
Richard Sinnott,

Department of Computing Science,

University of Stirling,

Stirling FK9 4LA,

Scotland

email: ros@cs.stir.ac.uk

Abstract

This paper provides an introduction to the role of Formal Description Techniques (FDTs)
in the development of an architectural semantics for Open Distributed Processing (ODP).
It gives a brief introduction to ODP in general and the Reference Model for ODP (RM-
ODP). Following this, an outline of the reasons for the development of an architectural
semantics, the problems associated with the development of an architectural semantics and
issues surrounding the possible solutions to these problems are presented.

The need for information in today’s computerised world is vital. However, often this information

may be located at a different place from where it is required. It may also be on a different type

of computer or operating system using different languages and storage facilities.

ODP is an attempt at addressing the problems involved in making this distributed informa-

tion available throughout a single distributed system in a consistent and reliable way.

In order to achieve this, a common understanding of the basic concepts and overall architec-

tures of such systems is required. To this end, the RM-ODP is being 1 developed. This provides

not only the common definitions and terms used when considering a distributed system, but

also a general framework from which the coordinated production of standards for distributed

systems may be achieved. This has the added advantage of enabling compatible standards to

be produced concurrently.

This paper focuses on one particular part of the RM-ODP: Part 4, the Architectural Se-

mantics. It identifies the necessity for the work, the problems associated with the work and the

possible solutions to these problems.

The rest of the paper is organised as follows. Section 2 gives a brief introduction to FDTs,

ODP and the RM-ODP. Section 3 identifies the need for the architectural semantics work.

Section 4 identifies the approach taken in the architectural semantics work and the technical

problems that exist in it. Section 5 deals with the limitations of the current work plan. Section

6 deals with problems in extending the scope of the architectural semantics work plan. Section

7 identifies future work necessary for the architectural semantics work to be successful. Finally,

section 8 draws some conclusions on the architectural semantics work.

1At the time of writing the different parts of the RM-ODP are at different stages of development.

1

It is common knowledge that natural language is inadequate for giving precise specifications.

Indeed this was the initial motivation behind the development of FDTs by ISO (International

Organisation for Standardisation) and CCITT (International Consultative Committee for Tele-

phony and Telegraphy).

FDTs allow for the unambiguous representation of requirements. The main advantages in

their application with regard to standards development are in the improvement of quality and

the expediency with which standards are produced.

FDTs arrived a little too late to have a major impact on the development of OSI (Open

Systems Interconnection) standards. However, ODP represents a fresh start in which the benefits

of the precision available in specifying systems through FDTs can be achieved.

2.1 Background to Open Distributed Processing

One definition of a distributed system is one in which the user of the system is unaware of the

differences in a collection of computers and operating systems in which processes may run. The

distinction between a distributed system and a networked system (e.g. as in OSI) is provided by

the software rather than the hardware. That is, it is up to the software to provide the necessary

layers of transparency that allow a system to be distributed.

ODP is already a major effort between ISO and CCITT [1, 2, 3, 4] which will lead to

significant product development in the coming years. The ODP work identifies and attempts

to provide a framework for distributed systems so that a variety of computers and networks

provided by different vendors may be combined to form communicating systems. This has many

far reaching consequences for information sharing and provision. It also requires many levels of

transparency so that users of one system are unaware of the possible non-heterogeneity of the

other system being used to satisfy requests, e.g. access, location and migration transparencies

to name but three. These transparencies bring forward several other areas that need to be

addressed by the ODP community, e.g. security.

To deal with the complexity of ODP systems, the ODP community has identified five different

viewpoints from which an open distributed system should be considered. These are:

Enterprise Viewpoint: this focuses on the expression of purpose, policy and boundary for

an ODP system. That is, this viewpoint captures the requirements that justify and orient

the design of the distributed processing system.

Information Viewpoint: this focuses on the information and information processing func-

tions in an ODP system. That is, the information structures and information flows are

modelled and the constraints that apply to these are expressed, both from manipulation

and management standpoints.

Computational Viewpoint: this focuses on the expression of the functional decomposition

of an ODP system, and of the interworking and portability of ODP functions. That is, this

viewpoint deals with the operational and computational characteristics of the distributed

processing system, and the processes which change the information.

Engineering Viewpoint: this focuses on the expression of the infrastructure required to

support distributed processing. From this viewpoint issues such as performance, depend-

ability and distribution transparencies are dealt with.

2

Technology Viewpoint: this focuses on the expression of suitable technologies to support

distributed processing, including the hardware and software that comprise the local oper-

ating systems, input and output devices, etc.

Each of these viewpoints represents a different abstraction of the same original system. Using

a viewpoint results in a consideration of the system focusing on a particular concern. Different

viewpoints address different concerns, however there is likely to be some common ground between

them. Each of these viewpoints has its own associated language through which the concepts

and entities identified from the viewpoint may be dealt with.

2.2 Background to the Reference Model of ODP

Due to the rapid growth of distributed processing, a requirement for a co-ordinated framework

for standardisation has been identified. This has been set out in the Reference Model of ODP

(RM-ODP). It contains an architecture through which distribution, interworking and portability

can be achieved, where portability may be regarded as the ease with which a given system may

adapt to evolution.

The RM-ODP is based upon precise concepts derived from current distributed processing

developments and, as far as possible, on the use of FDTs to specify the architecture. The RM-

ODP uses an approach based upon the notion of objects, where an object may be regarded as an

identifiable encapsulated aspect of some real world entity. This allows for the easier development

of systems where inessential details of objects may be ignored. Some of the advantages of this

technique in system development are given in [14] and [15].

The RM-ODP consists of four main parts. These are:

Overview and Guide to Use (Part 1) [1]: contains an overview of ODP giving scope, justi-

fication, explanation of key concepts, an outline of the ODP architecture and explanatory

material on how the RM-ODP is to be understood and applied by its users.

Descriptive Model (Part 2) [2]: contains the definition of the concepts and analytical

framework and notation for the description of distributed processing systems.

Prescriptive Model (Part 3) [3]: contains the specification of the required characteristics

that qualify distributed systems as open, that is, the constraints to which ODP standards

must conform.

Architectural Semantics (Part 4) [4]: “currently” contains a formalisation of the ODP

modelling concepts defined in the Descriptive Model. This formalisation is achieved

through interpreting each modelling concept in terms of different FDTs.

The aims of this paper are to address the current problems in the architectural semantics work

(Part 4), specifically through consideration of the development of an architectural semantics for

ODP using the FDTs LOTOS [6] and Z [7]. It should be pointed out however, that there is no real

restriction to LOTOS and Z as to the choice of FDT used to develop the architectural semantics.

Other possibilities exist which have an equally valid claim to be suited to the development of an

architectural semantics for ODP, e.g. ESTELLE [8], SDL [9], RAISE [10]. The only limitation

placed upon the choice of FDT is that it be either standardised or very widely regarded. However,

for the purpose of this paper, LOTOS and Z will be studied as the main FDTs of international

relevance to distributed systems, one reason for this being that they represent disparate FDTs,

with LOTOS being constructive and algebraic whilst Z is more abstract and state oriented.

3

As stated previously, the use of natural language to define an architectural semantics is flawed in

that the architecture is often ambiguous or open to interpretation. Thus FDTs have been chosen

to generate an architectural semantics as they allow for the precise, mathematical definition of

concepts. Apart from the direct advantage of providing precision that would not otherwise be

available, using FDTs to give an architectural semantics allows for a comparison to be made of

different FDTs when used to provide a formal description of the same standard. An architec-

tural semantics also enables the semantic models of the FDTs to be compared to the standard

modelling concepts.

It is often the case that writing specifications proves to be difficult due to poor specification

structures to begin with. Thus having a correct architecture upon which specifications can be

based removes many of the difficulties involved in the actual writing of specifications. By a

similar argument, specifications written without being based on a well structured architecture

tend, not only to be difficult to write, but hard to understand and difficult to modify and extend.

Having a good specification architecture is also very useful for problems that are not well

defined by requiring detailed consideration of the informal problem statements. Thus attempting

to formalise “messy” problems directly leads to “messy” specifications.

An architectural semantics may be regarded as a set of precisely defined architectural con-

cepts. Examples of architectural concepts include notions such as action, object, interaction,

interaction point, type and subtype to name but a few. These concepts may be termed the

“building bricks” for more complex designs such as services and protocols. It should also be

noted that the building bricks developed in an architectural semantics may themselves be built

from other building bricks, thus the architectural semantics is hierarchical. The most basic

building bricks of all are concepts such as action and interaction point.

It should be noted here that the objectives of an architectural semantics are not to redefine

the concepts they are modelling, but to provide clarity so that formal interpretations of the

same concept are the same, or at least offer a level of compatibility. The architectural semantics

work should ensure a uniformity of style in writing formal descriptions of standards.

Thus when completed, the architectural semantics work should allow standards developers,

in this case the standards that are to be generated from the RM-ODP framework, to have a

clear unambiguous interpretation of the concepts contained within the RM-ODP. It should also

provide specifiers with a library of definitions which they may use to specify ODP standards

with.

Before continuing with the approach taken by [4], it is necessary to consider examples where

an architectural semantics was not provided and the subsequent problems this caused.

Problems occurred in the Reference Model for Open System Interconnection in several of

the basic concept definitions. For instance that of service primitive, service access point, service

data unit, entity and endpoint to name but a few of the problems. For example service data

units were not defined precisely enough which caused problems when specifications were written

that contained these concepts. The main problem with this concept was that its atomicity

was not defined. This had repercussions on whether protocol entities could forward parts of a

service data unit before it arrived fully. Similarly with service primitives which were defined in

[5], these could be interpreted in different ways. For example, imprecision existed in that it was

not stated whether service primitives were atomic or not, or whether they could be engaged in

by service users and service providers at the same time, or even whether invalid sequences of

service primitives could exist. Similar problems of imprecision existed for the other concepts

mentioned above.

4

Thus the generation of an architectural semantics for ODP is vital in uncovering these

problems at as early a stage as is possible.

The approach taken in the Part 2 of the RM-ODP [2], and hence in the architectural seman-

tics work is an object-oriented one. One definition of an object-oriented approach [15] is an

approach that has “classes and objects, inheritance and communication with messages”. This

is particularly useful for the ODP approach in that it enables inessential details of objects to be

ignored, thereby making the problems involved in obtaining the necessary transparencies for an

ODP system more manageable.

This object-oriented approach causes problems however, when it comes to the architectural

semantics work. These problems primarily stem from the fact that the FDTs presently used are

not object-oriented, that is they were developed before notions of object-orientation were widely

used.

4.1 Limitations of FDTs

As the architectural semantics work has to deal with object-oriented concepts, two main pos-

sibilities arise. Either, an object-oriented style of specification with the present FDTs may be

adopted or the use of an object-oriented FDT may be made. Each of these solutions causes its

own problems however.

4.1.1 The Role of Specification Style

LOTOS and Z both represent two disparate FDTs, neither of which however, provides an object-

oriented approach directly. They both allow for specifications styles giving varying degrees of

“object-orientedness”. More information on the role of specification styles for ODP may be

found in [20], however, this does not consider the object-oriented style.

Specification Style in Z

The FDT Z does not handle many of the object-oriented concepts very well because, generally

speaking, a Z specification may only be used to describe a single object. Hence notions such

as communication and interaction between objects are not easily dealt with. Similarly notions

such as type, deletion of an object, introduction of an object are problematic too.

Despite these problems, Z is still a very useful FDT with regard to the architectural semantics

work, as it allows the formal description of a single object to be done clearly and succinctly.

There also exist approaches in which Z can be specified in an approximate object-based

way [12]. A possible definition of an object-based approach [17] is one which allows for objects

and classes, but does not allow for inheritance or communication with messages. Here object

identifiers are used to obtain a system with more than one object (so called); the effect of an

operation on an object is promoted (with a framing schema) to an effect on the system. This

approach, however, does not handle classes of objects or allow for inheritance or communication

with messages. It also does not allow for operations on more than one object. This style goes as

far as possible without extending Z. It does however, allow for a sound theoretical base. It should

5

be noted, however, that with this approach the “objects” are not a language feature or regarded

as first class values, so this approach is not really object-based using Wegner’s definition [17, 18].

The conclusions to this with regard the architectural semantics work are either to accept the

limitations of Z with regard to object-oriented concepts and use it to describe a single object,

for which it is still a very useful FDT, or to agree upon a stable object-oriented version of Z,

e.g. [11], and possibly use it instead of Z (or alongside it) in [4]. This however, requires a

solid semantics being established for the object-oriented version and widespread agreement on

its usage.

Specification Style in LOTOS

The FDT LOTOS allows for a formalisation (interpretation) of many of the object-oriented

concepts contained in [2]. Often this requires that a given style of LOTOS is used. This brings

with it new problems, however, as far as the architectural semantics work is concerned, namely

prescriptivity and scalability. Other work with regard to the object-oriented style of specification

in LOTOS may be found in [19] and [21].

A Problem of Prescriptivity

This problem is best seen through an example. The older version 2 of [4] interpreted the definition

of an object from [2] as “a template instantiation — i.e. an instance of a LOTOS process”,

where a template was defined as “a process definition with formal parameters (though the value

parameter list may be omitted)”. This at first sight appeared a valid interpretation of an object

in LOTOS. However upon further consideration it became apparent that it stated nothing about

objects having unique identification.

In order for this to be correctly handled it puts restrictions on the specification style of LO-

TOS that may be used. That is, each instantiation of a process definition must have associated

with it a unique identifier which will represent the object identifier.

In LOTOS there are different ways that a process definition may be assigned this unique

identifier. For instance, when the process definition is instantiated or by the process definition

having some initial behaviour which generates a unique identifier. Thus it is possible to have

choices even within a given specification style. The architectural semantics work should be

general enough to allow for these choices, but precise enough to ensure that when specified, the

concept should satisfy one possible choice given in the architectural semantics work.

The question might be asked as to whether it is valid to restrict the users of the architectural

semantics work to a certain style of specification. This will have repercussions in that it may

not be easy to take any specification and identify the architectural semantic concepts contained

within it. This can be countered however, in that it is up to the specifiers of ODP systems to

use the architectural semantics work. Hence the restriction to a style of specification may be

seen as a valid restriction.

It should be noted here, however, that the issue of prescriptivity may also have repercussions

on the compatibility of the architectural semantics work for the given FDTs. That is, an

operation in a LOTOS specification should have the same effect on a given system as an operation

in a Z specification when used to describe the same system (standard). i.e. the specifications

of the same system should describe the same behaviours. Prescriptivity may limit this. Ideally,

there should be some form of compatibility between LOTOS and Z specifications of the same

system. This will affect the re-usability of the standards generated from the RM-ODP. That

2The version before the last international ODP meeting in Torino, November 1993.

6

is, it is not just isolated standards that are striven for, but standards that can be combined

and used by other standards. This search for commonality is not easy, e.g. LOTOS is more

constructive whilst Z is more abstract. The architectural semantics work should identify and

provide discussion on the problems here. The work contained in [22] addresses some of these

problems in its attempt to combine Z and CSP [23], upon which the process part of LOTOS is

partly based.

A Problem of Scalability

The problem of being too prescriptive introduces the problem of scalability. For instance it

is possible to specify a form of inheritance in LOTOS provided that a very restrictive style of

LOTOS is used, requiring that the inherited process have exit functionality. This means that

any process having noexit functionality may never be inherited from. This is a severe restriction

upon the specifier and one which is clearly not scalable.

The architectural semantics work should provide guidance on how specifiers may specify

concepts such as inheritance. It should also however, provide warnings of the problems that the

specification of these concepts may induce.

4.2 Introduction of Object-Oriented FDTs

Solutions to many of the problems that occur in the architectural semantics work would follow

if an object-oriented FDT were used 3, some examples of which include POOL [16] and Object-

Z [11]. However, an FDT’s use in [4] requires it to be either standardised or stable. As no

object-oriented FDT is either standardised or at the moment has the necessary stability to be

included in [4], this approach has not been taken. It is likely that unless considerable work

and international agreement takes place fairly soon, then it may be too late to include such

object-oriented FDTs into the architectural semantics work of ODP.

4.3 Technical Difficulties with Architectural Semantics

Besides the more indirect problems facing the architectural semantics work like prescriptivity

and scalability, several more immediately apparent technical problems exist. The notion of type

and hence notions such as class, subtype and subclass are particularly difficult to interpret in

the FDTs LOTOS and Z. Similarly, the notion of a location in space and time as identified in

[2] proves to be problematic.

4.3.1 The Problem of Type

A type as defined in [2] is simply a predicate. An X is of the type, or satisfies the type, if

the predicate holds for that X . Here X might be an object, an interface or an action.

The notion of type is implicitly associated with the notion of class, where a class is given by the

set of all X ’s satisfying some type. As may be seen, this is a very general notion of type

and one which proves to be problematic when interpreted in the FDTs LOTOS and Z. It should

be noted however, that it is generally difficult to give a formal definition to the notion of type

using an FDT, and not only the definition contained in [2] which proves to be problematic.

Both of the FDTs LOTOS and Z allow type predicates to be written. However, they do not

allow for a general “all-purpose” notion of a type predicate to be written that can be applied to

3It should be noted that SDL’92 has claims to be object-oriented, however, it does not yet have a fully stable

semantics.

7

all X ’s. The best that can be achieved is explicit examples of types given. Even through

this approach establishing the type of an X may be a non-trivial task. [24] addresses many

of the problems involved in establishing types and relationships between types.

4.3.2 The Problem of Location

[2] defines location as an interval of arbitrary size in time and space at which an action can

occur. This causes problems in the FDTs LOTOS and Z in that notions of space and time are

abstracted away from. To talk about explicit, absolute locations in metric space and time is

outside the scope of the FDTs LOTOS and Z. The best that can be achieved is that an abstract

interpretation of location based upon the structure of the given FDT is done.

As stated above the current architectural semantics work considers the FDT interpretation of

the basic modelling and specification concepts as found in [2]. This is a valid starting position

in the development of an architectural semantics for ODP, however it is limited in its scope. If

the architectural semantics work is to be regarded as a formalisation (or an interpretation) of

the ODP concepts, then without addressing the specification of the required characteristics that

qualify distributed systems as open, that is the concepts contained in [3], then the architectural

semantics work will be severely limited in its use.

Ideally, the architectural semantics work should consist of a formal conceptualisation of

the whole ODP-RM. Whilst this is a laudable goal it appears too difficult to achieve. Hence,

the current architectural semantics work has been reduced to an FDT interpretation of basic

modelling and specification concepts.

One could consider concepts contained in [3] to be a specialisation of the concepts contained

in [2]. For example, a stream interface as found in [3] might be considered a specialisation of an

interface as found in [2]. The problem with only considering an architectural semantics for the

basic modelling and specification concepts as found in [2] is that there may be no interpretation

of the specialisation of this concept. Consider the above example of an architectural semantics

for the basic modelling concept of an interface and its specialisation into a stream interface in

LOTOS. The basic modelling concept of an interface may be interpreted in LOTOS. However,

its specialisation to a stream interface may not be directly interpreted in LOTOS, although an

abstract representation of this concept may be achieved. The notion of flows of information and

the event structure of LOTOS do not really go hand-in-hand.

Thus the relationship between the [2], [3], and their interpretation into [4] may be shown as

is specialised as

Part2 ----------------------> Part3

concept concept

|| ||

is || || is

interpreted || || interpreted

by || || by

|| ||

\/ is specialised as \/

Part4-----------------------> Part4

FDT FDT

interpretation interpretation

8

The top line of this rectangle is represented by the [2] to [3] relationship of the RM-ODP.

The left and right hand sides of this rectangle represent the architectural semantics work.

Ideally the architectural semantics user should be able to specify systems from the different

viewpoints (languages). Thus the bottom right corner is the ideal. However, the current archi-

tectural semantics work only addresses basic modelling and specification concepts, that is, the

left hand side of this rectangle. As shown in the above example of interfaces in LOTOS, the

bottom line may not exist directly. Where this is the case it should be noted and conclusions

drawn. These conclusions need not necessarily make up part of the [4] document but could be

included in a Technical Report.

The next question that arises from this is which of the viewpoint languages is to be dealt

with. Ideally all of them, but realistically only the computational, information and engineering

languages will be addressed in the time allowed 4. Thus there should be a rectangle as above for

these viewpoint languages and for each of the FDTs. It is expected that the FDTs LOTOS, Z

and SDL 5 will be used to interpret the viewpoint languages. Other FDTs (ESTELLE, RAISE,

etc) may also be used if member bodies are prepared to make contributions (and the FDT is

very well known or standardised). If no contributions are received then it is likely that other

FDTs will be rather left behind in the ODP work of Part 4.

The above arguments identify the advantages to be gained from inclusion of the more prescriptive

concepts contained in [3] into the architectural semantics work contained in [4]. Care should

be taken before this is directly approached however. Problems may crop up which could cause

confusion as to the role of the architectural semantics work. One example in LOTOS of this might

be that an object (an instantiated process definition with some means of unique identification)

may not always be used in the different viewpoints. That is, can this method of generating

an object in LOTOS be used for all of the ODP viewpoints? Is it possible or desirable to

model enterprise, information, computational, engineering and technology objects from this

method of generating an object in LOTOS? For example, if an information object were to be

modelled in LOTOS then it might be better to model this through ACT ONE. This would allow

computational objects to deal with information objects directly in LOTOS.

The problem of the relationships 6 between the viewpoints also becomes much more difficult

to model and interpret when different FDTs are used. That is, it is difficult enough trying to

establish the relationship between, say, an information object in LOTOS and a computational

object in LOTOS. This problem becomes much more acute when the relationship between an

information object in Z and a computational object in LOTOS is attempted.

Hence the straightforward approach of simply adding the concepts contained in [3] into the

architectural semantics work needs to be approached carefully and methodically. To account for

this, [25] provides an initial feasibility study on the development of an architectural semantics for

4Much of the international community expects the architectural semantics work to go to Committee Draft
status in June 1994.

5 [26] contains an architectural semantics for the computational viewpoint language of [3] in SDL’92.
6It should be noted that the viewpoints may have no relationship. However, it is likely that there will generally

be some relationship between them. An example of this is the relation between the information and computational

viewpoints. If the information viewpoint is regarded as modelling the information of the ODP system and the

computational viewpoint as the functions which deal with this information, then some relation between the
viewpoints must exist.

9

the computational language of [3] in LOTOS, the results of which, in the opinion of the author,

reflect favourably in the use of LOTOS for the development of an architectural semantics for

the computational language of [3].

The current version of the architectural semantics work, as stated, deals only with the basic mod-

elling and specification concepts contained in [2]. In order to make the architectural semantics

work particularly useful and approachable, new areas need to be addressed.

The inclusion of the more prescriptive concepts contained in [3] needs to be addressed.

As identified above, however, caution is needed here so as not to confuse the whole of the

architectural semantics work.

It is likely that due to time limitations and political pressures, the inclusion of the more

prescriptive concepts of [3] may exist as a separate part of [4]. That is, to base the current

document wholly around a new work area would cause problems. Hence it is likely that the

newly introduced concepts would exist as a freestanding section of the architectural semantics

document. Thus if the work proved to be too problematic, then the whole of the document

would not necessarily have to be scrapped 7.

Also identified for future work has been the need for a large and complete example of the

formal specification of an ODP system, showing how the different viewpoints are related to one

another (if at all). It is likely that this large example may be attempted only when considerable

work has been done on the development of an architectural semantics for the different viewpoint

languages. This example may then be used as a guideline for would-be users of the architectural

semantics work.

Work also needs to be done on determining which of the FDTs is most suitable for the

different viewpoints. Suggestions may then be made to the users of the architectural semantics

work as to which FDT is most applicable to their needs.

Finally, the success or failure of the architectural semantics work depends to a great extent

on the tutorial nature of its content. The use of a large example would aid in this by giving a

“how it can be done” approach. However, many smaller examples showing the relationship of the

ODP concept to its representation in the respective FDTs would also aid greatly in the success

of the architectural semantics work. Hence a tutorial guide for the architectural semantics work

is necessary.

This paper has provided an insight into the architectural semantics work of ODP. It has iden-

tified the need for the work and has covered issues surrounding the current problems with the

work and the difficulties in finding solutions to these problems, not all of which are of a technical

nature. Time and politics may play a large role in the success or failure of this application of

FDTs. If this is not going to be a case of FDTs yet again not being fully exploited, then collabo-

rative international work is required immediately to provide a sound and apposite architectural

semantics for ODP. Both the basic modelling and specification concepts, and the specification

of the required characteristics that qualify distributed systems as open must be completed.

7To speed up the process of attempting to develop an architectural semantics for the more prescriptive concepts

contained in [3], an international email discussion group has been established. For more information regarding
this and access to the discussion group, the reader may in the first instance contact the author at the email

address given.

10

[1] Basic Reference Model of ODP — Part 1: [Recommendation X.901 - ISO 10746-1]

Overview and Guide to Use of the Reference Model.

[2] Basic Reference Model of ODP — Part 2: [Recommendation X.902 - ISO 10746-2] De-

scriptive Model.

[3] Basic Reference Model of ODP — Part 3: [Recommendation X.903 - ISO 10746-3] Pre-

scriptive Model.

[4] Basic Reference Model of ODP — Part 4: [Recommendation X.904 - ISO 10746-4] Archi-

tectural Semantics.

[5] Information Processing Systems — Data Communications — Network Service Definition.

ISO-IEC, April 1987, IS8348.

[6] Information Processing Systems — Open Systems Interconnection — LOTOS — A For-

mal Description Technique based on the Temporal Ordering of Observational Behaviour;

ISO/IEC 8807, International Organisation for Standardisation, Geneva.

[7] J.M. Spivey. Understanding Z : A Specification Language and its Formal Semantics. Cam-

bridge University Press, 1988.

[8] ISO (1989e) Information Processing Systems - Open System Interconnection - ESTELLE -

A Formal Description Technique Based on an Extended State Transition Model, ISO/IEC

9074, International Organisation for Standardisation, Geneva.

[9] Specification and Description Language, CCITT Z.100, International Consultative Com-

mittee on Telegraphy and Telephony, Geneva.

[10] Tutorial Notes - FORTE’93, Sixth International Conference on Formal Descriptive Tech-

niques, Boston, Massachusetts, USA, October 26-29, 1993. Edited by Richard L. Tenney.

[11] Object-Z: an Object-Oriented Extension to Z, D.A. Carrington, D. Duke, R. Duke, P. King,

G.A. Rose, G. Smith in Formal Descriptive Techniques FORTE’89 (North Holland, 1987)

pp 313-341, ed S. Vuong.

[12] Using Z as a Specification Calculus for Object-Oriented Systems, J.A. Hall in VDM’90:

VDM and Z - Formal Methods in Software Development, Lecture Notes in Computing

Science 1990, 428, pp 290-318.

[13] Object-Oriented Process Specification, S.A. Schuman, D.H. Pitt, P.J. Byers in Specification

and Verification of Concurrent Systems, Workshops in Computing, Stirling (Springer-Verlag

1990), pp 21-70, ed C. Rattray.

[14] Object-Oriented Design with Applications, Grady Booch. (Benjamin-Cummins, 1991).

[15] Object-Oriented Design, Second Edition, P. Coad, E. Yourdon, Yourdon Press, Prentice

Hall Building, Englewood Cliffs, NJ 07632.

[16] Issues in the Design of a Parallel Object-Oriented Language, P.H.M. America, Formal

Aspects of Computing 1 (1989), pp 366-411.

11

[17] The Object-Oriented Classification Paradigm, P. Wegner, Research Directions in Object-

Oriented Programming (MIT Press 1987), eds P. Wegner, B. Shriver.

[18] Dimensions of Object-Based Language Design, P. Wegner, OOPSLA’87 Proceedings, ACM

SIGPLAN Not, 1987, 22, (12), pp 168-182.

[19] LOTOS Design-Oriented Specifications in the Object-Based Style, Technical Report 84,

Department of Computing Science and Mathematics, April 1992, University of Stirling.

[20] Use of Formal Specification Techniques for ODP, ISO/IEC JTC1/SC21/WG7 N753.

[21] Object-Oriented Specification Style in LOTOS, W.H.P. van Hulzen, LOTOSPHERE Work

Package One, T1.1/RNL/N002 July 1989.

[22] A Message Passing System. An Example of Combining CSP and Z., M. Benjamin, Z User

Workshop, Workshops in Computing, ed J.E. Nicholls, Oxford 1989, Springer-Verlag.

[23] Communicating Sequential Processes, C.A.R. Hoare, Prentice-Hall International, Engle-

wood Cliffs, New Jersey, 1985.

[24] The Formal Specification in LOTOS of a Basic Type Manager, R.O. Sinnott, University of

Stirling (in preparation).

[25] An Initial Interpretation in the FDT LOTOS of the Computational Viewpoint Language

of Part 3 of the Basic Reference Model of Open Distributed Processing, R.O. Sinnott,

University of Stirling.

[26] Formalisation of the Computational Description Language, ISO/IEC JTC1/SC21/WG7

N773, November 1993.

12

