiving˙Client: State˙Standing˙Order -> Account˙Number

Get˙Bank˙Name : State˙Standing˙Order -> Bank˙Name

Get˙Payable˙Amount : State˙Standing˙Order -> Money

eqns forall s: SO˙Number, n1, n2: Account˙Number, b: Bank˙Name, a: Money

ofsort SO˙Number

Get˙SO˙Number(Make˙SO(s, n1, n2, b, a)) = s;

ofsort Account˙Number

Get˙Paying˙Client(Make˙SO(s, n1, n2, b, a)) = n1;

Get˙Receiving˙Client(Make˙SO(s, n1, n2, b, a)) = n2;

ofsort Bank˙Name

Get˙Bank˙Name(Make˙SO(s, n1, n2, b, a)) = b;

ofsort Money

Get˙Payable˙Amount(Make˙SO(s, n1, n2, b, a)) = a;

endtype

(*--

The relationship between Cheque and Account is modelled in the same way as the one between
Standing Order and Account.

--*)

type Cheque˙Type is Cheque˙Number˙Set˙Type, Account˙Number˙Set˙Type,

Bank˙Name˙Set˙Type, Money˙Type

sorts State˙Cheque

opns Make˙Cheque : Cheque˙Number, Account˙Number, Account˙Number,

63

Bank˙Name, Money -> State˙Cheque

Get˙Cheque˙Number: State˙Cheque -> Cheque˙Number

Get˙Acc˙To : State˙Cheque -> Account˙Number

Get˙Acc˙From : State˙Cheque -> Account˙Number

Get˙Amount : State˙Cheque -> Money

Get˙Bank : State˙Cheque -> Bank˙Name

eqns forall ch: Cheque˙Number, n1, n2: Account˙Number, B: Bank˙Name, m: Money

ofsort Cheque˙Number

Get˙Cheque˙Number(Make˙Cheque(ch, n1, n2, b, m)) = ch;

ofsort Account˙Number

Get˙Acc˙To(Make˙Cheque(ch, n1, n2, b, m)) = n2;

Get˙Acc˙From(Make˙Cheque(ch, n1, n2, b, m)) = n1;

ofsort Money

Get˙Amount(Make˙Cheque(ch, n1, n2, b, m)) = m;

ofsort Bank˙Name

Get˙Bank(Make˙Cheque(ch, n1, n2, b, m)) = b;

endtype

(*--

As it would be expected, the Account abstract data type is the most complex, since everything
we do in our system affect accounts. The dummy equations we are going to define correspond to
the services showed in the object model in Figure 2.17, plus the constructor and some selectors.

--*)

type Account˙Type is Account˙Number˙Set˙Type, Money˙Type,

Balance˙Type, Date˙Type, Interest˙Type,

Client˙Number˙Set˙Type, Cheque˙Number˙Set˙Type

sorts State˙Account

opns Make˙Account : Account˙Number, Balance -> State˙Account

Credit˙Account : State˙Account, Money -> State˙Account

Debit˙Account : State˙Account, Money -> State˙Account

Credit˙Pending : State˙Account, Money -> State˙Account

Add˙Credit˙Pending : State˙Account, Money -> State˙Account

Sub˙Credit˙Pending : State˙Account, Money -> State˙Account

Credit˙Interest : State˙Account, Money -> State˙Account

Get˙Balance : State˙Account -> Balance

Get˙Account˙Number : State˙Account -> Account˙Number

eqns forall a: State˙Account, n: Account˙Number, m: Money, b: Balance

ofsort Account˙Number

Get˙Account˙Number(Make˙Account(n, b)) = n;

Get˙Account˙Number(Credit˙Account(a, m)) = Get˙Account˙Number(a);

Get˙Account˙Number(Debit˙Account(a, m)) = Get˙Account˙Number(a);

Get˙Account˙Number(Credit˙Pending(a, m)) = Get˙Account˙Number(a);

Get˙Account˙Number(Add˙Credit˙Pending(a, m)) = Get˙Account˙Number(a);

Get˙Account˙Number(Sub˙Credit˙Pending(a, m)) = Get˙Account˙Number(a);

Get˙Account˙Number(Credit˙Interest(a, m)) = Get˙Account˙Number(a);

ofsort Balance

Get˙Balance(a) = Some˙Balance;

endtype

type Client˙Type is Client˙Number˙Set˙Type, Card˙Number˙Set˙Type,

Account˙Number˙Set˙Type

sorts Client

opns Make˙Client : Client˙Number, Card˙Number˙Set,

Account˙Number˙Set -> Client

Get˙Client˙Number : Client -> Client˙Number

eqns forall n: Client˙Number, k: Card˙Number˙Set, a: Account˙Number˙Set

ofsort Client˙Number

Get˙Client˙Number(Make˙Client(n, k, a)) = n;

64 Appendix A. LOTOS specification for the banking system

endtype

type Card˙Type is Card˙Number˙Set˙Type, Client˙Number˙Set˙Type,

Account˙Number˙Set˙Type

sorts Card

opns Make˙Card : Card˙Number, Client˙Number,

Account˙Number -> Card

Get˙Card˙Number : Card -> Card˙Number

eqns forall n: Card˙Number, c: Client˙Number, a: Account˙Number

ofsort Card˙Number

Get˙Card˙Number(Make˙Card(n, c, a)) = n;

endtype

(*--

In our specification the objects Client and Card play a less important role, and so they are only
specified as abstract data types. If we decided to increase their importance in the system they
would need a process as well.

Each service name, which is part of the message sent to an object is defined here.

--*)

type Op˙Names is

sorts Op˙Name

opns

deposit, withdraw, withdraw˙cash, balance, open˙account, close˙account,

create, remove, print˙mini˙statement, deposit˙cash, rtn˙withdraw,

rtn˙withdraw˙cash, rtn˙withdraw˙cheque, set˙mini˙statement,

mini˙statement˙details, rtn˙print, rtn˙deposit˙cheque,

rtn˙deposit˙cash, deposit˙cheque, enquire˙cheque, give˙enquire˙cheque,

ask˙transfer, withdraw˙cheque, rtn˙open˙account, send˙cheque˙to˙withdraw,

receive˙cheque˙from˙withdraw, create˙cheque, set˙standing˙order,

cancel˙standing˙order, receive˙transfer, send˙transfer, transfer˙credit,

cheque˙debited, so˙create, so˙cancel, full˙deposit, ask˙withdraw˙cheque,

receive˙cheque˙balance, perhaps˙deposit, rtn˙balance, transfer˙debit,

ch˙create, withdraw˙others˙bank˙cheque, send˙cheque˙balance,

rtn˙set˙standing˙order : -> Op˙Name

endtype

(*--

Behaviour

The top level behaviour expression is directly created from the OCD represented in Figure 2.19
and by following the algorithm presented in [3].

--*)

behaviour

(hide ob2, cs, ba in

(Other˙Banks[ob1, ob2, ba](Insert(This˙Bank, –˝ of Bank˙Name˙Set))

—[ob2]—

(Tellers[t, ob2, cs, ba]

—[cs]—

Financial˙Instruments[ob2, cs, ba]

)

)

—[ba]—

Bank˙Account[ba]

)

—[t, ob1]—

Interface˙Scenario[t, ob1]

where

65

(*--

As shown in Figure 2.17, the object classes Automatic Teller and Counter Teller are sub-
classes of the Superclass Entry Station. The process Entry Stations below groups both the
Automatic Tellers and the Counter Tellers in a single process.

--*)

process Tellers [t, ob, a, c] : noexit :=

(Automatic˙Tellers[t, c](–˝ of Id˙Tellers˙Set)

———

Counter˙Tellers[t, ob, a, c](–˝ of Id˙Tellers˙Set)

)

where

(*--

The superclass Entry Station defines the service withdraw cash which is offered by both kinds
of tellers.

--*)

process Entry˙Station[t, c](id: Id˙Tellers) : exit(Id˙Tellers):=

t !withdraw˙cash !id ?n: Account˙Number ?m: Money;

c !withdraw !n !m;

c !rtn˙withdraw !n ?valid: Bool;

t !rtn˙withdraw˙cash !id !valid;

exit(id)

endproc

process Automatic˙Tellers[t, c](atms: Id˙Tellers˙Set) : noexit :=

t !create ?id: Id˙Tellers [(id notin atms) and Is˙ATM(id)];

(Automatic˙Teller[t, c](id)

———

Automatic˙Tellers[t, c](Insert(id, atms))

)

where

process Automatic˙Teller[t, c](id: Id˙Tellers) : noexit :=

(Entry˙Station[t, c](id)

[]

t !print˙mini˙statement !id ?n: Account˙Number

[Is˙Cheque˙Acc(n)];

c !set˙mini˙statement !n ?a: State˙Account;

t !rtn˙print !id !n !a;

exit(id)

) >> accept id: Id˙Tellers in Automatic˙Teller[t, c](id)

endproc

endproc (* end Automatic˙Tellers *)

(*--

The technique we are using to create a new automatic teller identifier

t !create ?id: Id˙Tellers [(id notin atms) and Is˙ATM(id)];

uses the selection predicate [(id notin atms) and Is ATM(id)] which guarantees that the iden-
tifier generated does not exist yet and that its value belongs to the range defined by the boolean
function Is ATM(id). The extended action denotation ?id: Id Tellers specifies the set of val-
ues allowed for id.

As the SMILE simulator offers value generation, we will use it to get new identifiers for au-
tomatic tellers. Thus, in the Interface Scenario, we will have an event synchronization of the
type:

66 Appendix A. LOTOS specification for the banking system

t !create ?id: Id˙Tellers;

By using this technique we avoid having to specify how to create the identifiers. The same
technique will be used for Counter Tellers and Other Banks.

Counter Tellers and Other Banks will be specified in the same way as Automatic Tellers.

--*)

process Counter˙Tellers[t, ob, a, c](cts: Id˙Tellers˙Set) : noexit :=

t !create ?id: Id˙Tellers [(id notin cts) and Is˙CT(id)];

(Counter˙Teller[t, ob, a, c](id)

———

Counter˙Tellers[t, ob, a, c](Insert(id, cts))

)

where

process Counter˙Teller[t, ob, a, c](id: Id˙Tellers) : noexit :=

(Entry˙Station[t, c](id)

[]

t !open˙account !id ?ta: Kind˙Account;

c !create !ta ?n: Account˙Number;

t !rtn˙open˙account !id !n;

exit(id)

[]

t !close˙account !id ?n: Account˙Number;

c !remove !n;

exit(id)

[]

t !deposit˙cash !id ?n: Account˙Number ?m: Money;

c !deposit !n !m;

t !rtn˙deposit˙cash !id !n !m;

exit(id)

[]

t !deposit˙cheque !id ?bk: Bank˙Name

?ch˙from: Account˙Number ?ch˙to: Account˙Number

?ch: Cheque˙Number ?m: Money [is˙Cheque˙Acc(ch˙from)];

a !create˙cheque !ch !bk !ch˙from !ch˙to !m;

t !rtn˙deposit˙cheque !id !ch˙to !m;

exit(id)

[]

t !withdraw˙cheque !id ?bk: Bank˙Name ?n: Account˙Number

?ch: Cheque˙Number ?m: Money

[(bk eq This˙Bank) and Is˙Cheque˙Acc(n)];

(* client withdraws cheque in his/her bank *)

a !create˙cheque !ch !bk !n !m;

(* process cheque is asked to withdraw cheque *)

a !cheque˙debited !ch !bk !n ?cheque˙valid: Bool;

(* Cheque sends information about whether or not the

withdrawl was successful *)

t !rtn˙withdraw˙cheque !id !n !cheque˙valid;

(* teller gives money and receipt to the client *)

exit(id)

[]

t !enquire˙cheque !id ?ch: Cheque˙Number;

a !enquire˙cheque !ch ?this˙cheque: State˙Cheque;

t !give˙enquire˙cheque !id !this˙cheque;

exit(id)

[]

t !balance !id ?n:Account˙number;

c !balance !n ?b: Balance; (* balance value *)

t !rtn˙balance !id !n !b;

67

exit(id)

[]

t !ask˙transfer !id ?from˙acc: Account˙Number

?to˙acc: Account˙Number ?bk: Bank˙Name ?m: Money;

(* asked by the clients *)

c !withdraw !from˙acc !m;

c !rtn˙withdraw !from˙acc ?valid: Bool;

([valid] ->

(

[bk eq This˙bank] -> c !deposit !to˙acc !m; exit(id)

[]

[bk ne This˙Bank] -> ob !send˙transfer !bk !to˙acc !m;

exit(id) (* to other banks *)

)

[]

[not(valid)] -> exit(id)

)

[]

t !set˙standing˙order !id ?from˙acc: Account˙Number

?to˙acc: Account˙Number ?bk: Bank˙Name ?m: Money

[Is˙Cheque˙Acc(from˙acc) and Is˙Cheque˙Acc(to˙acc)];

a !so˙create !from˙acc !to˙acc !bk !m

?so˙number: SO˙Number;

t !rtn˙set˙standing˙order !id !so˙number;

exit(id)

[]

t !id !cancel˙standing˙order ?so˙number: SO˙Number;

a !so˙cancel !so˙number;

exit(id)

) >> accept id: Id˙Tellers in Counter˙Teller[t, ob, a, c](id)

endproc

endproc (* end Counter˙Tellers *)

endproc (* end Tellers *)

(*--

Each instance of Other Bank only deals with transactions referring to a given bank. Hence, the
number of objects created is equal to the number of banks we deal with.

Notice that the identifier of our bank is inserted as an element of the set of banks, when
Other Banks was called initially.

--*)

process Other˙Banks[ob, a, c](bks: Bank˙Name˙Set) : noexit :=

ob !create ?bk: Bank˙Name [bk notin bks];

(Other˙Bank[ob, a, c](bk)

———

Other˙Banks[ob, a, c](Insert(bk, bks))

)

where

process Other˙Bank[ob, a, c](bk: Bank˙Name) : noexit :=

(ob !receive˙transfer !bk ?n: Account˙Number ?m: Money;

c !deposit !n !m;

exit(bk)

[]

a !send˙transfer !bk ?n: Account˙Number ?m: Money;

(* either from counter teller or standing order *)

ob !send˙transfer !bk !n !m;

exit(bk)

[]

a !ask˙withdraw˙cheque !bk ?n: Account˙Number

68 Appendix A. LOTOS specification for the banking system

?ch: Cheque˙Number ?m: Money [Is˙Cheque˙Acc(n)];

(* from cheque *)

ob !send˙cheque˙to˙withdraw !bk !n !ch !m;

exit(bk)

[]

ob !receive˙cheque˙balance !bk ?n: Account˙Number

?ch: Cheque˙Number ?m: Money ?valid˙result: Bool;

(* confirmation of ask˙withdraw˙cheque *)

a !receive˙cheque˙balance !n !ch !m !valid˙result;

(* goes to cheque *)

exit(bk)

[]

ob !receive˙cheque˙from˙withdraw !bk ?n: Account˙Number

?ch: Cheque˙Number ?m: Money;

(* another bank asks to withdraw a cheque *)

c !withdraw !n !m;

c !rtn˙withdraw !n ?valid˙result: Bool;

ob !send˙cheque˙balance !bk !n !ch !m !valid˙result;

exit(bk)

) >> accept bk: Bank˙Name in Other˙Bank[ob, a, c](bk)

endproc

endproc (* end Other˙Banks *)

(*--

The process Financial Instruments is a composite object, and the components are the class
templates Cheque and Standing Order (see Figure 2.19). (First we model the object generators
for these two class templates.)

--*)

process Financial˙Instruments[ob, a, c] : noexit :=

(Cheques[ob, a, c]

———

Standing˙Orders[ob, a, c](–˝ of SO˙Number˙Set)

)

where

(*--

The Cheques generator does not hold the cheque identifiers, as they are provided by the outside
world.

Cheque can be specified in two different ways: first, we could use a boolean flag which, when
“true”, only allows a deposit or a withdrawal to be accepted. After a deposit or a withdrawal
occurs, the flag will be set to “false” and only state information enquiries are then allowed. One
alternative is to split the cheque process into two processes, one dealing with the active part of
the cheques (deposit and withdraw services), and other dealing with the passive part (enquiries
about the cheque state information). The latter is adopted.

As when a cheque is created it is to be used for withdrawal or deposit we opted for a solution
where we have two different parts: one created for the service withdrawal and the other for the
service deposit.

--*)

process Cheques[ob, a, c] : noexit :=

a !create˙cheque ?ch: Cheque˙Number ?bk: Bank˙Name

?from˙acc: Account˙Number ?to˙acc: Account˙Number ?m: Money;

(Cheque˙Deposit[ob, a, c](Make˙Cheque(ch, from˙acc, to˙acc, bk, m))

———

Cheques[ob, a, c]

)

69

[]

a !create˙cheque ?ch: Cheque˙Number ?bk: Bank˙Name

?n: Account˙Number ?m: Money;

(Cheque˙Withdraw[ob, a, c](Make˙Cheque(ch, n, n, bk, m))

———

Cheques[ob, a, c]

)

where

process Cheque˙Deposit[ob, a, c](this˙cheque: State˙Cheque) : noexit :=

(Cheque˙Deposit˙1[ob, a, c](this˙cheque)

>> accept upd˙cheque: State˙Cheque in

Passive˙Cheque˙Deposit[a](upd˙cheque)

)

where

process Cheque˙Deposit˙1[ob, a, c](this˙cheque: State˙Cheque) :

exit(State˙Cheque) :=

c !perhaps˙deposit !Get˙Acc˙To(this˙cheque)

!Get˙Amount(this˙cheque);

([Get˙Bank(this˙cheque) eq This˙Bank] ->

(c !withdraw !Get˙Acc˙From(this˙cheque)

!Get˙Amount(this˙cheque);

c !rtn˙withdraw !Get˙Acc˙From(this˙cheque) ?cheque˙valid: Bool;

c !full˙deposit !Get˙Acc˙To(this˙cheque)

!Get˙Amount(this˙cheque) !cheque˙valid;

exit(this˙cheque)

)

[]

[Get˙Bank(this˙cheque) ne This˙Bank] ->

(ob !ask˙withdraw˙cheque !Get˙Bank(this˙cheque)

!Get˙Acc˙From(this˙cheque)

!Get˙Cheque˙Number(this˙cheque) !Get˙Amount(this˙cheque);

(* to other banks *)

ob !receive˙cheque˙balance !Get˙Acc˙From(this˙cheque)

!Get˙Cheque˙Number(this˙cheque) !Get˙Amount(this˙cheque)

?valid˙result: Bool;

c !full˙deposit !Get˙Acc˙To(this˙cheque)

!Get˙Amount(this˙cheque) !valid˙result;

exit(this˙cheque)

)

)

endproc (* Cheque˙Deposit˙1 *)

process Passive˙Cheque˙Deposit[a](this˙cheque: State˙Cheque) : noexit :=

(a !enquire˙cheque !Get˙Cheque˙Number(this˙cheque) !this˙cheque;

exit(this˙cheque) (* cheque state information *)

) >> accept upd˙cheque: State˙Cheque in

Passive˙Cheque˙Deposit[a](upd˙cheque)

endproc (* Passive˙Cheque˙Deposit *)

endproc (* Cheque˙Deposit *)

(*--

As a deposit cheque service can take several days to be accomplished (it may be necessary to ask
another bank if the account corresponding to the cheque has funds) we have a perhaps deposit

event. A perhaps deposit event adds to the pending balance the amount to be deposited, and
only when we know that the cheque has funds do we credit the account, by doing a full deposit.

70 Appendix A. LOTOS specification for the banking system

Notice that we cannot access the passive part of cheque until the “active” part of cheque is
finished. This sequentiality is introduced by the enable operator “>>”.

The same scheme is followed when the account corresponding to a cheque to withdraw money
belongs to the same bank as the one where it is issued.

--*)

process Cheque˙Withdraw[ob, a, c](this˙cheque: State˙Cheque) : noexit :=

(Cheque˙Withdraw˙1[ob, a, c](this˙cheque)

>> accept upd˙cheque: State˙Cheque in

Passive˙Cheque˙Withdraw[a](upd˙cheque)

)

where

process Cheque˙Withdraw˙1[ob, a, c](this˙cheque: State˙Cheque) :

exit(State˙Cheque) :=

c !withdraw !Get˙Acc˙From(this˙cheque) !Get˙Amount(this˙cheque);

c !rtn˙withdraw !Get˙Acc˙From(this˙cheque) ?cheque˙valid: Bool;

ob !cheque˙debited !Get˙Cheque˙Number(this˙cheque)

!Get˙Bank(this˙cheque) !Get˙Acc˙From(this˙cheque)

!cheque˙valid;

exit(this˙cheque)

endproc (* Cheque˙Withdraw˙1 *)

process Passive˙Cheque˙Withdraw[a](this˙cheque: State˙Cheque) : noexit :=

(a !enquire˙cheque !Get˙Cheque˙Number(this˙cheque) !this˙cheque;

exit(this˙cheque) (* cheque state information *)

) >> accept upd˙cheque: State˙Cheque in

Passive˙Cheque˙Withdraw[a](upd˙cheque)

endproc (* Passive˙Cheque˙Withdraw *)

endproc (* Cheque˙Withdraw *)

endproc (* Cheques *)

(*--

The main service in Standing Order is to withdraw a certain amount from the client account and
eventually to deposit the same amount in another account, or to send a transfer to another bank.

Because this service must be accomplished on fixed days, it is defined as an internal event,
initiated by the internal event appropriate date.

Once more, a standing order number needs to be generated before the object is created. This
is accomplished by:

a !so˙create ?n1: Account˙Number ?n2: Account˙Number

?bk: Bank˙Name ?m: Money ?so˙counter: SO˙Number [so˙counter notin sos]

This creates a new standing order with a new number together with the information received from
a counter teller.

--*)

process Standing˙Orders[ob, a, c](sos: SO˙Number˙Set) : noexit :=

a !so˙create ?n1: Account˙Number ?n2: Account˙Number

?bk: Bank˙Name ?m: Money ?so˙counter: SO˙Number [so˙counter notin sos];

(Standing˙Order[ob, a, c](Make˙SO(so˙counter, n1, n2, bk, m))

———

Standing˙Orders[ob, a, c](Insert(so˙counter, sos))

)

where

process Standing˙Order[ob, a, c](this˙so: State˙Standing˙Order) : noexit :=

(a !so˙cancel !Get˙SO˙Number(this˙so); stop

[]

(hide appropriate˙date in

71

(appropriate˙date;

c !withdraw !Get˙Paying˙Client(this˙so)

!Get˙Payable˙Amount(this˙so);

c !rtn˙withdraw !Get˙Paying˙Client(this˙so) ?has˙funds: Bool;

([has˙funds] ->

([Get˙Bank˙Name(this˙so) eq This˙Bank] ->

(c !deposit !Get˙Receiving˙Client(this˙so)

!Get˙Payable˙Amount(this˙so);

exit(this˙so)

)

[]

[Get˙Bank˙Name(this˙so) ne This˙Bank] ->

(ob !send˙transfer !Get˙Bank˙Name(this˙so)

!Get˙Receiving˙Client(this˙so)

!Get˙Payable˙Amount(this˙so);

exit(this˙so)

)

)

[]

[not(has˙funds)] -> exit(this˙so) (* error condition *)

)

)

)

) >> accept upd˙so: State˙Standing˙Order in

Standing˙Order[ob, a, c](upd˙so)

endproc

endproc (* end Standing˙Order *)

endproc (* end Financial˙Instruments *)

(*--

As we can see, looking at Figure 2.17, Savings Account and Cheque Account are inherited sub-
classes of the superclass Account. The processes Savings Account and Cheque Account are pure
extensions of the superclass Superclass Account.

The choice operator, choice, allows us to introduce non-determinism.

--*)

process Account[c](this˙account: State˙Account): exit(State˙Account) :=

c !deposit !Get˙Account˙Number(this˙account) ?m: Money;

exit(Credit˙Account(this˙account, m))

[]

c !withdraw !Get˙Account˙Number(this˙Account) ?m: Money;

(choice if˙money: Bool []

[if˙money] -> c !rtn˙withdraw !Get˙Account˙Number(this˙account) !true;

exit(Debit˙Account(this˙account, m))

[]

[not (if˙money)] -> c !rtn˙withdraw

!Get˙Account˙Number(this˙account) !false;

exit(this˙account)

)

[]

c !balance !Get˙Account˙Number(this˙account)

!Get˙Balance(this˙account);

exit(this˙account)

[]

c !perhaps˙deposit !Get˙Account˙Number(this˙account) ?m: Money;

exit(Credit˙Pending(this˙account, m))

[]

c !full˙deposit !Get˙Account˙Number(this˙account) ?m: Money ?valid: Bool;

72 Appendix A. LOTOS specification for the banking system

([valid] -> exit(Add˙Credit˙Pending(this˙account, m))

[]

[not (valid)] -> exit(Sub˙Credit˙Pending(this˙account, m))

)

endproc

(*--

Several programming languages, such as Eiffel, offer a create service for each subclass. In a first
approach we thought we could define it in the superclass and then let it be inherited for each
subclass. However, when the abstract data types were introduced we realised that this solution
would not work.

We want account numbers of both types of accounts to belong to the same sort. The solution
is, as for the identifiers of automatic tellers and counter tellers, to share a set of values in which
each kind of account would deal with different ranges of values. With this option, the simplest
way to specify the create service, and then deal with the resulting value is to define create in the
process that generates the instances of each subclass.

If we had decided to define two sorts of account numbers, one for each kind of account, inher-
itance would be difficult to specify.

In order to protect each account from being accessed by more than one process at a time while
allowing different accounts to be accessed concurrently, semaphores, monitors, or another kind of
data protection techniques can be used. The way we specify the accounts (where each account is
a process by itself), does not require the extra information for data protection. Due to the nature
of LOTOS, it is not difficult to specify the system as a set of concurrent objects (which is one of
the goals of the object-oriented view), giving us for free the data protection we require.

--*)

process Bank˙Account[c] : noexit :=

(Savings˙Accounts[c](–˝ of Account˙Number˙Set)

———

Cheque˙Accounts[c](–˝ of Account˙Number˙Set)

)

where

(*--

The behaviour expression

Savings˙Accounts[c](–˝ of Account˙Number˙Set)

represents a process that encapsulates a set of processes each of which encapsulates a savings
account. (The same for Cheque Accounts). It gives us a parallel solution, where each account is a
process. However we could have chosen Savings Accounts to encapsulate a set of accounts, and
this would be a sequential solution. From the outside point of view, we can replace one solution
by the other without any side effect.

--*)

process Savings˙Accounts[c](accs: Account˙Number˙Set) : noexit :=

c !create !saving ?acc˙counter: Account˙Number

[(acc˙counter notin accs) and Is˙Savings˙Acc(acc˙counter)];

(Savings˙Account[c](Make˙Account(acc˙counter, Some˙Balance),

This˙Prd, This˙Inter)

———

Savings˙Accounts[c](Insert(acc˙counter, accs))

)

where

process Savings˙Account[c](this˙account: State˙Account,

prd: Period, int˙rate: Interest) : noexit :=

(hide credit˙interest, update˙date in

((Account[c](this˙account)

73

>> accept upd˙account: State˙Account in

exit(upd˙account, prd, int˙rate)

)

[]

credit˙interest;

exit(Credit˙Interest(this˙account, This˙Mon), prd, int˙rate)

[]

update˙date;

exit(this˙account, Update˙Date(prd), int˙rate)

[]

c !remove !Get˙Account˙Number(this˙account); stop

)

) >> accept upd˙account: State˙Account,

upd˙prd: Period, upd˙int˙rate: Interest in

Savings˙Account[c](upd˙account, upd˙prd, upd˙int˙rate)

endproc

endproc

(*--

New account numbers are given by using value generation. The behaviour expression

c !create !saving ?acc˙counter: Account˙Number

[(acc˙counter notin accs) and Is˙Savings˙Acc(acc˙counter)];

generates the value acc counter and passes it as the new account number when it synchronises
with Counter Teller in the behaviour expression

c !create !ta ?n: Account˙Number;

--*)

process Cheque˙Accounts[c](accs: Account˙Number˙Set): noexit :=

c !create !chequing ?acc˙counter: Account˙Number

[(acc˙counter notin accs) and Is˙Cheque˙Acc(acc˙counter)];

(Cheque˙Account[c](Make˙Account(acc˙counter, Some˙Balance),

–˝ of Card˙Number˙Set, –˝ of SO˙Number˙Set)

———

Cheque˙Accounts[c](Insert(acc˙counter,accs))

)

where

process Cheque˙Account[c](this˙account: State˙Account,

cards: Card˙Number˙Set, sos: SO˙Number˙Set) : noexit :=

((Account[c](this˙account)

>> accept upd˙account: State˙Account in

exit(upd˙account, cards, sos)

)

[]

c !set˙mini˙statement !Get˙Account˙Number(this˙account)

!this˙account;

exit(this˙account, cards, sos)

[]

c !remove !Get˙Account˙Number(this˙account); stop

) >> accept upd˙account: State˙Account, upd˙cards: Card˙Number˙Set,

upd˙sos: SO˙Number˙Set in

Cheque˙Account[c](upd˙account, upd˙cards, upd˙sos)

endproc

endproc

endproc (* end Bank˙Account *)

(*--

74 Appendix A. LOTOS specification for the banking system

The two parameters cards and sos correspond to the relationships between Cheque Account and
Card and between Cheque Account and Standing Order.

The class templates client and card in the object model depicted in Figure 2.17 play a minor
role in our system. This situation could be changed if the behaviour of the system was extended to
incorporate other properties. In the present solution, both class templates are defined as abstract
data types. The record of the clients and the correspondant cards, are kept in a set of clients and
a set of cards. A new element in each set is inserted when a new account is created (with the
necessary checks to see if the client already exists).

Validation

Interface scenarios are important to help the validation of the specification. The Interface

Scenario process acts as a management process which creates the automatic tellers, counter
tellers and other banks objects before making use of their services.

We are using value generation in order to work with symbols instead of values. The SMILE
simulator [6] allows symbolic execution of a specification where a set of possible values is used
rather than particular values. Many more behaviours can then be examined with each simulation
than is possible when all data values have to be instantiated. SMILE uses a narrowing algorithm
to determine when a combination of conditions can never be true.

In Interface Scenario the automatic tellers, counter tellers and accounts are created by value
generation. Thus, the result is a symbol in the set defined for each of those objects.

--*)

process Interface˙Scenario[t, ob]: noexit :=

(* create an automatic teller and a counter teller *)

t !create ?idc: Id˙Tellers [Is˙CT(idc)];

t !create ?ida: Id˙Tellers [Is˙ATM(ida)];

(* open a chequing account from counter teller *)

t !open˙account !idc !chequing;

t !rtn˙open˙account !idc ?nc1: Account˙Number [Is˙Cheque˙Acc(nc1)];

(* open another chequing account from counter teller *)

t !open˙account !idc !chequing;

t !rtn˙open˙account !idc ?nc2: Account˙Number [Is˙Cheque˙Acc(nc2)];

(* open a saving account from counter teller *)

t !open˙account !idc !saving;

t !rtn˙open˙account !idc ?ns: Account˙Number [Is˙Savings˙Acc(ns)];

(* deposit cheque from our bank*)

t !deposit˙cheque !idc !This˙Bank !nc1 !nc2

?ch: Cheque˙Number !This˙Mon;

t !rtn˙deposit˙cheque !idc !nc2 !This˙Mon;

(* balance from automatic teller*)

t !print˙mini˙statement !ida !nc1;

t !rtn˙print !ida !nc1 ?a: State˙Account;

(* withdrawal from automatic teller *)

t !withdraw˙cash !ida !nc1 !This˙Mon;

t !rtn˙withdraw˙cash !ida ?val: Bool;

(* deposit from counter teller *)

t !deposit˙cash !idc !nc1 !This˙Mon

[Is˙Cheque˙Acc(nc1) and Is˙CT(idc)];

t !rtn˙deposit˙cash !idc !nc1 !This˙Mon;

75

(* balance from counter teller *)

t !balance !idc !ns;

t !rtn˙balance !idc !ns ?b: Balance;

(hide success in success; stop)

endproc (* Interface Scenario *)

endspec

(*--

76 Appendix A. LOTOS specification for the banking system

Appendix B

LOTOS specification for
Warehouse management system

specification Warehouse [usr]: noexit

library

Boolean, NaturalNumber, Set

endlib

type Id˙Type is Boolean, NaturalNumber

sorts Id

opns id1, id2, id3, id4, id5, id6,

id7, id8, id9, id10, id11,

id12, id13, id14, id15, id16,

id17, id18, id19, id20 : -> Id

h : Id -> Nat

˙eq˙, ˙ne˙, ˙lt˙ : Id, Id -> Bool

First˙Set : Id -> Bool

Second˙Set : Id -> Bool

Third˙Set : Id -> Bool

Fourth˙Set : Id -> Bool

eqns forall n1, n2: Id

ofsort Nat

h(id1) = 0;

h(id2) = succ(h(id1));

h(id3) = succ(h(id2));

h(id4) = succ(h(id3));

h(id5) = succ(h(id4));

h(id6) = succ(h(id5));

h(id7) = succ(h(id6));

h(id8) = succ(h(id7));

h(id9) = succ(h(id8));

h(id10) = succ(h(id9));

h(id12) = succ(h(id11));

h(id13) = succ(h(id12));

h(id14) = succ(h(id13));

h(id15) = succ(h(id14));

h(id16) = succ(h(id15));

h(id17) = succ(h(id16));

h(id18) = succ(h(id17));

h(id19) = succ(h(id18));

h(id20) = succ(h(id19));

77

78 Appendix B. LOTOS specification for Warehouse management system

ofsort Bool

n1 eq n2 = h(n1) eq h(n2);

n1 ne n2 = h(n1) ne h(n2);

n1 lt n2 = h(n1) lt h(n2);

First˙Set(n1) = h(n1) lt h(id5);

Second˙Set(n1) = not(h(n1) lt h(id5)) and (h(n1) lt h(id10));

Third˙Set(n1) = not(h(n1) lt h(id10)) and (h(n1) lt h(id15));

Fourth˙Set(n1) = not(h(n1) lt h(id15)) and (h(n1) lt h(id20));

endtype

type Set˙Id˙Type is Set actualizedby Id˙Type using

sortnames Id for Element

Bool for FBool

endtype

type Warehouse˙Id˙Type is Id˙Type

renamedby

sortnames Warehouse˙Id for Id

endtype

type Local˙Plan˙Id˙Type is Id˙Type

renamedby

sortnames Local˙Plan˙Id for Id

endtype

type Network˙Id˙Type is Id˙Type

renamedby

sortnames Network˙Id for Id

endtype

type Truck˙Id˙Type is Id˙Type

renamedby

sortnames Truck˙Id for Id

endtype

type Plan˙Id˙Type is Id˙Type

renamedby

sortnames Plan˙Id for Id

endtype

type Office˙Id˙Type is Id˙Type

renamedby

sortnames Office˙Id for Id

endtype

type Red˙Req˙Id˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Red˙Req˙Id for Id

Red˙Req˙Id˙Set for Set

endtype

type Ins˙Req˙Id˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Ins˙Req˙Id for Id

Ins˙Req˙Id˙Set for Set

endtype

type Rem˙Req˙Id˙Set˙Type is Set˙Id˙Type

79

renamedby

sortnames Rem˙Req˙Id for Id

Rem˙Req˙Id˙Set for Set

endtype

type Item˙Id˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Item˙Id for Id

Item˙Id˙Set for Set

endtype

type Item˙Type is Item˙Id˙Set˙Type, Item˙Place˙Id˙Set˙Type,

Warehouse˙Id˙Type, Boolean

sorts Item˙State

opns Make˙Item : Item˙Id, Warehouse˙Id, Item˙Place˙Id, Bool, Bool

-> Item˙State

Get˙It˙Id : Item˙State -> Item˙Id

Get˙Ware : Item˙State -> Warehouse˙Id

Get˙Place˙Id :Item˙State -> Item˙Place˙Id

Can˙Move :Item˙State -> Bool

Move : Warehouse˙Id, Item˙Place˙Id, Item˙State -> Item˙State

Mark˙m : Item˙State -> Item˙State

Mark˙r : Item˙State -> Item˙State

eqns forall it: Item˙Id, ip, nip: Item˙Place˙Id, w, nw: Warehouse˙Id,

s1, s2: Bool

ofsort Item˙Id

Get˙It˙Id(Make˙Item(it, w, ip, s1, s2)) = it;

ofsort Item˙Place˙Id

Get˙Place˙Id(Make˙Item(it, w, ip, s1, s2)) = ip;

ofsort Warehouse˙Id

Get˙Ware(Make˙Item(it, w, ip, s1, s2)) = w;

ofsort Item˙State

Move(nw, nip, Make˙Item(it, w, ip, s1, s2)) = Make˙Item(it, nw, nip, true, s2);

Mark˙m(Make˙Item(it, w, ip, s1, s2)) = Make˙Item(it, w, ip, false, s2);

Mark˙r(Make˙Item(it, w, ip, s1, s2)) = Make˙Item(it, w, ip, s1, false);

ofsort Bool

Can˙Move(Make˙Item(it, w, ip, s1, s2)) = s1 and s2;

endtype

type Item˙Place˙Id˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Item˙Place˙Id for Id

Item˙Place˙Id˙Set for Set

endtype

type Item˙Place˙Type is Item˙Place˙Id˙Set˙Type, Item˙Id˙Set˙Type, Boolean

sorts Item˙Place

opns Make˙Place : Item˙Place˙Id, Item˙Id -> Item˙Place

Get˙Place˙Id: Item˙Place -> Item˙Place˙Id

Get˙It˙Id : Item˙Place -> Item˙Id

eqns forall ip: Item˙Place˙Id, it: Item˙Id

ofsort Item˙Place˙Id

Get˙Place˙Id(Make˙Place(ip,it)) = ip;

ofsort Item˙Id

Get˙It˙Id(Make˙Place(ip,it)) = it;

endtype

type Rem˙Req˙Type is Rem˙Req˙Id˙Set˙Type, Item˙Id˙Set˙Type,

80 Appendix B. LOTOS specification for Warehouse management system

Time˙Type, Warehouse˙Id˙Type, Boolean

sorts Rem˙Req

opns Make˙Rem˙Req : Rem˙Req˙Id, Item˙Id, Warehouse˙Id, Time

-> Rem˙Req

Get˙It˙Id: Rem˙Req -> Item˙Id

Get˙Rem˙Id: Rem˙Req -> Rem˙Req˙Id

Get˙Ware: Rem˙Req -> Warehouse˙Id

Get˙Time: Rem˙Req -> Time

eqns forall ir: Rem˙Req˙Id, it: Item˙Id, dest: Warehouse˙Id, t: Time

ofsort Item˙Id

Get˙It˙Id(Make˙Rem˙Req(ir, it, dest, t)) = it;

ofsort Rem˙Req˙Id

Get˙Rem˙Id(Make˙Rem˙Req(ir, it, dest, t)) = ir;

ofsort Warehouse˙Id

Get˙Ware(Make˙Rem˙Req(ir, it, dest, t)) = dest;

ofsort Time

Get˙Time(Make˙Rem˙Req(ir, it, dest, t)) = t;

endtype

type Red˙Req˙Type is Red˙Req˙Id˙Set˙Type, Item˙Id˙Set˙Type, Boolean,

Warehouse˙Id˙Type, Time˙Type

sorts Red˙Req

opns Make˙Red˙Req : Red˙Req˙Id, Item˙Id, Warehouse˙Id,

Warehouse˙Id, Time -> Red˙Req

Get˙It˙Id: Red˙Req -> Item˙Id

Get˙Red˙Id: Red˙Req -> Red˙Req˙Id

Get˙From: Red˙Req -> Warehouse˙Id

Get˙Dest: Red˙Req -> Warehouse˙Id

Get˙Time: Red˙Req -> Time

eqns forall ir: Red˙Req˙Id, it: Item˙Id, from, dest: Warehouse˙Id, t: Time

ofsort Item˙Id

Get˙It˙Id(Make˙Red˙Req(ir, it, from, dest, t)) = it;

ofsort Red˙Req˙Id

Get˙Red˙Id(Make˙Red˙Req(ir, it, from, dest, t)) = ir;

ofsort Warehouse˙Id

Get˙From(Make˙Red˙Req(ir, it, from, dest, t)) = from;

Get˙Dest(Make˙Red˙Req(ir, it, from, dest, t)) = dest;

ofsort Time

Get˙Time(Make˙Red˙Req(ir, it, from, dest, t)) = t;

endtype

type Ins˙Req˙Type is Ins˙Req˙Id˙Set˙Type, Item˙Id˙Set˙Type, Boolean,

Warehouse˙Id˙Type, Time˙Type

sorts Ins˙Req

opns Make˙Ins˙Req : Ins˙Req˙Id, Time, Warehouse˙Id -> Ins˙Req

Get˙Ins˙Id: Ins˙Req -> Ins˙Req˙Id

Get˙Time: Ins˙Req -> Time

Get˙Ware˙Id:Ins˙Req -> Warehouse˙Id

eqns forall ir: Ins˙Req˙Id, t: Time, w: Warehouse˙Id

ofsort Ins˙Req˙Id

Get˙Ins˙Id(Make˙Ins˙Req(ir, t, w)) = ir;

ofsort Time

Get˙Time(Make˙Ins˙Req(ir, t, w)) = t;

ofsort Warehouse˙Id

Get˙Ware˙Id(Make˙Ins˙Req(ir, t, w)) = w;

endtype

type Time˙Type is

81

sorts Time

opns This˙Time: -> Time

endtype

type Events is

sorts Event

opns

create˙ins˙req, check˙expected, confirm˙inserted, rtn˙confirm˙inserted,

create, check˙item, create˙red˙req, create˙rem˙req, add˙redis˙req,

get˙trans˙req, choose˙red, request˙eta, rtn˙request˙eta, fetch˙items,

rtn˙fetch˙items, return˙space,

confirm˙loaded, get˙eta, rtn˙get˙eta, warn˙warehouse, warn˙arrival,

is˙delivered, rtn˙is˙delivered, get˙position, give˙place˙item,

insert, notify˙complete, insert˙query, rtn˙insert˙query, add˙rem˙req,

choose˙rem, remove, rm˙fetch˙items, init˙move˙item, rtn˙init˙move˙item,

fetch, init˙new˙item, rtn˙init˙new˙item, confirm˙delivered,

init˙remove˙item, rtn˙init˙remove˙item, update˙item, get˙place,

mark˙move, mark˙remove, reserve˙space, rtn˙reserve˙space

: -> Event

endtype

behaviour

(hide req1, req2, usr1, usr2, usr3 in

((hide it1, to˙n, from˙n in

(Office˙Interf[usr3, req2, it1, to˙n, from˙n](id1 of Office˙Id)

———

Warehouse[usr1, req1, req2, it1, to˙n, from˙n](id1 of Warehouse˙id)

———

Warehouse[usr1, req1, req2, it1, to˙n, from˙n](id2 of Warehouse˙id)

)

—[it1, to˙n, from˙n]—

(Items[it1](–˝ of Item˙Id˙Set) ——— Network[to˙n, from˙n](id6 of Network˙Id))

)

—[req1, req2]—

(hide p1, p2, tr˙r in

Request[req1, req2, p1, p2, tr˙r]

—[p1, p2, tr˙r]—

(hide p˙tr in

Truck˙Interf[usr2, tr˙r, p˙tr](id1 of Truck˙Id)

—[p˙tr]—

Planning[p1, p2, p˙tr](id1 of Plan˙Id, –˝ of Red˙Req˙Id˙Set,

–˝ of Rem˙Req˙Id˙Set)

)

)

)

—[usr1, usr2, usr3]—

Interface˙Scenario[usr1, usr2, usr3])

where

process Warehouse[usr1, req1, req2, it1, to˙n, from˙n](wid: Warehouse˙id) : noexit :=

hide wp, w˙lp in

Warehouse˙Interf[usr1, req1, req2, it1, wp, w˙lp, to˙n, from˙n](wid)

—[wp, w˙lp]—

(Places[wp]

———

Local˙Plan[w˙lp](id14 of Local˙Plan˙Id,

Insert(id7, Insert(id8, Insert(id9, –˝ of Item˙Place˙Id˙Set))))

82 Appendix B. LOTOS specification for Warehouse management system

)

where

process Warehouse˙Interf[usr1, req1, req2, it1, wp, w˙lp, to˙n, from˙n]

(wid: Warehouse˙id) : noexit :=

(usr1 !insert˙query !wid ?ir:Ins˙Req˙Id ?t:Time;

req2 !check˙expected !ir ?ok:Bool !wid !t;

usr1 !rtn˙insert˙query !wid !ok !ir;

([ok] ->

w˙lp !get˙position ?lp˙id: Local˙Plan˙Id ?ip:Item˙Place˙Id;

it1 !create ?it: Item˙id !wid !ip;

wp !insert !ip !it;

usr1 !give˙place˙item !wid !it !ip;

exit(wid)

[]

[not(ok)] ->

exit(wid)

)

[]

usr1 !init˙move˙item !wid ?it: Item˙Id ?t:Time ?dest: Warehouse˙Id;

it1 !check˙item !it ?ok:Bool ?w: Warehouse˙Id;

([not(ok)] -> usr1 !rtn˙init˙move˙item !wid !ok;

exit(wid)

[]

[ok] -> ([w ne dest] ->

to˙n !reserve˙space ?net:Network˙Id !dest;

to˙n !rtn˙reserve˙space !net !dest ?is˙space:Bool;

([is˙space] ->

req2 !create˙red˙req ?id: Red˙Req˙Id !it !w !dest !t;

it1 !mark˙move !it;

usr1 !rtn˙init˙move˙item !wid !true;

exit(wid)

[]

[not(is˙space)] ->

usr1 !rtn˙init˙move˙item !wid !false;

exit(wid)

)

[]

[w eq dest] ->

usr1 !rtn˙init˙move˙item !wid !false;

exit(wid)

)

)

[]

req1 !rm˙fetch˙items !wid ?it:Item˙Id ?t: Time;

it1 !get˙place !it ?plac: Item˙Place˙Id;

usr1 !fetch !wid !it !plac;

wp !remove !plac !it;

it1 !remove !it !plac;

w˙lp !return˙space ?lp˙id: Local˙Plan˙Id;

exit(wid)

[]

req1 !fetch˙items !wid ?it:Item˙Id ?t: Time;

it1 !get˙place !it ?plac: Item˙Place˙Id;

usr1 !fetch !wid !it !plac;

wp !remove !plac !it;

w˙lp !return˙space ?lp˙id: Local˙Plan˙Id;

exit(wid)

83

[]

req1 !warn˙warehouse !wid ?t: Time;

usr1 !warn˙arrival !wid !t;

exit(wid)

[]

req1 !confirm˙inserted !wid ?it:Item˙Id;

w˙lp !get˙position ?lp˙id: Local˙Plan˙Id ?ip:Item˙Place˙Id;

wp !insert !ip !it;

it1 !update˙item !it !wid !ip;

usr1 !give˙place˙item !wid !it !ip;

req1 !rtn˙confirm˙inserted !wid;

exit(wid)

[]

from˙n !reserve˙space !wid ?net:Network˙Id;

w˙lp !reserve˙space ?lp˙id: Local˙Plan˙Id ?ok:Bool;

from˙n !rtn˙reserve˙space !wid !net !ok;

exit(wid)

) >> accept id: Warehouse˙Id

in Warehouse˙Interf[usr1, req1, req2, it1, wp, w˙lp, to˙n, from˙n](id)

endproc

process Places[wp] : noexit :=

wp !insert ?ip: Item˙Place˙Id ?it: Item˙Id;

(Place[wp](Make˙Place(ip, it))

———

Places[wp]

)

where

process Place[wp] (this˙itpl: Item˙Place) : noexit :=

wp !remove !Get˙Place˙Id(this˙itpl) !Get˙It˙Id(this˙itpl);

stop

endproc (*Place *)

endproc (*Places *)

process Local˙Plan[w˙lp](l˙plan˙id: Local˙Plan˙id,

ids: Item˙Place˙Id˙Set) : noexit :=

w˙lp !get˙position !l˙plan˙id ?ip: Item˙Place˙Id [ip isin ids];

Local˙Plan[w˙lp](l˙plan˙id, ids)

[]

w˙lp !reserve˙space !l˙plan˙id ?ok: Bool;

Local˙Plan[w˙lp](l˙plan˙id, ids)

[]

w˙lp !return˙space !l˙plan˙id;

Local˙Plan[w˙lp](l˙plan˙id, ids)

endproc (*Local˙Plan*)

endproc (*Warehouse*)

process Items[it1](ids: Item˙Id˙Set) : noexit :=

it1 !create ?id: Item˙Id ?w: Warehouse˙Id ?ip: Item˙Place˙Id

[(id notin ids)];

(Item[it1](Make˙Item(id, w, ip, true, true))

———

Items[it1](Insert(id, ids))

)

[]

it1 !check˙item ?id: Item˙Id !false ?w: Warehouse˙Id [(id notin ids)];

84 Appendix B. LOTOS specification for Warehouse management system

Items[it1](ids)

where

process Item[it1](it: Item˙State) : noexit :=

it1 !check˙item !Get˙It˙Id(it) !Can˙Move(it) !Get˙Ware(it);

Item[it1](it)

[]

it1 !update˙item !Get˙It˙Id(it) ?w: Warehouse˙Id ?ip: Item˙Place˙Id;

Item[it1](Move(w, ip, it))

[]

it1 !get˙place !Get˙It˙Id(it) !Get˙Place˙Id(it);

Item[it1](it)

[]

it1 !mark˙move !Get˙It˙Id(it);

Item[it1](Mark˙m(it))

[]

it1 !mark˙remove !Get˙It˙Id(it);

Item[it1](Mark˙r(it))

[]

it1 !remove !Get˙It˙Id(it) !Get˙Ware(it) !Get˙Place˙Id(it);

stop

endproc (* Item *)

endproc (* Items *)

process Office˙Interf[usr3, req2, it1, to˙n, from˙n](oid: Office˙Id) : noexit :=

(usr3 !init˙remove˙item !oid ?it:Item˙Id ?t: Time ?wh: Warehouse˙Id;

it1 !check˙item !it ?ok:Bool ?w: Warehouse˙Id;

([not(ok)] -> usr3 !rtn˙init˙remove˙item !oid !ok;

exit(oid)

[]

[ok] -> ([w ne wh] ->

req2 !create˙red˙req ?id: Red˙Req˙Id !it !w !wh !t;

it1 !mark˙move !it;

req2 !create˙rem˙req ?id: Rem˙Req˙Id !it !w !t;

it1 !mark˙remove !it;

usr3 !rtn˙init˙remove˙item !oid !ok;

exit(oid)

[]

[w eq wh] ->

req2 !create˙rem˙req ?id: Rem˙Req˙Id !it !w !t;

it1 !mark˙remove !it;

usr3 !rtn˙init˙remove˙item !oid !ok;

exit(oid)

)

)

[]

usr3 !init˙new˙item !oid ?t: Time ?w: Warehouse˙Id;

to˙n !reserve˙space ?net:Network˙Id !w;

to˙n !rtn˙reserve˙space !net !w ?is˙space:Bool;

([is˙space] ->

req2 !create˙ins˙req ?id: Ins˙Req˙Id !t !w;

usr3 !rtn˙init˙new˙item !oid !id !true;

exit(oid)

[]

[not(is˙space)] ->

usr3 !rtn˙init˙new˙item !oid ?id: Ins˙Req˙Id !false;

85

exit(oid)

)

) >> accept oid: Office˙Id in Office˙Interf[usr3, req2, it1, to˙n, from˙n](oid)

endproc

process Truck˙Interf[usr2, tr˙r, p˙tr](id: Truck˙Id) : noexit :=

(usr2 !get˙trans˙req !id;

p˙tr !get˙trans˙req ?pl: Plan˙Id !id;

exit(id)

[]

tr˙r !request˙eta !id ?w: Warehouse˙Id ?it:Item˙Id;

usr2 !get˙eta !id ?t:Time !w !it;

tr˙r !rtn˙request˙eta !id !t;

exit(id)

[]

tr˙r !is˙delivered !id ?it: Item˙Id ?w: Warehouse˙Id;

usr2 !confirm˙delivered !id !it !w;

tr˙r !rtn˙is˙delivered !id;

exit(id)

) >> accept id: Truck˙Id in Truck˙Interf[usr2, tr˙r, p˙tr](id)

endproc (*Truck˙Interf*)

process Network[to˙n, from˙n](id: Network˙Id) : noexit :=

to˙n !reserve˙space !id ?dest: Warehouse˙Id;

from˙n !reserve˙space !dest !id;

from˙n !rtn˙reserve˙space !dest !id ?ok:Bool;

to˙n !rtn˙reserve˙space !id !dest !ok;

Network[to˙n, from˙n](id)

endproc (*Network*)

process Request[req1, req2, p1, p2, tr˙r] : noexit :=

Redis˙Requests[req1, req2, p1, p2, tr˙r](–˝ of Red˙Req˙Id˙Set)

———

Insert˙Requests[req2](–˝ of Ins˙Req˙Id˙Set)

———

Remove˙Requests[req1, req2, p1, p2](–˝ of Rem˙Req˙Id˙Set)

where

process Redis˙Requests[req1, req2, p1, p2, tr˙r](ids: Red˙Req˙Id˙Set)

: noexit :=

req2 !create˙red˙req ?id: Red˙Req˙Id ?it: Item˙Id

?source: Warehouse˙Id ?dest: Warehouse˙Id

?t:Time [(id notin ids)];

p2 !add˙redis˙req ?p: Plan˙Id !id;

(Redis˙Request[req1, req2, p1, p2, tr˙r]

(Make˙Red˙Req(id, it, source, dest, t))

———

Redis˙Requests[req1, req2, p1, p2, tr˙r](Insert(id, ids))

)

where

process Redis˙Request[req1, req2, p1, p2, tr˙r](red: Red˙Req)

: noexit :=

p1 !choose˙red !Get˙Red˙Id(red) ?tr˙id: Truck˙id;

tr˙r !request˙eta !tr˙id !Get˙From(red) !Get˙It˙Id(red);

tr˙r !rtn˙request˙eta !tr˙id ?t:Time;

86 Appendix B. LOTOS specification for Warehouse management system

req1 !fetch˙items !Get˙From(red) !Get˙It˙Id(red) !t;

tr˙r !request˙eta !tr˙id !Get˙Dest(red) !Get˙It˙Id(red);

tr˙r !rtn˙request˙eta !tr˙id ?t:Time;

req1 !warn˙warehouse !Get˙Dest(red) !t;

tr˙r !is˙delivered !tr˙id !Get˙It˙Id(red) !Get˙Dest(red);

tr˙r !rtn˙is˙delivered !tr˙id;

req1 !confirm˙inserted !Get˙Dest(red) !Get˙It˙Id(red);

req1 !rtn˙confirm˙inserted !Get˙Dest(red);

stop

endproc (*Redis˙Request*)

endproc (*Redis˙Requests*)

process Insert˙Requests[req2](ids: Ins˙Req˙Id˙Set)

: noexit :=

req2 !create˙ins˙req ?ins˙qid: Ins˙Req˙Id

?t:Time ?w:Warehouse˙Id [(ins˙qid notin ids)];

(Insert˙Request[req2](Make˙Ins˙Req(ins˙qid, t, w))

———

Insert˙Requests[req2](Insert(ins˙qid, ids))

)

[]

req2 !check˙expected ?ins˙qid:Ins˙Req˙Id !false ?w: Warehouse˙Id

?t: Time [(ins˙qid notin ids)];

Insert˙Requests[req2](ids)

where

process Insert˙Request[req2](ins: Ins˙Req) : noexit :=

req2 !check˙expected !Get˙Ins˙Id(ins) !true !Get˙Ware˙Id(ins) !Get˙Time(ins);

stop

endproc (*Insert˙Request*)

endproc (*Insert˙Requests*)

process Remove˙Requests[req1, req2, p1, p2](ids: Rem˙Req˙Id˙Set)

: noexit :=

req2 !create˙rem˙req ?id: Rem˙Req˙Id ?it:Item˙Id ?w: Warehouse˙Id

?t: Time [(id notin ids)];

p2 !add˙rem˙req ?p:Plan˙Id !id;

(Remove˙Request[req1, req2, p1, p2](Make˙Rem˙Req(id, it, w, t))

———

Remove˙Requests[req1, req2, p1, p2](Insert(id, ids))

)

where

process Remove˙Request[req1, req2, p1, p2](rm: Rem˙Req)

: noexit :=

p1 !choose˙rem !Get˙Rem˙Id(rm);

req1 !rm˙fetch˙items !Get˙Ware(rm) !Get˙It˙Id(rm) !Get˙Time(rm);

stop

endproc (*Remove˙Request*)

endproc (*Redis˙Requests*)

endproc (*Request*)

87

process Planning[p1, p2, p˙tr](p: Plan˙Id, red˙ids: Red˙Req˙Id˙Set,

rem˙ids: Rem˙Req˙Id˙Set) : noexit :=

[red˙ids ne –˝] ->

p˙tr !get˙trans˙req !p ?tr˙id: Truck˙Id;

p1 !choose˙red ?red: Red˙Req˙Id !tr˙id;

Planning[p1, p2, p˙tr](p, Remove(red, red˙ids), rem˙ids)

[]

[rem˙ids ne –˝] ->

(hide removal˙time in removal˙time;

p1 !choose˙rem ?rem: Rem˙Req˙Id;

Planning[p1, p2, p˙tr](p, red˙ids, Remove(rem, rem˙ids))

)

[]

p2 !add˙rem˙req !p ?rem: Rem˙Req˙Id;

Planning[p1, p2, p˙tr](p, red˙ids, Insert(rem, rem˙ids))

[]

p2 !add˙redis˙req !p ?red: Red˙Req˙Id;

Planning[p1, p2, p˙tr](p, Insert(red, red˙ids), rem˙ids)

endproc

process Interface˙Scenario[usr1, usr2, usr3] : noexit :=

(* Initialize the system *)

usr3 !init˙new˙item ?oid:Office˙Id !This˙Time ?w: Warehouse˙Id;

usr3 !rtn˙init˙new˙item !oid ?ins˙req˙id: Ins˙Req˙Id !true;

usr1 !insert˙query !w !ins˙req˙id !This˙Time;

usr1 !rtn˙insert˙query !w !true !ins˙req˙id;

usr1 !give˙place˙item !w ?it˙id: Item˙Id ?ip: Item˙Place˙Id;

usr1 !init˙move˙item !w !it˙id !This˙Time ?w2: Warehouse˙Id [w ne w2];

usr1 !rtn˙init˙move˙item !w !true;

usr2 !get˙trans˙req ?tr˙id: Truck˙Id;

usr2 !get˙eta !tr˙id !This˙Time ?wh: Warehouse˙Id ?it1˙id: Item˙Id;

usr1 !fetch !wh ?it2˙id: Item˙Id ?pl˙id: Item˙Place˙Id;

usr2 !get˙eta !tr˙id !This˙Time ?wh2: Warehouse˙Id !it1˙id;

usr1 !warn˙arrival !w2 ?t: Time;

usr2 !confirm˙delivered !tr˙id !it1˙id !wh2;

usr1 !give˙place˙item !w2 ?it2˙id: Item˙Id ?ip2: Item˙Place˙Id;

usr3 !init˙remove˙item !oid !it˙id !This˙Time !w2;

usr3 !rtn˙init˙remove˙item !oid !true;

usr1 !fetch !w2 ?it3˙id: Item˙Id ?pl2˙id: Item˙Place˙Id;

(hide success in success; stop)

endproc (* Interface˙Scenario *)

endspec

(*--

88 Appendix B. LOTOS specification for Warehouse management system

Appendix C

LOTOS specification for the car
rental system

specification My˙Rental˙System : noexit

library

NaturalNumber, Boolean, Set

endlib

type Id˙Type is Boolean, NaturalNumber

sorts Id

opns id1, id2, id3 : -> Id

h : Id -> Nat

˙eq˙, ˙ne˙, ˙lt˙ : Id, Id -> Bool

eqns forall n1, n2: Id

ofsort Nat

h(id1) = 0;

h(id2) = succ(h(id1));

h(id3) = succ(h(id2));

ofsort Bool

n1 eq n2 = h(n1) eq h(n2);

n1 ne n2 = h(n1) ne h(n2);

n1 lt n2 = h(n1) lt h(n2);

endtype

type Set˙Id˙Type is Set actualizedby Id˙Type using

sortnames Id for Element

Bool for FBool

endtype

type Desk˙Id˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Desk˙Id for Id

Desk˙Id˙Set for Set

endtype

type Initialization˙Id˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Initialization˙Id for Id

Initialization˙Id˙Set for Set

endtype

type Reservation˙Id˙Set˙Type is Set˙Id˙Type

89

90 Appendix C. LOTOS specification for the car rental system

renamedby

sortnames Reservation˙Id for Id

Reservation˙Id˙Set for Set

endtype

type Contract˙Id˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Contract˙Id for Id

Contract˙Id˙Set for Set

endtype

type Account˙Id˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Account˙Id for Id

Account˙Id˙Set for Set

endtype

type Payment˙Id˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Payment˙Id for Id

Payment˙Id˙Set for Set

endtype

type Client˙Id˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Client˙Id for Id

Client˙Id˙Set for Set

endtype

type Car˙Id˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Car˙Id for Id

Car˙Id˙Set for Set

endtype

type Price˙Class˙Id˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Price˙Class˙Id for Id

Price˙Class˙Id˙Set for Set

endtype

type Branch˙Id˙Set˙Type is Set˙Id˙Type

renamedby

sortnames Branch˙Id for Id

Branch˙Id˙Set for Set

endtype

type Availability˙Type is Boolean, NaturalNumber

sorts Availability

opns free, reserved, contracted : -> Availability

h : Availability -> Nat

˙eq˙, ˙ne˙, ˙lt˙ : Availability, Availability -> Bool

eqns forall n1, n2: Availability

ofsort Nat

h(free) = 0;

h(reserved) = succ(h(free));

h(contracted) = succ(h(reserved));

ofsort Bool

91

n1 eq n2 = h(n1) eq h(n2);

n1 ne n2 = h(n1) ne h(n2);

n1 lt n2 = h(n1) lt h(n2);

endtype

type Mileage˙Type is

sorts Mileage

opns Some˙Mileage : -> Mileage

endtype

type Car˙Type is Car˙Id˙Set˙Type, Availability˙Type, Mileage˙Type

sorts State˙Car

opns

Make˙Car : Car˙Id, Availability, Mileage -> State˙Car

Change˙State : State˙Car, Availability -> State˙Car

Get˙Mileage : State˙Car -> Mileage

Get˙Car˙Id : State˙Car -> Car˙Id

eqns forall c: State˙Car, n: Car˙Id, v: Availability, m: Mileage

ofsort Car˙Id

Get˙Car˙Id(Make˙Car(n,v,m)) = n;

Get˙Car˙Id(Change˙State(c,v)) = Get˙Car˙Id(c);

ofsort Mileage

Get˙Mileage(c) = Some˙Mileage;

endtype

type State˙R˙Type is Boolean, NaturalNumber

sorts State˙R

opns ongoing, cancelled, paid, complete : -> State˙R

endtype

type Money˙Type is

sorts Money

opns Zero, Some˙Amount : -> Money

endtype

type Reservation˙Type is Reservation˙Id˙Set˙Type, State˙R˙Type,

Money˙Type, Boolean

sorts State˙Reservation

opns

Make˙Reservation : Reservation˙Id, State˙R, Money -> State˙Reservation

Change˙State : State˙Reservation, State˙R -> State˙Reservation

Pay˙Deposit : State˙Reservation, Money -> State˙Reservation

Get˙Amount : State˙Reservation -> Money

Exits˙Reservation : State˙Reservation -> Bool

Get˙Reservation˙Id : State˙Reservation -> Reservation˙Id

eqns forall r: State˙Reservation, n: Reservation˙Id, s: State˙R, a: Money

ofsort Reservation˙Id

Get˙Reservation˙Id(Make˙Reservation(n,s,a)) = n;

Get˙Reservation˙Id(Change˙State(r,s)) = Get˙Reservation˙Id(r);

Get˙Reservation˙Id(Pay˙Deposit(r,a)) = Get˙Reservation˙Id(r);

ofsort Bool

Exits˙Reservation(r) = True;

ofsort Money

Get˙Amount(r) = Some˙Amount;

endtype

type State˙C˙Type is Boolean, NaturalNumber

sorts State˙C

92 Appendix C. LOTOS specification for the car rental system

opns ongoing, complete : -> State˙C

endtype

type Contract˙Type is Contract˙Id˙Set˙Type, State˙C˙Type

sorts State˙Contract

opns

Make˙Contract : Contract˙Id, State˙C -> State˙Contract

Change˙State : State˙Contract, State˙C -> State˙Contract

Get˙Contract˙Id : State˙Contract -> Contract˙Id

eqns forall c: State˙Contract, n: Contract˙Id, s: State˙C

ofsort Contract˙Id

Get˙Contract˙Id(Make˙Contract(n,s)) = n;

Get˙Contract˙Id(Change˙State(c,s)) = Get˙Contract˙Id(c);

endtype

type Account˙Type is Account˙Id˙Set˙Type, Money˙Type

sorts State˙Account

opns

Make˙Account : Account˙Id, Money -> State˙Account

Add : State˙Account, Money -> State˙Account

Get˙Amount : State˙Account -> Money

Get˙Account˙Id : State˙Account -> Account˙Id

eqns forall a: State˙Account, n: Account˙Id, m: Money

ofsort Account˙Id

Get˙Account˙Id(Make˙Account(n,m)) = n;

Get˙Account˙Id(Add(a,m)) = Get˙Account˙Id(a);

ofsort Money

Get˙Amount(a) = Some˙Amount;

endtype

type Payment˙Type is Payment˙Id˙Set˙Type, Money˙Type

sorts State˙Payment

opns

Make˙Payment : Payment˙Id, Money -> State˙Payment

Add : State˙Payment, Money -> State˙Payment

Get˙Amount : State˙Payment -> Money

Get˙Payment˙Id : State˙Payment -> Payment˙Id

eqns forall a: State˙Payment, n: Payment˙Id, m: Money

ofsort Payment˙Id

Get˙Payment˙Id(Make˙Payment(n,m)) = n;

Get˙Payment˙Id(Add(a,m)) = Get˙Payment˙Id(a);

ofsort Money

Get˙Amount(a) = Some˙Amount;

endtype

type Op˙Names is

sorts Op˙Name

opns insert, add, reserve, remove, contract, completed, add˙car,

make˙reservation, rtn˙make˙reservation, cancel˙reservation,

create, rent˙car, receive˙payment, pay˙deposit, cancel,

return˙car, extra˙payment, add˙client, get˙mileage, set˙free,

get˙amount˙paid, ask˙rest˙payment, reservation˙complete,

rtn˙receive˙payment, reservation˙cancelled, get˙reservation,

rtn˙pay˙deposit : -> Op˙Name

endtype

behaviour

(* (hide d, n, c, c1, c2, r in

93

(hide a, p, cl, in

(

(Desk [d, cl, a, p, r, c]

—[cl, a, p]—

(Account[a] ——— Payment[p] ——— Costumer[cl])

)

—[r, c]—

(Reservation[r, c2] ——— Contract[c, c2])

)

—[c2]—

Car[c1,c2]

)

—[c1—]

(hide b, pc in

(Initialization[n, b, pc, c1]

—[b, pc]—

(Branch[b] ——— Price˙Class[pc])

)

)

)

—[d, n]—

Interface˙Scenario[d, n]

*)

hide d, c, c1, c2, r in

((Desk [d, r, c](id1 of Desk˙Id)

—[r, c]—

(Reservations[r, c2](–˝ of Reservation˙Id˙Set)

———

Contracts[c, c2](–˝ of Contract˙Id˙Set)

)

)

—[c1, c2]—

Cars[c1, c2](–˝ of Car˙Id˙Set)

)

—[d]—

Interface˙Scenario[d]

where

process Desk[d, r, c](id: Desk˙Id): noexit :=

(d !make˙reservation !id ?c˙id: Car˙Id;

r !create ?r˙id: Reservation˙Id !c˙id;

d !rtn˙make˙reservation !id !c˙id !r˙id;

exit (id)

[]

d !pay˙deposit !id ?r˙id: Reservation˙Id ?m: Money;

r !pay˙deposit !r˙id !m;

d !rtn˙pay˙deposit !id !r˙id;

exit(id)

[]

d !cancel˙reservation !id ?r˙id: Reservation˙Id;

r !cancel !r˙id;

exit(id)

[]

d !rent˙car !id ?r˙id: Reservation˙Id !id1 of Car˙Id;

r !get˙reservation !r˙id ?if˙res: Bool;

(*(choice if˙res: Bool [] *)

94 Appendix C. LOTOS specification for the car rental system

(

[if˙res] -> r !reservation˙complete !r˙id;

c !create ?ct: Contract˙Id;

r !get˙amount˙paid !r˙id ?m: Money;

(* add new client ?? *)

d !ask˙rest˙payment !id !m;

exit(id)

[]

[not(if˙res)] -> r !cancel !r˙id;

exit(id)

)

[]

d !receive˙payment !id ?m: Money;

d !rtn˙receive˙payment !id !m;

exit(id)

(* []

d !return˙car

exit(id)

[]

d !extra˙payment

exit(id)

[]

d !add˙client

exit(id)

*)

) >> accept id: Desk˙Id in Desk[d, r, c](id)

endproc (* Desk *)

process Reservations[r, c2](resvs: Reservation˙Id˙Set): noexit :=

(r !create ?r˙id: Reservation˙Id ?c˙id: Car˙Id [r˙id notin resvs];

(Reservation[r, c2]

(Make˙Reservation(r˙id, ongoing of State˙R, Zero of Money))

———

Reservations[r, c2](Insert(r˙id, resvs))

)

)

where

process Reservation[r, c2](this˙res: State˙Reservation): noexit :=

(r !pay˙deposit !Get˙Reservation˙Id(this˙res) ?m: Money;

exit(Change˙State(Pay˙Deposit(this˙res,m), paid))

[]

r !cancel !Get˙Reservation˙Id(this˙res);

exit(Change˙State(this˙res,cancelled))

[]

r !get˙reservation !Get˙Reservation˙Id(this˙res)

!Exits˙Reservation(this˙res);

exit(this˙res)

[]

r !get˙amount˙paid !Get˙Reservation˙Id(this˙res) !Get˙Amount(this˙res);

exit(this˙res)

[]

r !reservation˙complete !Get˙Reservation˙Id(this˙res);

exit(Change˙State(this˙res, complete of State˙R))

) >> accept this˙res: State˙Reservation in Reservation[r, c2](this˙res)

endproc (* Reservation *)

95

endproc (* Reservations *)

process Contracts[c, c2](conts: Contract˙Id˙Set): noexit :=

(c !create ?c˙id: Contract˙Id [c˙id notin conts];

(Contract[c, c2](Make˙Contract(c˙id, ongoing of State˙C))

———

Contracts[c, c2](Insert(c˙id, conts))

)

)

where

process Contract[c, c2](this˙con: State˙Contract): noexit :=

(c !completed !Get˙Contract˙Id(this˙con);

exit(Change˙State(this˙con, complete of State˙C))

) >> accept this˙con: State˙Contract in Contract[c, c2](this˙con)

endproc (* Contract *)

endproc (* Contracts *)

process Cars[c1, c2](cs: Car˙Id˙Set): noexit :=

(c1 !create ?c˙id: Car˙Id [c˙id notin cs];

(Car[c2](Make˙Car(c˙id, free of Availability, Some˙Mileage))

———

Cars[c1, c2](Insert(c˙id, cs))

)

)

where

process Car[c2](this˙car: State˙Car): noexit :=

(c2 !reserve !Get˙Car˙Id(this˙car);

exit(Change˙State(this˙car, reserved of Availability))

[]

c2 !set˙free !Get˙Car˙Id(this˙car);

exit(Change˙State(this˙car, free of Availability))

[]

c2 !contract !Get˙Car˙Id(this˙car);

exit(Change˙State(this˙car, contracted of Availability))

[]

c2 !get˙mileage !Get˙Car˙Id(this˙car) !Get˙Mileage(this˙car);

exit(this˙car)

) >> accept this˙car: State˙Car in Car[c2](this˙car)

endproc (* Car *)

endproc (* Cars *)

process Interface˙Scenario[d] : noexit :=

d !make˙reservation !id1 of Desk˙Id !id1 of Car˙Id;

d !rtn˙make˙reservation !id1 of Desk˙Id !id1 of Car˙Id

?r˙id: Reservation˙Id;

d !pay˙deposit !id1 of Desk˙Id !r˙id !Some˙Amount of Money;

d !rtn˙pay˙deposit !id1 of Desk˙Id !r˙id;

d !rent˙car !id1 of Desk˙Id !r˙id !id1 of Car˙Id;

d !ask˙rest˙payment !id1 of Desk˙Id ?m: Money;

d !receive˙payment !id1 of Desk˙Id !m;

d !rtn˙receive˙payment !id1 of Desk˙Id !m;

(hide success in success; stop)

endproc (* Interface Scenario *)

96 Appendix C. LOTOS specification for the car rental system

endspec

(*--

