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This report presents the details and conclusions of an experiment designed to assess the potential
benefits to be obtained from a particular proposal for optimizing the execution of functional pro-
grams by compile time garbage collection. The optimizations proposed comprise the compile time
insertion of code to directly re-use heap cells which are released and can be statically reallocated
immediately. The optimizations are determined by the static sharing analysis of strict, first order
functional programs using list (tree-like) data structures. The method is powerful enough to detect
many places in programs where the optimization can be applied, but the effect on the performance
of “typical” programs has not been practically assessed before. In this experiment a non-trivial
Haskell program is adapted to run as a strict, first order LML program. Re-use optimization is
performed (simple deallocation is not possible in LML as it has no free list in the heap), and the
performance of the unoptimized and optimized versions are compared. The results turn out to
be (surprisingly) disappointing: although the number of bytes allocated from the heap is reduced
by about 8% and the time for garbage collections reduces by about 15%, the cell allocation time
itself is not improved, and the garbage collection time amounts to only 10% of the total program
execution time. There is a slight improvement in the locality of memory references, reducing the
cache penalty overhead by about 3%. The total time reductions are of the order of 4.5% — which
is not encouraging.

The work reported here was carried out whilst on sabbatical leave visiting the Programming
Methodology Group, University of Göteborg and Chalmers University of Technology, Göteborg,
Sweden, March-July 1992.
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Compile time garbage collection (CTGC ) is an approach to improving the run time performance
of a program by determining statically those points in a program where dynamically allocated heap
storage cells will be released, and inserting special purpose code to deal with releasing the cells
for subsequent re-use. The aim is to reduce the execution time of a program by

recycling cells more cheaply than would be achieved by a general purpose garbage collector
(but see [App87]),

postponing garbage collections, hopefully making later ones completely unnecessary.

There are two ways of dealing with cells that have been released:

if the heap management has a free list then a released cell can simply be added to the free
list — the cost of run time checks on its accessibility (incurred by a garbage collector) are
saved, and the next garbage collection is certainly postponed;

if the release can be paired with a new allocation that will be executed in the subsequent
code, then the cell need not be added to the free list: it can simply be re-used directly —
the costs of adding to and extracting from the free list are avoided, and the next garbage
collection is certainly postponed.

For example, consider executing the LML functions for näıve reverse and append strictly :

reverse [] = []

—— reverse (x.xs) = append (reverse xs) (x.[])

append [] ys = ys

—— append (x.xs) ys = x.(append xs ys)

With the functions defined in this multiple equation, pattern matching style, it is easy to see
that in the second equation of both functions there is a cons cell matched on the left hand side
to which there is no reference on the right hand side. Thus if either function is only ever called
with an argument to which it has a unique reference, the cons cell will be released as soon as
the pattern match and structure decomposition is complete, and code could be compiled into the
pattern matching which returns the cell to the free list. Further, in both these equations, there
is a requirement on the right hand side for a new cons cell — and so the released cell can be
directly re-used rather than being returned to the free list. Whether or not these optimizations
are possible depends on the context of call: if the ‘main program’ is a call of reverse with an
unshared argument, then both equations can be optimized; but if reverse is called with a shared
argument, then append is optimizable (because its first argument is still unshared), but reverse

is not.
In [JLM89], Le Métayer and I proposed a method of CTGC for strict, first order functional

programs using nested list data structures stored as trees in the heap. Both the optimizations
mentioned above can be introduced by the method. The method is powerful enough to detect
many places in programs where the optimizations can be applied. In some cases it allows the
garbage collector to be dispensed with entirely (for example näıve reverse), but the effect on the
performance of “typical” programs has not been assessed practically before.

This report presents the details and conclusions of an experiment designed to assess the potential
practical benefits to be obtained from the CTGC proposed in [JLM89]. In this experiment

a non-trivial Haskell program was adapted to run as a strict, first order LML program (see
Section 5);

sharing analysis was carried out — this involved an exploration of various possible abstract
sharing pattern domains, since it was not initially obvious which would be the most beneficial
(see Section 6);
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re-use optimizations were introduced — simple deallocation is not possible in LML as it has
no free list in the heap (see Section 7);

and the performance of the unoptimized and optimized versions were assessed and compared
(see Sections 8, 9).

Since LML is continuously being improved, it is necessary to note that the experiments reported
here were carried out during Spring/Summer 1992. In particular, most of the optimizations were
performed on the M-code produced using the “-fstrict” compiler flag.

The reader should refer to [JLM89] for a full description of the method. The following summary
gives the main points of the techniques applied in this report:

The method is based on a sharing analysis: abstract interpretations of the program based
on sharing patterns which represent the degree of sharing of the data structures of which
they are abstractions.

For each function in a program an abstract sharing function is calculated which captures
information about the way that the sharing of the result of the function depends on the
sharing of the arguments (the transmitted sharing) and any sharing introduced within the
function (the created sharing).

The arguments of each function are augmented with sharing information about the data
carried by the parameters, and explicit heap management operations are introduced which
act on, and propagate, this sharing information.

Each augmented function is then ‘compiled’ by partially evaluating it with respect to what
is actually known about the sharing of its arguments (for example, that the main inputs to
the program are ‘unshared’). In this way, some of the heap management decisions may be
completely determined at compile time (and the partial evaluation introduces the optimized
code), and others must be delegated to the usual run time heap manager. Note that this
might lead to the introduction of multiple versions of a function — if it is specialized to
several different sharing contexts.

The method followed in the work reported here differs from [JLM89] slightly:

The functions are not augmented with additional sharing arguments and then partially
evaluated.

Instead, a collecting interpretation approach was adopted, much like that described in
[Hud87].

A global collecting interpretation of the program was performed which calculates for each
call of each function in the program the degree of sharing of each of its arguments, and
hence, by a least upper bound calculation, a safe assumption about the degree of sharing of
each argument of each defined function.

Functions were specialized with respect to these l.u.b.s of the sharing of their arguments.
This leads to single versions of each function — though the approach could be adapted to
creating multiple versions too.

For various practical reasons, other details of the calculations differ from [JLM89] as well. These
will be mentioned where relevant in the following sections.
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LML is continuously being improved. In particular, when the experiments reported here were
carried out (Spring/Summer 1992) the heap management was of an ‘adaptive 2-space copying’
type, but a generational scheme was under development.

The memory allocated is divided logically into two areas: cell allocation is performed linearly
from one until it is exhausted, and then a garbage collection phase copies the active data struc-
tures into the other, and the rôles are switched. For the general principles see [Coh81]. In this
implementation the size of the heap is adjusted after a garbage collection: quoting from the LML
manual[AJ]:

How large a part [of the allocated memory is used] is determined after each garbage
collection. The amount used (i.e. available for allocation) is the amount that was copied
when the collection occurred multiplied by eight and 200 kilobytes added to this. In
this way the working set is adapted to the amount of heap that is actually in use.

Since the garbage collection (GC ) is the copying type, the time taken for a single GC is (roughly)
proportional to current data structure size and not to the heap size. On the machine used for the
experiments (a Sun 4 SPARC, with 32 Mbytes of main memory with a 64 Kbyte write through
cache) LML copies at about 4 Mbytes per second 1 . For programs with small heap occupancy
this is relatively cheap, and the GC time is a small proportion of total time (5-10% maybe). For
programs with a larger occupancy it may be a large proportion (for strict reverse of a long list it
is more like 30%). 2

Cell allocation is very efficiently implemented at the machine code level: basic blocks often
contain several allocations, and the heap manipulation is optimized at the basic block level. The
heap pointer is tested at the start of each basic block that contains at least one allocation to ensure
that there is enough space for all the allocations, and the heap pointer is incremented at the end
of such basic blocks; these operations are fast since the heap pointer is held in a CPU register,
and if the basic block contains several cell allocations then the cost per cell is very low.

An unfortunate consequence of the linear memory allocation used in the 2-space heap manager
is that there is no free list. This implies that only cell re-use optimizations are possible — nothing
can be done with cells that can be determined statically to be releaseable unless the release can be
paired with a (re-)allocation. Thus it is possible that many optimization opportunities cannot be
exploited. However, [App87, Tya93] show that recycling a cell in a mark/sweep garbage collector

(with a free list) with deallocation optimization in effect, might not be as efficient in general as a
copying collector with no optimization in effect — so perhaps the lost opportunities are not serious.
This is especially true if a generous amount of memory is available: [App87, Tya93] estimate that
it will be true if the heap is at least roughly 15 times the data structure size.

The current consensus seems to be that multi-space heap managers are the appropriate choice
for good implementations, which would make assessing the effectiveness of simple deallocation
optimization a rather academic affair! Thus, the experiments carried out were of the effectiveness
of the re-use optimization.

At first sight, the optimizations suggested above in Section 1 are quite likely to reduce the
execution time of a program: the application specific parts of a program will remain unchanged (all
those computations must still occur), but the garbage collections are postponed (since previously
allocated cells are re-used rather than free cells being allocated), and in general the number of

1Determined from a test which built a large data structure and then carried out a single, timed GC
2For a variety of programs, with a variety of sizes of data set, the GC times as %-ages of total time were: 11%,

5%, 20%, 7%, 23%, 20%, 23%, 7%, 16%, 17%, 44%
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garbage collections will decrease. If we do fewer GCs then the overall execution time will reduce
by the time previously spent in performing those GCs.

Unfortunately, the reality is not that simple, as the actual cost of a postponed GC could well
be greater than that of the GC of which it is a postponement! The reason for this is that :

the cost of an individual GC is proportional to the heap occupancy during the collection
(each cell of the active data structures in the heap must be copied);

the heap occupancy can fluctuate considerably during execution;

and hence a postponed GC may as easily occur at a moment of higher heap occupancy as
at a moment of lower occupancy.

(A corollary of this is that GC costs may well be reduced if additional, though redundant, cell
allocations are added to a program!)

Clearly, in the case of ‘complete optimization’, where every allocation can be satisfied by re-
allocating a statically released cell (whether by direct re-use optimization, or indirectly via a free
list), the GC time will reduce to zero. Examples such as näıve reverse have this property, but in
general such complete optimization will not be possible. In the case of partial optimization, the
GCs will certainly be postponed, and, if we are fortunate, some will disappear completely, but the
total GC time may still increase (even if there is a reduced number of GCs), although this would
be an unlucky outcome.

Optimization might sometimes increase both the number and the total time of GCs — if the
GCs move to moments of very high occupancy, for example.

This phenomenon is a very serious problem: optimizations may be beneficial or disadvantageous
in a way that is beyond the scope of current analytical techniques to predict. In the experiments
reported here, the problem is simply ignored: the assumption is that, in a program execution with
many GCs, the unpredictable increases and decreases of individual GC times will balance out,
and improvements in execution speed will arise simply from a reduced number of GCs. However,
the phenomenon is bound to be present, and it will probably cause confusing fluctuations in any
trends in the data collected.

Further work

The problem perhaps suggests that a productive optimization technique may be to
analyse a program to determine when to do GCs: the aim would be to trigger them
explicitly at moments of low heap occupancy. (For example, in Prolog it may be
productive to perform GCs after ‘cuts’ because a ‘cut’ throws away a potentially
large backtracking record.) As to how a functional program could be analysed to
determine this, especially under lazy evaluation, I have no suggestions at present.

A package of functions was available, from an earlier Haskell exercise, for operating on an unusual
number representation: “Conway numbers”. The mathematical details are not relevant here
— they can be found in [Con76]. The arithmetic operations on Conway numbers are highly
recursive, they make use of operations on sets, and in Haskell it was natural to exploit classes. The
package was a non-trivial program, and hence seemed like a reasonable basis for an optimization
experiment. Further, it did not depend in any essential way on laziness, and so could be adapted
for the [JLM89] method. The Haskell package appears in Appendix A.

The Haskell Conway package was not useable as it was, and was adapted as follows :

The Haskell was converted to LML: removing the classes and overloading, and collapsing
the two modules into one because the modules became mutually recursive, which LML can’t
handle.
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Explicit copies of the LML library functions were added (because the pre-compiled ones are
lazy code, and return results containing suspensions).

The code was rearranged to avoid the need for laziness (this just meant splitting up some
let blocks), and the need for higher order working (explicitly customized versions of map,
filter, etc were added).

Redundant/inessential functions were deleted from the modules.

During this process the functions were kept in a form which would make it easier to find potential
optimizations. hd and tl were avoided; instead, each function was defined using multiple equations
and pattern matching. In this form it is easy to see whether, for any argument of a function, the
main constructor of a data structure is potentially re-usable: it will be so if it is not named by an
“as pattern” (if it is named as an as pattern then some necessity analysis (see [JLM89]) will be
needed; there turned out to be very few as patterns in the program). Of course such a constructor
cell will only be actually re-useable if the function is never called with a shared argument — and
this must be determined by analysis.

One further change to the package was the expansion of all strings to be explicit constructions
of lists of characters. LML pre-allocates storage for strings, which means that the cons cells are
certainly not reusable (see discussion of pre-allocated constants in Section 6), and @ will certainly
not be optimizable since it receives such strings as its first argument. Expanding the strings at
least allowed the possibility of optimization, though the trade-off was not fully assessed.

The resultant LML package is given in Appendix B.
None of the translation, expansion, pruning, etc changed the nature of the computations carried

out in any essential way. There were various other simplifications that could have been made that
would have reduced the heap usage of the program and also simplified the CTGC analysis, but
the program was retained in its “natural” state. For example, the key types are:

type SetCNum = MkSet (List CNum)

type CNum = MkCNum SetCNum SetCNum

The constructor MkSet is unnecessary (and each use implies a cell being allocated), but it was
retained.

The LML Conway package contains 34 functions, most of them are called by one or more other
functions in the package. There are several mutually recursive groups (the largest contain 4 and
5 functions); its complexity is apparent from the “calling diagram” given in Appendix B. 13
functions are exported. The types involved are the two mentioned above, plus lists, chars and
bools. Altogether perhaps 150 lines of actual function definitions.

Three simple main programs were chosen for the performance experiments — just some simple
arithmetic like “two multiplied by three” and so on 3. These main programs are given in Appendix
C. Since the optimizations being investigated necessitate a global program analysis, the Con-
way package can only analysed and optimized in the context of these main programs. However,
fortuitously, each main program enables the same optimizations in the package.

The intention in this experiment was to assess the performance improvements arising from the
proposed optimizations. Thus the entire process of program analysis and optimization was carried
out by hand; the aim was not to design and implement the necessary extensions to the LML
compiler. Much of the hand calculation involved in abstract and collecting interpretations was
rather tricky (for example, finding the fixpoints of the abstract sharing functions), and would have
taken a very long time if carried out completely formally. They were carried out semi-formally.

3In fact, the Conway number representation, and the operation definitions, are so recursive that calculations
even slightly more complex were simply unfeasible!
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6.1 The sharing pattern domains

The sharing analysis must be carried out with respect to abstract domains of sharing patterns.
In [JLM89] the abstract domains presented are for lists, with the assumption that all simple data
values do not reside in their own heap cells.

Several aspects of the Conway package, and of LML, make that analysis not directly applicable:

the additional MkSet and MkCNum constructors;

simple constants like characters, true, false and nil are held in their own, tagged cells;
(this applies to strings as well 4 — this can only be determined by inspection of the machine
code produced);

these constant cells are pre-allocated, and so evaluating such constant expressions returns a
pointer to a pre-allocated cell, which thus must always be assumed to be shared 5.

Therefore, the sharing domains required are different in detail from those in [JLM89].
Further, the scheme outlined in [JLM89] allows the sharing domains to be customized to capture

more or less detailed information about the degree of data structure sharing present. The domains
must be selected to give an appropriate degree of precision in any particular application — the
more approximate the domains are, the easier and quicker the analysis will be, but the less is the
optimization that is likely to be found.

In the Conway package it is not immediately clear how much precision is required in the sharing
domains in order to find all the optimization possible. Several iterations of domain refinement
and sharing analysis were carried out before sufficient information had been extracted from the
program.

Further work

If the optimizations under investigation do turn out to be effective, then, in a serious
software engineering environment, an optimizing compiler will be faced with exactly
this problem; the structures of the sharing domains are determined by the type
definitions in a program, but the exact degree of detail is not immediate. There
may be a case for including the engineer/programmer in the final optimization
process — to guide the compiler in its choice of sharing domains.

The types in the Conway package for which we need sharing domains are :

type SetCNum = MkSet (List CNum)

type CNum = MkCNum (SetCNum) (SetCNum)

There are also booleans, characters and lists (of CNum and characters).
The sharing domain for each type Foo will be denoted by Foo. As a generalization, a domain

element 0 will usually indicate “unshared”, and 1 will indicate “shared”. Pattern domains are
built up by tupling: denoted by < , >.

Thus we will always have :

Bool = 1
Char = 1

since booleans and characters are always shared.

4LML even allocates some explicitly constructed lists of characters as constants — for example, the }
at the end of the definition of

5The fact that must be treated as shared is a serious problem: every function that returns a list with as
one of the options must have its result treated as a shared object. In particular, the tail of a list, whether arising
from a pattern match or a use of , must be treated as shared.
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First iteration

A very simple approximation: inspect the function definitions to see which patterns occur as
arguments, then set up domains to discriminate between the shared and unshared cases of the head
(‘top’) constructors, treating the sharing of subcomponents as ‘unknown’, i.e. ‘shared’ (for safety).
The following patterns occur : (MkSet ), (MkCNum ), (MkCNum (MkSet ) (MkSet ))

and (x.xs). Thus :

SetCNums: either the MkSet constructor (and hence the whole object) is shared (denoted by
1),

or it is unshared but we know nothing about the embedded list (denoted by 0) :

SetCNum = 0, 1 with 0 1

CNums: either the MkCNum constructor is shared (denoted by 1),

or it is unshared and the two component sets are shared as given by SetCNum (denoted by < , >) :

CNum = 1 SetCNum SetCNum

with <p 1, p2> 1
and <p1, p2> <p3, p4> iff p1 p3 and p2 p4

p SetCNum

Lists: either the cons is shared (denoted by 1),

or it is unshared but we know nothing about the head nor the tail of the list (denoted by
0) :

List = 0, 1 with 0 1

This looked quite promising, but it turned out not to be adequately discriminating. For example,
consider the functions

filterset1 cn2 (MkSet xs) = MkSet (filter1 cn2 xs)

filter1 cn2 [] = []

—— filter1 cn2 (x.xs) = if cn2 lesseq x then x.filter1 cn2 xs

else filter1 cn2 xs

The second argument of filterset1 is a SetCNum, so, in the abstract interpretation of the func-
tions, the sharing of this argument is represented by an element of SetCNum. If this element is
1 then the entire set is shared, so the sharing of the list subcomponent xs is 1; if the element is
0 then we do not know what the sharing of xs is, so we must assume that it is shared, 1. Thus,
we predict that the second argument of filter1 must be treated as shared, which implies that
filter1 cannot be optimized by deallocation nor reuse of the cons cell which is pattern matched
in the second equation. However, it is quite clear that, if filterset1 is called with a completely
unshared second argument, then filter1 is optimizable!

Final iteration

Several further iterations of sharing domain design and refinement yielded the following : (for
simplicity domain injections and projections have been omitted, and the symbols 0 and 1 are
heavily overloaded, but the meanings are intuitively clear from context)

Lists: either some sharing (elements or spine) (1),

or completely unshared (except that the final nil is always shared) (0) :

List = 0, 1 with 0 1
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This gives us the following abstract functions :

cons 0 0 = 0 hd 0 = 0 tl 0 = 0
cons 0 = 1 hd 1 = 1 tl 1 = 1
cons 0 1 = 1
cons 1 = 1

For example, the equations for cons imply that cons 1 0 = 1, which means that if the
head element of a list built with cons has some (non-0) sharing, and the tail is unshared,
then the list built has some sharing. The equation hd 1 = 1 means that the head element
of a list which has some sharing, itself may be shared.

This will apply to both lists of CNum and lists of Char (though the latter are always shared,
for the reason above).

SetCNums: either the MkSet constructor is shared (1),

or the MkSet is unshared and the sharing of the embedded list is given by List. We build
a discriminated union, denoting the tagged elements from List by <1> and <0>, with
<0> abbreviated to 0 :

SetCNum = List 1
= 0, <1>, 1 with 0 <1> 1

This gives us the following abstract functions ( is an abstract function that selects the
embedded list from a SetCNum) :

MkSet 0 = 0 0 = 0
MkSet 1 =<1> <1> = 1

1 = 1

CNums: either the MkCNum constructor is shared (1),

or the MkCNum is unshared and the sharing of each component set is given by SetCNum

(denote the pair of components by < , >, and abbreviate <0, 0> by 0) :

CNum = SetCNum SetCNum 1
with <p 1, p2> 1
and <p1, p2> <p3, p4> iff p1 p3 and p2 p4

p SetCNum

This gives us the following abstract functions ( and are abstract functions that select
the component sets from a CNum) :

MkCNum s 1 s2 = <s1, s2>
<s1, s2> = s1 <s1, s2> = s2

1 = 1 1 = 1

A pictorial view of the elements of CNum and their ordering :
1

—

<1,1>

/ “

<<1>,1> <1,<1>>

/ “ / “

<0,1> <<1>,<1>> <1,0>

“ / “ /

<0,<1>> <<1>,0>

“ /

0
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With less elaborate domains than this there was certainly optimization that had not been found.
There is a strong possibility that if the List domain were expanded to discriminate three cases
(shared spine, unshared spine but shared elements, and completely unshared (except the nil))
then some additional optimization would have been possible in @. This is because @ is used only
to combine lists of characters and, using the List above, lists of characters must be treated as
shared due to the pre-allocated characters, and so unshared spines cannot be reused. However, in
the test main programs chosen there is little output, so this improvement would have had little
impact on the performance.

6.2 The sharing functions

The sharing functions are the abstractions of the functions present in the program. In general
they are determined by constructing the least fixpoints over the sharing domains. Many of them
are immediately obvious from the definitions in Appendix B, and they are all surprisingly simple.
The sharing function corresponding to function fn is denoted by fn; it has the same arity as fn,
and describes how the sharing of the result of fn depends on the sharing of its arguments (if at
all).

Working (roughly) upwards from the leaves in the calling diagram in Appendix B, writing s, s
for elements of the appropriate sharing domains :

isempty s = 1 sing s = MkSet( cons s 0)
zero s = 0 lesseq s 1 s2 = 1
filter1 s 1 s2 = s2 filterset1 s = s <1>
filter2 s 1 s2 = s2 filterset2 s = s <1>
less s1 s2 = 1 eq s1 s2 = 1
max s1 s2 = s1 s2 min s1 s2 = s1 s2

maxinset s = s mininset s = s
member s1 s2 = 1
addelement s s = MkSet( cons s 0) s
quickset s = MkSet s union s 1 s2 = MkSet(s 1 ) s2

@ s1 s2 = s1 s2 convertCNums s = 1
show CNum s = 1 show setCNum s = 1
conway error s 1 s2 = 1 buildCNum s 1 s2 =<s1, s2>
mapsetadd s s = 0 add s 1 s2 = 0
mapsetneg s = 0 neg s = 0
addone s = 0 sub s 1 s2 = 0
mapsetf s 1 s2 s3 s4 = 0 unionmapmapsetf s 1 s2 s3 s4 = 0
mult s1 s2 = 0 f s1 s2 s3 s4 = 0

Further, there is one call of the special LML function, fail, for which we assume :

fail s = 0

Here is an example of how to interpret these equations: The function application filter1 cn xs

filters the list xs to retain those elements related to cn. Thus the sharing of cn has no effect on
the result. The spine of the result list is built of new cells, and the elements are a subset of
the elements of xs. Therefore the sharing of the result is the same as the sharing of the list
xs (given the meanings of the members of the list sharing domain List given above), and so
filter1 s 1 s2 = s2.

6.3 Now, what can be optimized?

The potentially optimizable functions are easy to identify: equations with

a data constructor pattern (with no ‘as’) on the left,

and an allocation requirement somewhere on the right,

such that the sizes of the constructor and allocation are the same.
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Some of the equations have several potentially reuseable constructors!
Fortunately the LML compiler allocates each of the constructors cons, MkSet and MkCNum the

same amount of heap (3 words), so each can be reused as any other.
17 of the 34 functions in the package are potentially optimizable, by this criterion. They are:

union, member, addelement, maxinset, mininset, show CNum, show setCNum, convertCNums,
filterset1, filter1, filterset2, filter2, mapsetadd, mapsetneg, mapsetf, unionmapmapsetf,
@.

For example in the definition

show SetCNum ( MkSet s) = (’ ’ . []) @ convertCNums s @ (’ ’.[])

the MkSet could be reused as the cons . .
In order to know whether a function is optimizable we need to know whether all calls of that

function (for any particular main program) will have an unshared argument. In fact, we only need
to know that the argument is unshared to an appropriate degree. For example, if there is only the
opportunity to re-use the MkSet constructor, then we only need to be sure that that constructor
is unshared; the degree of sharing of the embedded list is irrelevant.

6.4 Collecting interpretation

For each main program a “collecting intepretation” was carried out using sharing domain values
instead of actual values, to find the l.u.b. of sharing values for the relevant arguments of the
potentially optimizable functions in the Conway package. Again, this was by hand.

Finally seven of the functions turned out to be actually optimizable. In fact they were the same
seven for each of the example main programs, and no main program could allow more optimizable
functions (the remaining, un-optimizable functions were intrinsically un-optimizable, due to the
interdependence and sharing within the package). The particular main programs were rather
simple, so other examples might give less optimization opportunities.

The context of a given function application during the execution of a program is (in general) a
tuple comprising the sharing values associated with the actual arguments of the call. The least
upper bound context of a given function application in the text of a program is the lub of all the
contexts that occur for that function application during execution of the program. We need to
know the lub context as this guarantees safety in our assumptions about the sharing of any given
argument — we will not optimize assuming it to be unshared when it in fact might be shared.

The collecting interpretation is a global analysis of a program: it derives its results from the
sharing in the initial expression that is being evaluated, and any further sharing that is created.
Therefore it is convenient to look at the analysis in a top down fashion.

For example, considering the main program Test 1 in Appendix C and the function calls it
makes on the Conway package, we can reason as follows:

add one is called with contexts: 0 since it is applied to the result of zero, and zero s = 0;
0 since it is applied to the single use of variable one, which is the result of add one, and
add one s = 0; 1 since it is applied to the first of two uses of variable two.

The lub of these immediately visible contexts is 1, and, since this is the top element in the
sharing domain, we need not consider any other occurrences of add one in order to find the
lub context.

show CNum is considerably harder: its lub context is in fact 0, but that fact is far from
immediate. (Since it has a re-useable constructor in its definition, it is therefore optimizable.)

In the test main program show CNum is called with context 0 (applied to the result of mult).
In the Conway package show CNum and convertCNums are mutually recursive: show CNum

decomposes its CNum argument and applies convertCNums to both the component lists of
CNums, convertCNums applies show CNum to each of the CNums in the lists, and itself recur-
sively to the tails of the lists. Inductively, all these data structures are unshared if the
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original argument of show CNum is unshared; therefore this contribution to the lub context
of show CNum is 0.

However, convertCNums is also called from show SetCNum, itself called from conway error,
and that from buildCNum. Fortunately it is easily determined that each of the three calls
of buildCNum have unshared arguments (i.e. because they are values produced by functions
whose sharing interpretations (see section 6.2) guarantee unshared results), and this unshared
property is propagated to convertCNums.

So the true overall lub context of convertCNums is 0 and also that of show CNum.

add is not called directly from the main program. However, we do not need to know its origi-
nal call context, because its mutual recursion with mapsetadd is of such an inconvenient kind
that its lub context must be 1. add calls mapsetadd four times, with an entirely unavoidable
sharing of both arguments (whatever the sharing of add’s arguments is). mapsetadd then
propagates this sharing to the recursive calls of add, thus guaranteeing the lub context of 1.

Applying this analysis to all the functions, and combining the results for tests 1, 2 and 3, yields
the following lub contexts:

isempty 1 sing 1
zero 0 lesseq (1, 1)
filter1 (1, 1) filterset1 (1, 1)
filter2 (1, 1) filterset2 (1, 1)
less ? eq (0, 1)
max (1, 1) min (1, 1)
maxinset 1 mininset 1
member (0, 1) addelement (1, 0)
quickset ? union (0, 0)
@ (1, 1) convertCNums 0
show CNum 0 show setCNum 0
conway error (0, 0) buildCNum (0, 0)
mapsetadd (1, 1) add (1, 1)
mapsetneg 0 neg 0
add one 1 sub (0, 0)
mapsetf (1, 1, 1, 1) unionmapmapsetf (1, 1, 1, 1)
mult (1, 1) f (1, 1, 1, 1)

Note: ?s indicate functions not called by the test programs. indicates functions potentially
optimizable by the pattern/allocation criterion above.

At last we can now see fairly easily which functions can actually be optimized: those above
marked with , and which have lub contexts with 0 corresponding to an argument with a con-
structor that can be re-used.

The optimizable functions are thus: member, addelement, union, convertCNums, show CNum

(three re-usable constructors, although show CNum is not called often enough for this to have a
serious impact on performance), show setCNum, and mapsetneg.

The LML eager code generator is not very good (since it is not really intended to be used): apply
nodes are allocated immediately before each function call which are overwritten at the end of the
call, and are then thrown away. The code was altered manually to

remove the code at the end of each function which overwrites the apply node with the result,

remove the allocation of the redundant apply nodes allocated immediately before each func-
tion call.

11



Those changes provided basic, eager, unoptimized code whose performance could be measured.
Seven of the Conway functions are optimizable. Each re-use optimization opportunity means a

constructor cell belonging to an argument of a function, which would otherwise become garbage
following pattern matching at function entry (extraction of the pointers to its components), can
be re-used in the body of the function. During pattern matching a pointer to the constructor cell
is pushed onto the stack. Thus, the code for the heap cell allocation in the body of the function
can be replaced by a simple fetch of the pointer from the stack.

The optimization was easily achieved by manually altering the generated code. Care had to
be taken over the remaining code to keep it consistent with the optimizations; for example: “end
of heap” tests can be removed at the start of basic blocks (see section 3) in which all new cell
allocations have been removed; incrementing of heap pointers at basic block exit must be reduced
where fewer new cells have been allocated.

The aim is to assess the increase in performance of the Conway programs when the re-use op-
timizations are inserted. The optimizations only affect the memory management and not the
primary computation carried out by the programs. Therefore, the time spent in memory man-
agement must be measured, with and without the optimizations. Unfortunately, this information
was very hard to obtain, for a number of reasons.

8.1 Timing problems

The experiments were carried out on a Sun 4 SPARC under ‘Unix’. Times noted were ‘user’ rather
than ‘system’ or ‘elapsed’ times. The resolution of the reported times was 0.01 seconds.

LML provides some timing statistics: principally useful here are the total run time and the
total time spent in GC. Unfortunately, the times produced are very variable. This due to the
normal, unpredictable operating system overheads (even when no other user tasks are running).
Some trials indicated that times may easily vary by up to 5%.

Approximate average total run times can be measured fairly well (provided they are at least a
few seconds). However, detecting whether there was a change in total run time when changing
to the optimized version was a very difficult problem: the variability of the measured run times
was typically of the same order of magnitude as the change due to optimization. For example, see
the line labelled ∆T in Table 3 (page 15). This is therefore a very unreliable way to assess the
performance improvement.

Further, the times for individual garbage collections, although collected and reported by LML,
are of the same order of magnitude as the resolution of the Unix clock—so collecting them and
adding them up makes no sense. For example, see the lines labelled G (secs) in Table 1 (page 14)
and G’ (secs) in Table 2 (page 15), dividing in each case by the number of GCs.

One more factor which complicates the interpretation of any measured timings is the possibil-
ity that improved program performance could be due to better locality in memory use. Lennart
Augustsson expressed the opinion that locality effects may be very significant with modern mem-
ory/cache architectures, since the time taken for memory accesses dominates the activity. It is
very hard to determine the existence or magnitude of this effect in these experiments, and so the
possibility was noted and simplifying assumptions made.

Fortunately, LML also collects various counted statistics, which are therefore precise. Of prin-
cipal interest here are

the number of bytes allocated from the heap,

the number of bytes copied during GC,

and the number of GCs.
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Given the number of bytes copied during GC, and a reliable average copying rate of 4 Mbytes/sec
(see section 3) (plus the roughly realistic assumption that GC time is proportional to the number
of cells copied), the total time for garbage collection is easily calculated.

[Better would be to repeat these experiments on a machine with instruction level profiling.]

8.2 A Performance Model

Given the difficulties outlined above, and the various components of the total execution time of
the test programs, it was necessary to base the assessment of the optimizations on a detailed
performance model.

The model is based on the following parameters:

T Total program execution time.

B Basic program execution time (the essential computations involved in the program) assuming
that all memory is accessible at cache speeds (stack manipulation, calculations, filling the
fields of allocated cells, etc).

C Time penalty for requiring access to memory not currently in the cache.

A Total time to allocate cells.

G Total time for garbage collection.

These are related in the model by the equation:

T = B + C + A+ G

When a program has CTGC optimization applied:

B will remain unaltered.

C may reduce (due to improved locality).

A will remain roughly the same (see below).

G will change in some way to be determined: possible reducing since there may be fewer GCs,
possibly increasing if GCs occur at more expensive moments (see section 4).

T will therefore reduce by the reductions in C and G.

The reasoning behind the assertion that A will remain roughly the same depends on the details
of the allocation code, and is as follows:

The number of allocations, unoptimized and optimized, remains the same.

For each cell in the unoptimized program the allocation cost is
the time to take a copy of the heap pointer register and to add an
offset
+ some fraction of the cost of testing and incrementing the heap

pointer (because these are done once per basic block)

For each cell in the optimized program the allocation cost is
either unoptimized: the same as the original cost,
or optimized: the time to take a copy of a pointer found by indexed

addressing access to the stack memory (“not cheap”)

We are interested in assessing various aspects of the improved performance:

The change in the time required for GC, ∆G. This is indirectly measurable (from the number
of bytes copied).
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The overall reduction in execution time, ∆T . The magnitude of T is directly measurable,
though not reliably, for the reasons above.

The reduction in cache penalty, ∆C, due to improved locality. This cannot be measured
directly, but, on the assumption that the measured total execution times are accurate, ∆C
can be calculated indirectly:

C = T B A G
C ′ = T ′ B A G ′ (B and A do not alter)

∆C = C C ′ = (T G) (T ′ G′)

Although we are assuming that the total time for cell allocation, A, remains the same, it is of
considerable interest to know the reduction in the number of cell allocations from the heap ,
∆H; i.e. how many have been replaced by re-use optimizations. This is directly measurable
(from the number of bytes allocated from the heap, H).

Thus the parameters to be measured are: the number of bytes allocated from the heap (H), the
number of bytes copied (G) and the total execution time (T ).

9.1 Measurements

Performance measurements were carried out on the three test programs in Appendix C, with
the code unoptimized and optimized for re-use of cells. The results are summarized in Tables 1,
2 and 3. The measurements are expressed in various units, as appropriate. The time values, T
and T ′, are averages of clock timings with a resolution of 0.01 second; the averages given here
are rounded to the same resolution, but the full accuracy was used in calculating G,G ′,∆G,∆C
before rounding them, too, to that resolution or to two significant digits, as appropriate. On the
other hand, H and G (in bytes) are precise values, and values calculated from them alone are
given to 3 significant digits.

Test 1 Test 2 Test 3

T (secs)∗ 0.63 0.75 9.27

H (bytes) 1315284 1725120 17615964

G (bytes) 283556 88680 5855444

(secs) 0.0709 0.0222 1.46

(% of T ) 11 3.0 16

No. of GCs 7 9 61

Table 1: Unoptimized performance parameters
(∗ These times are averages of 100 repetitions, over a period of 8 hours.)

9.2 Analysis

9.2.1 Allocations from the heap

The reduction in the number of bytes allocated from the heap, ∆H, is reasonably consistent across
the tests: 7–9%. This gives a direct indication of the effectiveness of the optimizations carried
out—they were clearly at reasonably significant points in the code. These results are moderately
encouraging, but there is no particular reason to expect this reduction for other programs.
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Test 1 Test 2 Test 3

T ′ (secs)∗ 0.59 0.71 8.9

H ′ (bytes) 1220532 1562544 16464960

G′ (bytes) 236060 69712 5329788

(secs) 0.0590 0.0174 1.33

(% of T ′) 9.9 2.4 15

No. of GCs 7 8 57

Table 2: Optimized performance parameters
(∗ These times are averages of 100 repetitions, over a period of 8 hours.)

Test 1 Test 2 Test 3

∆T (%) 5.3 4.7 3.6

∆H (%) 7.20 9.42 6.53

∆G (%) 16.8 21.4 8.98

(% of T ) 1.9 0.63 1.4

∆C (secs) 0.02 0.03 0.20

(% of T ) 3.4 4.1 2.1

Table 3: Reductions in performance parameters

Unfortunately this reduction in allocated bytes does not contribute directly to reducing the
overall program execution time. It may, however, contribute indirectly, by reducing the garbage
collection overhead.

9.2.2 Garbage collection time

GC time, G, as a % of T is rather variable between the tests, ranging from 3–16%. These are on
the low side of average for G as a % of T (see section 3).

Encouragingly, G as a % of T reduces in each optimization, but only by a small amount (about
1%).

The GC time reduction, ∆G, is arguably uniform at 9–21% (say 15%); that is quite respectable.
However, since G is only, say, 10% of T , ∆G is a disappointingly small fraction of the total program
execution time, about 1.5% .

9.2.3 Total execution time

If the cell allocation and cache penalty overheads did not change as a result of optimization, then
∆T (%) would be identical to ∆G(% of T ). We have assumed that the cell allocation costs do not
change, and that the cache costs might.

∆T is reasonably uniform, at roughly 4.5%; that is not unrespectable, but, equally, is not
dramatic. On the other hand, ∆G(% of T ) is reasonably uniform at about 1.5%. Therefore, the
reduction in total execution is due only in part to improved storage management.
(Although the garbage collection times themselves are calculated from average copying rates,
rather than being measured, and thus may not be reliable, it is unlikely that there is an error of
a factor of 3 in the estimation of the copying rate.)
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9.2.4 Cache penalty reduction

According to the performance model in section 8, the difference between ∆T and ∆G is a change
in the cache penalty overhead.

Thus, in the final line of Table 3, we see an estimated reduction in cache penalty of about 3%
(of T ). Once again, this is respectable but not dramatic: locality effects do not appear to be
significant in these tests.

9.2.5 Discussion

Table 3 shows a reasonable degree of uniformity over the three tests. There are fluctuations in
the benefits derived from the optimizations. We cannot tell with such a small population of tests
whether or not there is a trend. If there is a trend then it is that the longer an execution is, the
less benefit is derived from optimization: test 3 has smaller improvements in most respects than
the other tests.

As described in section 3, the LML heap adapts its size at each GC to be a multiple of the
number of bytes collected. Test 1 required a small heap extension, test 2 required no extension,
and test 3 required a large extension. The fact that test 3 needed a heap 4 times as large as
the others may explain why it derived less cache penalty benefit from the (potentially) improved
locality.

One would expect the largest benefits to show up when a program is running in a “tight” heap—
since then the total GC time will be a larger fraction of the total time, and any GC reduction
would thus be more significant. However, the LML adaptable heap prevents this effect from being
observed.

There is an interesting lack of correlation between the reduction in GC overhead when recorded
as bytes copied and as number of GCs. In test 1 the number of GCs before and after optimization
is the same, and 17% fewer cells are copied (so the time taken is 17% less). In test 2 the GCs
drop from 9 to 8, with 21% less copying. In test 3 the GCs drop from 61 to 57, but there is only
9% less copying. This is probably due to the effects discussed in section 4.

The results from the investigation reported here are easy to summarise. For the Conway package,
and the given test programs, analysed using the given sharing domains, and executed using eager
LML:

The re-use optimization is applicable to 7 out of 34 functions.

This produces about an 8% reduction in the number of cell allocations made from the heap,

and a corresponding reduction in the GC (time) overhead of about 15%.

GC time is a relatively small component of the total execution time, about 10%, and so the
total time is reduced by only about 1.5% by optimized GC.

There appears to be an additional reduction in total time of about 3%. It is hypothesized
that this is due to improved cache performance as a result of improved locality of memory
accesses.

What we should conclude from the results is less clear.

It is disappointing that only 7 out of 34 functions are optimizable, and that, although they
are reasonably key functions, they are not sufficiently central to the execution to produce
more than an 8% reduction in the cell allocations from the heap.

16



On the other hand, it was not clear, at the start of the investigation, that there would be any
optimizations possible at all in a package with this much interdependence between functions.
One purpose of the investigation was to discover whether re-use optimization is applicable
to a ‘real’ package, so it is a welcome positive result that a reasonable reduction in heap
usage is indeed possible.

Perhaps the most important result is the negative observation that the total execution time
is not reduced by much, despite a reasonable reduction in the GC time itself. Since we
cannot escape this “multiplication of %ages”, the only way to achieve a large reduction in
total execution time is to have both GC time being a very large fraction of the total time,
and a very large reduction in GC time. The former will be true if a program is executing
in a small heap—this may be enforced by the environment, but it is not a situation that
we would naturally choose to be in. The latter is determined purely by the program to
be optimized, and is outside our control, except to the extent that we must use the most
accurate (detailed) sharing domains and analysis that we can.

If the overall improvements discovered in this investigation are typical of most ‘real’ functional
programs, then their optimization appears not worthwhile unless either the sharing analysis and
optimization are very cheap to carry out (which they probably are not), or it is known that the
program will have to run with a small heap.

There remains the open question of whether the degree of optimization possible with the Conway
package is typical of most ‘real’ functional programs. This is perhaps the most important piece of
further work in this particular area.
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The implementation of Conway numbers comprises two Haskell modules: a general purpose Sets

module, and the Conway module itself.
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This LML module is a first order version of the Haskell Conway and Set modules. All laziness
dependence has been removed; likewise dependence on the LML function library.
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Calling diagram for Conway package

An arrow from a to b indicates that a contains one or more references to b.
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