
Technical Report CSM-124

August 1994

Department of Computing Science and Mathematics, University of Stirling
Stirling FK9 4LA, Scotland

Telephone +44-786-467421, Facsimile +44-786-464551
Email rgc@compsci.stirling.ac.uk

Technical Report CSM-124

August 1994

The Rigorous Object-Oriented Analysis (ROOA) method is a systematic development process

which takes a set of informal requirements and produces a formal object-oriented analysis

model expressed in the standard formal description language LOTOS. An intermediate step

in the production of the LOTOS model is the creation of an Object Communication Diagram

(OCD) which is a graphical representation of the eventual LOTOS behaviour expression.

It is possible to construct object communication diagrams for which there is no corre-

sponding LOTOS behaviour expression. We propose a condition that must be satisfied by

an object communication diagram for there to be a guarantee that there is a corresponding

LOTOS behaviour expression and prove that object communication diagrams of arbitrary

complexity which satisfy this condition do indeed have a corresponding LOTOS behaviour

expression. We then give an algorithm for the construction of a LOTOS behaviour expression

from an object communication diagram which satisfies the condition.

i

The Rigorous Object-Oriented Analysis (ROOA) method [3, 4] is a systematic development

process which takes a set of informal requirements and produces a formal object-oriented

analysis model expressed in the standard formal description language LOTOS [1, 2]. The aim

of the LOTOS model is to give a complete and accurate description of the problem in terms

of entities from the problem domain. It describes both the static and dynamic aspects of a

problem and acts as a requirements specification.

An intermediate step in the production of the LOTOS model is the creation of an Object

Communication Diagram (OCD). The OCD is a graph in which each node represents an object

and each arc connecting two objects represents a gate of communication between them. It

is used within ROOA to give a graphical representation of the eventual LOTOS behaviour

expression. An important question is the condition(s) that have to be fulfilled to be able to

guarantee that an OCD can be represented by a LOTOS behaviour expression.

The gates may only be used in one of two ways:

Two objects are connected via a gate which is used for no other purpose. We refer to

such a gate as a simple gate (an S gate).

An object (the MP object of the gate) is individually connected with several user objects

(U objects) via a gate which is used for no other purpose. We refer to such a gate as a

multiple provider gate (an MP gate). A U object may itself be the MP object for another

MP gate. A non MP object is an object which is not an MP object for any MP gate.

The message connections between objects in an object model can always be represented by

an object communication diagram as defined above. We wish to represent such a diagram by

a LOTOS behaviour expression in which each object is represented as a behaviour expression

which is the instantiation of a LOTOS process and the objects (LOTOS process instantiations)

are connected, through gates, by the LOTOS parallel composition operators.

We define MP expressions, U expressions and non MP expressions to be the LOTOS

behaviour expressions which represent MP objects, U objects and non MP objects respectively.

When objects (process instantiations) are created dynamically, the presence of a factory

object (process generator) is required, within which the creation takes place. This is described

in [4]. The set of generated objects (process instantiations) are then equivalent to a single

object (the process generator). A factory object can be treated in exactly the same way as

any other object.

As an object communication diagram only supports two-way synchronization, each LO-

TOS gate may appear in one, and only one, parallel operator in the final behaviour expression.

If it is an S gate s connecting the two non MP objects A and B, then it will combine two

behaviour expressions, one of which contains the non MP expression for A while the other

contains the non MP expression for B. The combined behaviour expression is:

hide s in

(...A[s, ...]...) [s, ...] (...B[s, ...]...)

If it is an MP gate, connecting an MP object A with a set of U objects U 1, U2, ..., then

it will combine two behaviour expressions, one of which contains the MP expression for A

while the other contains a composition of the U expressions for all the U objects. We are

1

therefore concerned with the bracketing of behaviour expressions into more complex behaviour

expressions.

It is possible to construct object communication diagrams for which there is no corre-

sponding LOTOS behaviour expression. Examples are given in Figures 1 and 2.

We propose a condition that must be satisfied by an object communication diagram for

there to be a guarantee that there is a corresponding LOTOS behaviour expression and prove

that object communication diagrams of arbitrary complexity which satisfy this condition do

indeed have a corresponding LOTOS behaviour expression. We then give an algorithm for

the construction of a LOTOS behaviour expression from an object communication diagram

which satisfies the condition.

Associated with each MP gate g i is its MP object A i.

We define a sequence of MP gates to be a set of MP gates g 1, g2, ..., gk with associated MP

objects A 1, A2, ..., A k, where k > 1 and in which object A i is a U object for MP gate g i+1

where i = 1, 2, ..., k 1.

We define a cycle of MP gates to be a sequence of MP gates which has the additional

property that object A k is a U object for MP gate g 1.

We define an open cycle of MP gates to be a cycle of MP gates in which at least one gate

gi has as its U objects:

one, and only one, MP object, together with

a set of one or more non MP objects none of which is also a U object for another MP

gate.

A closed cycle of MP gates is a cycle of MP gates which is not an open cycle.

For it always to be possible to construct a LOTOS behaviour expression corresponding to

an object communication diagram, the diagram must not contain a closed cycle of MP gates.

The object communication diagrams in Figures 1 and 2 do not fulfil the above condition and

do not have a corresponding LOTOS behaviour expression. The reasons are given below:

Network in Figure 1:

A1 is the MP object for MP gate g 1 and is a U object for MP gate g 2.

A2 is the MP object for MP gate g 2 and is a U object for MP gate g 1.

We therefore have a cycle of MP gates.

B is a U object for MP gate g 1, but is also a U object for MP gate g 2.

We therefore have a closed cycle of MP gates.

Network in Figure 2:

A1 is the MP object for MP gate g 1 and is a U object for MP gate g 2.

A2 is the MP object for MP gate g 2 and is a U object for MP gate g 3.

2

A3 is the MP object for MP gate g 3 and is a U object for MP gate g 1.

We therefore have a cycle of MP gates.

B is a U object for MP gates g 1, but is also a U object for MP gates g 2 and g3.

We therefore have a closed cycle of MP gates.

A 1
A 2 B

g1

g
1

g2
g2

Figure 1: Network with a closed cycle of two MP objects A 1 and A2.

A A B

g
1

A 1 2 3

g 1

g2

g2

g 3

g3

Figure 2: Network with a closed cycle of three MP objects.

The object communication diagram in Figure 3 is an open cycle and can be represented

by the behaviour expression:

hide g1, g2 in

(A1[g1, g2] C[g2])

[g1, g2]

(hide g3 in (A2[g2, g3] B[g1, g3]) [g3] A3[g1, g3])

The Proposition

All object communication diagrams which fulfil the condition have a corresponding LO-

TOS behaviour expression.

The Proof

Each node in an object communication diagram represents a single object and so it has

a corresponding LOTOS behaviour expression which consists of the instantiation of a single

LOTOS process. We wish to compose these behaviour expressions into a single behaviour

expression which represents the complete system. Composing behaviour expressions is equiv-

alent to combining objects, which have corresponding LOTOS behaviour expressions, into

composite objects which also have corresponding LOTOS behaviour expressions.

3

A A B

g
1

A 1 2 3

g 1

g2 g 3

g3

C
g 2

Figure 3: Network with an open cycle of three MP objects.

We extend our definition of MP, U and non MP expressions so that they can also represent

composite objects. In the following, when we refer to objects, we include the possibility that

the objects may be composite.

The proof proceeds by demonstrating that there exists an order in which the objects in

an arbitrary object communication diagram, which does not contain a closed cycle of MP

gates, can be reduced to a single composite object. The corollary of this is that the behaviour

expression corresponding to the objects can then be composed into a single LOTOS behaviour

expression.

We will represent a LOTOS behaviour expression A, which offers synchronization on gates

a1, ..., an, as A[a 1, ..., an].

4.1 Reducing the number of non MP objects

Consider any two non MP expressions A and B which correspond to non MP objects in an

object communication diagram. They have the general form:

A[a1, ..., am, c1, ..., cn, d1, ..., d p]

and

B[b1, ..., bq, c1, ..., cn, d1, ..., d p]

where:

m, n, p, q = 0, 1, 2, ...,

we use the convention that the sequence x 1, ..., xk represents the empty sequence when

k = 0,

both expressions offer synchronization on gates c 1, ..., cn, d1, ..., d p, but they only interact

with each other on the S gates c 1, ..., cn,

there is the null intersection between the set of gates a 1, ..., am and the set of gates

b1, ..., b q.

As the gates c 1, ..., cn are S gates, they can only be used in connecting A and B. Hence,

when n > 0, the two non MP expressions A and B can be composed to form the single non

MP expression:

4

hide c1, ..., cn in

A[a1, ..., am, c1, ..., cn, d1, ..., d p] [c1, ..., cn] B[b1, ..., b q, c1, ..., cn, d1, ..., d p]

and, when n = 0, as the single non MP expression:

A[a1, ..., am, d1, ..., d p] B[b1, ..., b q, d1, ..., d p]

which, in both cases, can be represented as the non MP expression:

AB[a1, ..., am, d1, ..., d p, b1, ..., b q]

This non MP expression corresponds to a single (composite) non MP object.

Conclusion 1: A pair of non MP expressions can always be replaced by an equivalent single

non MP expression. Hence, all the non MP expressions corresponding to the objects in an

object communication diagram which only contains non MP objects can be composed into a

single LOTOS behaviour expression which corresponds to a single non MP object.

4.2 Removing a single MP gate

When we have an MP gate g, which connects its MP object A with a set of U objects,

all of which are non MP objects, then application of Conclusion 1 reduces this to a gate

connecting A with a single non MP object as a U object. Gate g is then no longer an MP

gate.

Conclusion 2: A single MP gate, all of whose U objects are non MP objects, can be

transformed into an S gate by composing the U objects into a single non MP object.

4.3 Removing a sequence of MP gates

If we have a sequence of k MP gates g 1, g2, ..., gk with associated MP objects A 1, A2, ..., Ak,

where k > 1 which :

do not form a cycle and

are not part of a longer sequence,

then the U objects for gate g 1 must all be non MP objects. (If one of the U objects for gate g 1

were also an MP object then its MP gate would be the first element of a sequence of MP gates

of length k + 1.) Application of Conclusion 2 means that MP gate g 1 can be transformed

into an S gate. Hence, a sequence of k MP gates which meets the above conditions can always

be reduced to a sequence of k 1 MP gates.

Conclusion 3: An object communication diagram which contains n MP gates, all of which

either exist singly or in a sequence which does not form a cycle, may be transformed into an

equivalent object communication diagram which contains n 1 MP gates all of which either

exist singly or in a sequence which does not form a cycle. An object communication diagram,

all of whose MP gates either exist singly or in a sequence which does not form a cycle, may

therefore be transformed into an object communication diagram which contains no MP gates

and hence no MP objects.

From Conclusion 1, such a diagram can, in turn, be transformed into an object commu-

nication diagram which contains only a single non MP object.

5

4.4 Breaking an Open Cycle

Consider an open cycle of MP gates g 1, g2, ..., gk with associated MP objects A 1, A2, ..., Ak,

where k > 1 and the MP gate g i which has as its U objects:

one, and only one, MP object, together with

a set of one or more non MP objects none of which is a U object for another MP gate.

From Conclusion 1, a set of one or more non MP objects can be composed into a single

non MP object. We therefore only have to consider the following structure:

A AA
g g

g

i−1 i i+1

i

i

B
g i−1

g i−1

i+1

g
i+1

g i+2

Figure 4: Breaking an Open Cycle.

Objects B and A i−1 individually communicate with A i on gate g i. Objects B and A i−1

may communicate with each other on an S gate, but as that makes no difference to the

argument, we shall ignore that possibility. If objects B and A i−1 , the U objects of MP gate

gi, were combined then gate g i would no longer be an MP gate. By definition, object B

cannot communicate with A i−1 on an MP gate and so they can be combined.

As gate g i is no longer an MP gate, the sequence g 1, g2, ..., gk no longer forms a cycle of

MP gates. As B is not a U object for any other MP gate, another cycle cannot have been

created by the amalgamation.

The other problem that must be considered is that the incorporation of the non MP object

B into an MP object might result in another open cycle being transformed into a closed cycle.

However as the condition states that object B cannot be a U object for a second MP gate,

this problem does not arise.

All open cycles can therefore be removed from the diagram and so an object communica-

tion diagram which only contains open cycles can always be replaced by an equivalent object

communication diagram which contains no cycles.

From Conclusion 3, such a diagram can, in turn, be re-written as an object communi-

cation diagram which contains only a single non MP object.

QED

Constructing a LOTOS behaviour expression corresponding to a large object communication

diagram can be a daunting task. The order in which the combinations take place is important

as combining non MP objects can result in the conversion of an open cycle of MP gates into

a closed cycle of MP gates. For example, if the non MP objects B and C in Figure 3 were

6

combined, we would get the position shown in Figure 2. The first simplification should

therefore be concerned with the removal of any open cycles from the system.

This paper has given conditions which, if they are satisfied, guarantee that it is possible

to construct a behaviour expression from an object communication diagram of arbitrary

complexity. It is also the case that some object communication diagrams which do not meet

the condition will have a LOTOS behaviour expression, but the addition of further more

complex conditions does not seem worthwhile from a practical perspective.

As the proofs proceed by systematically reducing a complex object communication dia-

gram into a simpler object communication diagram and eventually reducing the diagram to

a single object, they provide the basis for an algorithm for the construction of a LOTOS

behaviour expression which describes the original diagram. The algorithm is given below.

A unique behaviour expression is not generated, but the set of behaviour expressions

which can be generated all exhibit exactly the same behaviour; i.e. they are bisimilar.

5.1 The Algorithm

if there are any closed cycles of MP gates then

terminate without having produced a LOTOS behaviour expression

end if

while there are open cycles of MP gates loop

assertion: There are n open cycles, where n 1

Identify a gate g in the cycle which has as its U objects:

one, and only one, MP object,

a set of non MP objects, none of which is a

U object for another MP gate.

Compose the behaviour expressions corresponding to the U objects

of gate g into a single MP expression.

assertion: Gate g is no longer an MP gate and so the open cycle is broken.

assertion: This cannot create a new open cycle or create a closed cycle.

assertion: There are n 1 open cycles, where n 1

end loop

while there are MP gates loop

assertion: There are n MP gates, where n 1

assertion: There will be at least one MP gate g,

all of whose U objects are non MP objects.

Compose the behaviour expressions corresponding to the U objects

of gate g into a single non MP expression.

assertion: Gate g is now an S gate.

assertion: There are n 1 MP gates, where n 1

end loop

while there are S gates loop

assertion: There are n S gates, where n 1

Compose the behaviour expressions corresponding to two non MP

objects connected by an S gate.

assertion: there are n 1 S gates, where n 1

end loop

assertion: We have a single LOTOS behaviour expression.

7

As an example of the construction of a LOTOS behaviour expression, consider the object

communication diagram in Figure 5.

A AA 1 2 3

C

B

D

A 4

E

g
2

g2 g 3

g
3

g 3

g1

g 1

g5

g
4

g
4

Figure 5: Example Network.

There are no closed cycles.

There are two open cycles, g 1g2g3g1 and g1g4g3g1. Let us decide to break cycle g 1g2g3g1

first. Consider gate g 2. Its U objects are C and A 1. As C is not a U object for any other MP

gate, we can compose C and A 1 giving the MP expression:

A1[g1, g2, g4] C[g2]

which we shall refer to as A 1C. Object A 2 is now a non MP object, gate g 2 is now an S gate

and cycle g 1g2g3g1 has been broken.

We must now break cycle g 1g4g3g1. Consider gate g 4. Its U objects are D and A 1C.

As D is not a U object for any other MP gate, we can compose D and A 1C giving the MP

expression:

(A1[g1, g2, g4] C[g2]) D[g 4, g5]

which we shall refer to as (A 1C)D. Object A 4 is now a non MP object, gate g 4 is now an S

gate and cycle g 1g4g3g1 has been broken.

There are now no cycles.

Gates g 1 and g3 are still MP gates. Consider gate g 3. All its U objects, A 2, A4 and E,

are non MP objects and so their corresponding expressions can be composed to give the non

MP expression:

(A2[g2, g3] E[g3]) A4[g3, g4]

which we shall refer to as (A 2E)A4. Object A 3 is now a non MP object and gate g 3 is now

an S gate.

Now consider gate g 1. Its U objects, A 3 and B are non MP objects and so their corre-

sponding expressions can be composed to give the non MP expression:

A3[g1, g3] B[g1, g5]

8

which we shall refer to as A 3B. Object (A 1C)D is now a non MP object and gate g 1 is now

an S gate.

There are now no MP objects. The non MP objects, (A 1C)D, (A 2E)A4 and A3B, can

now be combined in any order.

hide g1, g3, g5 in

(hide g2, g4 in

((A1[g1, g2, g4] C[g2]) D[g 4, g5])

[g2, g4]

((A2[g2, g3] E[g3]) A4[g3, g4])

)

[g1, g3, g5]

(A3[g1, g3] B[g1, g5])

Conditions for object communication diagrams have been given which, when satisfied, mean

that the diagram can be represented by a LOTOS behaviour expression. The proof provides

a basis for an algorithm for the construction of LOTOS behaviour expressions.

In a realistic object model, cycles of MP gates should seldom arise. Objects usually have

services provided by lower level MP objects and these lower level servers tend not to be clients

of servers higher in the chain. In any case, a sequence of MP gates can always be broken by

introducing an extra non MP object into the sequence to decouple an adjacent pair of MP

objects.

[1] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS.

Computer Networks and ISDN Systems, 14(1):25–59, 1987.

[2] E. Brinksma (ed). Information Processing Systems — Open Systems Interconnection —

LOTOS — A Formal Description Technique Based on the Temporal Ordering of Obser-

vation Behaviour, ISO 8807, 1988.

[3] A.M.D. Moreira and R.G. Clark. Rigorous Object-Oriented Analysis. Technical Report

CSM-109, Computing Science Department, University of Stirling, Scotland, 1993.

[4] A.M.D. Moreira and R.G. Clark. Combining Object-Oriented Analysis and Formal De-

scription Techniques. In M. Tokoro and R. Pareschi, editors, 8th European Conference on

Object-Oriented Programming: ECOOP ’94, LNCS 821, pages 344–364. Springer-Verlag,

July 1994.

9

