
A screen editor written in the Miranda1 functional
programming language

Simon P. Booth & Simon B. Jones
Department of Computing Science & Mathematics

University of Stirling
FK9 4LA

29 September 1994

Abstract

This paper explores the development of an interactive screen editor, in the
functional programming language Miranda, from a specification written in Z.
The program makes use of a set of interactive functions especially developed
to aid the writing of interactive programs (in Miranda). The editor developed
is fully featured and could be used to edit text, although the execution speed
is rather poor.

 1 Miranda is trademark of Research Software Ltd.

1. Introduction . 1

2. The Z specification & its implementation in Miranda . 3
2.1. Introduction . 3
2.2. The Specification: A Summary . 4
2.3. Differences from the Specification . 4

3. The Thompson Combinators . 8
3.1. Functional Programming and Lazy Evaluation 8
3.2. Interactions . 9

4. Modification to Thompson's Combinators . 12

5. Programming the editor . 14
5.1. The State . 14
5.2. Keyboard Management . 15
5.3. The editor function . 17

6. The Editor . 21
6.1. Functionality . 22

6.1.1. File Management . 22
6.1.2. Searching & Replacing . 22
6.1.3. Cut & Paste . 22
6.1.4. Left . 23
6.1.5. Exit . 23
6.1.6. Miscellaneous . 23

6.2. Function Keys . 23
6.3. Control Keys . 24
6.4. Operation . 25

7. Discussion . 27
7.1. Z specification . 27
7.2. Thompson Combinators . 28
7.3. Debugging and other developmental issues . 29
7.4. Conclusion . 30

8. References . 31

1. Introduction

In this paper we examine the use of the lazy functional programming

language Miranda to develop an interactive screen editor. The basic

specification of the editor is taken from the Z specification given in Sufrin1 and

the programming methodology is based on work by Thompson2. A Z

specification was chosen because it gives a concise mathematical meaning to

the specification; thus, proofs can be derived for certain features. Thompson's

combinators are derived from examining some of the problems associated

with interactive functional programs and provide many useful functions to

write interactive programs.

The Z specification will be implemented in a pragmatic fashion: this

will not be a strict exercise in the implementation of a specification features

that make sense in the specification but not necessarily when implementing

will be dropped. Section 2 discusses the differences between the

implementation and specification in detail.

The rationale behind Thompson's combinators and some of the

problems associated with interactive functional programming are discussed in

section 3. The combinators have been slightly modified. Details of the

modification are given in section 4.

An editor is an archetype of an interactive program where the user

types a command at the keyboard and then sees the result of this action on

the screen (e.g. word is deleted or a newline inserted). Indeed most modern

computer users would perceive this type of program as “normal”; the word

processor being used to type this paper does precisely this. So if functional

programming is to become more than an interesting area of research the

development of this type of program is important even though functional

languages may not at first sight seem well suited to this type of problem.

Miranda (among others) does address the problem by providing facilities for

terminal and file input and output. These facilities do provide a mechanism

1

for the development of interactive programs. The implementation of an editor

is discussed in section 5. (Note: input facilities are not consistent with purely

functional semantics there is no guarantee that a file read at time t1 equals

the file read at t2, as required for referential transparency).

The editor developed is intended as a usable tool that could actually

be used to edit files (albeit slowly), and so a full range of editing functions has

to be provided: arrow key motion; deletion of various objects (characters,

words); cut & paste; save & retrieve files, etc. Also, the user interface should

be simple to use with quicker access to the functionality for the experienced

user (of whom there is currently only one of the authors!). All of these

features are available and section 6 can be regarded as a “user manual”.

Listings of the programs are available from the authors.

2

2. The Z specification & its implementation in Miranda

2.1. Introduction

Z is a mathematical specification language based on set theory3,4. The

specification is usually given as “schema”s followed by an informal English

language description. This is best illustrated with a simple example from

Hayes5 that specifies an operation to look up an identifier in a symbol table:

 Lookup
 Ξ symtab
 s? : SYM
 v! : VAL

 s? dom(symtab) ∧
 v! = symtab(s?)

“Get the value associated with identifer s. Ensuring that s is in

the symbol table”

Ξsymtab declares symtab and symtab' (the state before and after the

operation) and specifies that symtab = symtab' (the operation does not change

the state). symtab is a schema itself which gives symtab: SYM VAL a

partial function from symbols (SYM) to values (VAL). s? is the input symbol

(? means input; ! means output), and v! the output value. All this is contained

in the first box in the schema the declaration part. The second box (predicate

part) describes the operation: s? dom(symtab) specifies that s? should be in

the symbol table (the domain of the state, symtab). The second,

v! = symtab(s?), states that the output value is associated with s?. These two

lines are “anded” together to form the predicate.

Z is useful because it allows specifications to be formulated in a

mathematical form and avoids the problems associated with natural language

descriptions. In Z the natural language part is only used to give a flavour of

what the mathematics is describing.

3

2.2. The Specification: A Summary

The specification is given in three parts. Firstly the editing subsystem is

defined; next the document display subsystem; finally the relationship

between the two is specified.

The editing subsystem is given as transformations on documents (i.e.

what changes in the document when, say, the left arrow key is pressed or a

letter inserted).

The display subsystem details how to display documents on a screen.

It defines a window (what the user actually sees) and how to map a document

to this window. It also specifies that the current cursor position must always

be visible to the user.

2.3. Differences from the Specification

In implementing the editor, Sufrin's specification has not been followed to the

letter: for instance, a mirror function is defined:

 mirror : DOC → DOC

 mirror (l, r) = (reverse(r), reverse(l))

where DOC is defined as seq[CH] x seq[CH]. Mirror is defined so that all

operations (like move, del, etc) can be defined as leftward operations and the

corresponding rightward operations are defined using mirror:

 right, left : (DOC DOC) → (DOC DOC)

 right (f) = (mirror f mirror)
 left (f) = f

4

So given a del operation that deletes the last character in the first

seq[CH] in a DOC (a leftward deletion), then the corresponding rightward

operation is given by:

mirror del mirror

applied to the document. This will delete the first character in the second

seq[CH] in a DOC.

Reversing the whole file twice (which the above implies) is too

inefficient for use in the editor and amounts to an enormous amount of work

to delete a character! It does, of course, simplify the specification as left/right

directional actions only need to be specified in one direction and then mirror

used to define the action in the opposite direction.

In order to avoid the use of mirror, our implementation has to specify

actions in both directions. So instead of a single move which is used in

conjunction with left and right (above) to achieve “cursor one character

left/right”, we have:

 move_left, move_right: DOC DOC

 move_left (l, r) = (head(l), <tail(l)> r | l =/ <>)
 move_right (l, r) = (l <front(r)>, last (r) | r =/ <>)

All the operations defined in the specification (move, del, find, replace,

cut & paste, etc) have been implemented in the editor and operations have

been added: move up, move down a line (using the appropriate arrow keys)

and move to line n.

The implementation of the keyboard mappings appears different but

is fundamentally the same. The specification suggests that certain editor

commands (QUOTE, FIND, REPLACE, etc) are directly mapped to keys (i.e.

there is a FIND “key”). The implementation does not have a FIND key but

5

rather a FIND command which is a sequence of keys: ESC sd abc (i.e. Escape

followed by sd (search down), space, then the string to find, abc). The

specification has a direct mapping between physical and logical keys whereas

the implementation does not always support this. All this implies is a change

to how commands are actually given to the editor. For instance, given above

is the sequence of keys that are pressed to make the editor find abc. In the

specification the sequence would be QUOTEabcFIND. (QUOTE is equivalent

to ESC and is used to introduce text that is not to be added to the document.)

QUOTEd text (as the specification calls it, e.g. abc above) is placed in

a DOC and the basic editor commands (move, del, left, right, etc) are available

to edit the string. The implementation only supports backspacing to delete

erroneously typed characters (arrow keys are ignored). Also, the editor does

not follow the specification's practice of placing the quoted text at the current

position on the screen but places the cursor on the status line (the bottom line

on the screen). Also note how in the specification the text is followed by the

command. Although this at first might seem unnatural there is a benefit in

that delimiting commands and their text is unnecessary. Our command text

(sd abc) style requires a delimiter but does have a more “natural” command

first approach.

Operations to find and replace throughout the remainder of the

document are also available (with two modes of operation: noconfirm and

confirm commands fp and fq). These operations can only be achieved via

multiple FIND & REPLACE key depressions in the specification, although the

amount of typing is reduced by the fact that both FIND and REPLACE recall

their previous values. FIND and REPLACE are available as ^F and ^R (see

section 6.3)

The display policy defined has been followed: the policy specified is

that the cursor must remain on screen at all times but beyond this the

specification takes no view. Exactly what policy is selected to deal with

situations when the cursor is about to move off the screen is left to the

programmer. (We implement a policy of moving half a screen height/width

6

in the appropriate direction when about to move over screen boundaries. This

helps to minimise screen refreshes as the document is traversed.)

The specification also develops a state for the editor. Initially this is

given as seq[CH] x seq[CH] (the strings to the left and right of the cursor

position) but, as the specification is developed, this is enriched to capture the

various new features being added to the editor. The actual state structure used

here is different from the specification. The differences arise due to the fact

that for, mathematical convenience in the specification, elements of the state

such as the last deleted text are given in the form of a document, i.e.

seq[CH] x seq[CH] where one of the strings will always be empty. These

have been programmed as seq[CH]. Also, the state used has an additional

feature: a number of boolean values are contained within the state. These

values are used to keep track of certain events: such as whether the file has

been saved since the last modification. Two additional seq [CH] are also

present: one to indicate whether the editor is in insert or overwrite mode (it

is written to the status line on the screen to indicate the mode) and the other

to hold the file name. The insert/overwrite modes are another extension to the

specification, which only supports insert. A stack structure is present seq

[edit_mode] which is used to keep track of what “mode” (command, insert, etc)

the editor is currently in. The editor supports several different modes and a

stack is the simplest way of keeping track of what mode in editor was in as

certain operations terminate.

A full definition of the operation of the editor is given in section 6.

7

3. The Thompson Combinators

3.1. Functional Programming and Lazy Evaluation

Functional programming is based on the definition of functions that evaluate

lists. A classic example is a function to sort a list xs (using the quicksort

algorithm):

sort [] = []
sort (x:xs) = sort [y | y <- xs; y <= x] ++ [x] ++ sort [y | y <- xs; y > x]

Some of the elegance of functional programming can be gained from

the above definition of sort: it could be regarded as a specification.

Lazy functional languages only actually evaluate arguments when they

are needed. Thus if we ask for the first item in a list (hd), a lazy functional

language will then only evaluate the first item when it is needed. In a lazy

language we are quite at liberty to specify the first item from an infinite list

as the language having evaluated the first item does not evaluate the

remainder:

hd [1..] = 1

This differs considerably from an eager language which evaluates the

whole list first. This “evaluate when needed approach” can be exploited to

provide mechanisms to read standard input. In Miranda, $-, stands for the

contents of standard input (as a list of characters)

hd $-

will evaluate (or get) the first character from standard input. Note that there

are problems when standard input is the keyboard as most operating systems

will buffer the input until the return key is pressed and so the first character

cannot be obtained until return is pressed:

8

Mi r anda hd $-
1234
' 1'
Mi r anda

This represents a problem for any type of interactive program that

requires to deal with each character as it is typed. This will be discussed later

in section 5.3.

3.2. Interactions

In Miranda an interactive program reads a stream of input and writes a

stream of output. Both the input stream and the output stream are treated as

infinite lists and so if we define the types:

input == [char]

output == [char]

then a function with the type

input output

would have an appropriate type for simple interactions, i.e. take some input

and produce some output (like the function above to produce the first

character). However, we need a more sophisticated type of behaviour for

proper interactive programs; an interaction should return the unconsumed

portion of the input (i.e. the characters that it has not used) for use in later

interactions. This type of interaction would be of the type:

input (input, output)

A function to echo the first input character could be rewritten as

(assuming that the input stream is not empty):

my_head (x:xs) = (xs, [x])

9

Thompson2 introduces a further (and powerful) refinement to this

model: a state which is passed from one interaction to the next. This is

modelled, in general, by supplying the initial interaction with a state, of type

*, and the interaction returning a final/new state, possibly of a different type,

**, on termination. This gives a general type of partial interactions:

interact * ** == (input, *) (input, **, output)

The addition of the state information allows an interactive function to

act on the initial state and return (possibly) a new state plus any output that

the operation may generate. A simple example of this type of program would

be a function to get the next character in the input stream, to add that

character to the state (returning the new state) and, say, producing no output:

get_char :: interact [char] [char]
get_char (in, st) = (tl in, (hd in):st, [])

(tl returns a list without its head element).

A suite of input/output and control combinators (write, writeln, alt, etc)

with types similar to that above are provided (by Thompson) with Miranda.

The actual interact type is:

interact * ** == ([[char]], *) ([[char]], **, [[char]])

This differs from the above in that this breaks the input/output streams into

lines rather than characters. The write combinator is

write :: [char] -> interact * *
write outstring (in, st) = (in, st, [outstring])

and get_char

get_char :: interact [char] [char]
get_char ((i:in), st) = ((tl i):in, (hd i):st, [])

10

an important control combinator is the one that sequences interactive

operations correctly (sq):

sq :: interact * ** -> interact ** *** -> interact * ***
sq inter1 inter2 x =

make_output out1 (inter2 (rest, st))
where (rest, st, out1) = inter1 x

make_output is a function that places its first argument at the front of the

output stream.

11

4. Modification to Thompson's Combinators

A fundamental feature in any editor is the ability to save files! This means that

the interact type must be changed as files cannot be saved if the output type

is [[char]]. In Miranda the value of an expression is a list of “system

messages”. The type sys_message has definition (where file == [char]):

sys_message == Stdout [char] | Stderr [char] | ToFile file [char] |
Closefile file | Appendfile file | System [char] |
Exit num

Miranda silently converts anything that is not sys_message to this form (so

most of the time we do not need to know about sys_message). Example:

Mi r anda 2+5
7

The 7 is the result of the conversion: [Stdout (show(2+5))].

To allow the usage of the ToFile component we must change the output

type to sys_message. The interact type becomes:

interact * ** == ([[char]], *) ([[char]], **, [sys_message])

All the Thompson functions have been changed (where necessary) to reflect

this. Thus write becomes:

write :: [char] -> interact * *
write outstring (in,st)
 = (in,st,[Stdout outstring])

12

We also added the combinators get_char and get_char_out. The first is described

in Thompson2 but is missing from the actual scripts provided with Miranda.

The second is new: it is like get_char, but places the character on the output

stream. Its definition is:

get_char_out :: interact [char] [char]
get_char_out ((i:in), st) =

((tl i):in, first:st, [Stdout [first]])
where first = hd i

13

5. Programming the editor

We now discuss some of the programming issues. Firstly a full definition of

the state is given.

5.1. The State

The state is fundamental to the use of the combinators and is defined in the

Z specification. Below is the Miranda for the state:

file_name == [char]
status_line == [char]
left_text_str == [char]
right_text_str == [char]
deleted == [char]
last_find == [char]
last_rep == [char]
re_cycle == (deleted, last_find, last_rep)
command == ([char], char)

edit_mode ::= Com | Ins | Ovr | End | YesNo | Number

state == ((left_text_str2, right_text_str, status_line, re_cycle, file_name),
(num, num, num, num, num, num, num),
(bool, bool, bool, bool),
[edit_mode], command)

The nums in the second component of the state contain the following:

current on-screen character position (x), current on-screen line position (y),

number of characters currently off screen to left (x offset), number of lines

currently above screen (y offset), height of screen, width of screen, length of

left text used by cut and paste operation (mark sets this).

The booleans in the third component of the state are: True if there are

no outstanding changes to the text since the last save operation, True if the

 2 The left string is stored in the state in reverse order. This is because
it is computationally cheaper to determine the first n elements in the
string than the last n. Of course, it does mean that reverse has to be used
when moving n elements from either the left to the right or the right to
the left.

14

screen requires redrawing, True if a mark (for a cut/copy and paste) has been

set. The last one is currently unused.

The edit_mode is used as a stack containing the edit modes:

• Com In command mode. All text entered is command (appears on

status line);

• Ins Insert mode. All characters appear on screen and are added to

left string;

• Ovr Overwrite. All characters appear on screen. First character of

right string is removed and typed character is added to left string;

• End Exit editor;

• YesNo Only Y or N can be entered;

• Number Only a number can be entered;

The command part of the state has two components [char] for the actual text of

the command and char for the command delimiter.

5.2. Keyboard Management

Although any screen editor must deal with any character typed at the

keyboard, some keys generate several characters. For instance, → generates Esc,

[, C. A special function get_keyboard deals with this:

get_keyboard :: interact [char] edit_action
get_keyboard = sq get_char (alt normal_letter aletter special)

sq and alt3 are two combinators for building interactions. sq is defined at the

end of section 3.2 (page 11)

 3

alt :: condition * -> interact * ** -> interact * ** -> interact * **
alt cond inter1 inter2 x
 = inter1 x , if cond x
 = inter2 x , otherwise

15

get_keyboard reads one character. If it is a special character then further

characters may be read. The two interactions aletter and special encode the

character or character sequence read as an edit_action and return this as the

final state. The type edit_action is defined as follows (a full defintion is given

in section 5.3):

edit_action ::= Again search_dir |
Ask text |
Cerror text |
Change char |
…

For example, get_keyboard maps “→” (i.e. Esc[C) to Do (Move_Right 1)

and similarly maps all the special keys4 to Do key_action. The type for

key_action is:

key_action ::= Move_Right num | Move_Left num |
Move_Up | Move_Down |
Delete_Char | Delete_Line |
Insert_Char | Insert_Line |
Backspace |
Escape char |
Previous | Next |
Home | Shift_Home |
F1 num | F2 num | F3 num | F4 num |
F5 num | F6 num | F7 num | F8 num |
Select |
Unknown

A normal qwerty key is mapped to Normal char.

Thus get_keyboard returns to the editor a logical encoding of the key

pressed and not the sequence of characters that the key generates. (Note:

typing Esc[C explicitly causes get_keyboard to return Do (Move_Right 1), just as

if → had been pressed)

 4 Keys that generate more than a sequence of characters and the
sequence always starts with Esc.

16

get_keyboard can only map the arrow keys to Do (Move_Right 1),

Do (Move_Left 1), Do (Move_Up 1), Do (Move_Down 1). The num is present in

the type definition because Do (Move_Right n) is needed by the editor to

perform larger moves. For instance, move to right word boundary is achieved

by calculating the number of Move_Rights required and then performing the

edit_action: Do (Move_Right n).

The editor can be driven by pressing a function key (which produces

a menu on the status line) and then selecting the option wanted by typing the

appropriate number. The actual pressing of the function key, e.g. F1, produces

Do (F1 0) and changes the mode to indicate that a function key has been

pressed (Do (F1 0)) is the edit_action to place the menu on the status line,

similarly for F2-F8). When the user then enters their choice, get_keyboard

returns Normal char. The edit_action Do (F1 0) then returns the new edit_action

Do (F1 n). (At this point char must be a character in the range 0-9. The editor

enforces this, get_keyboard does not know what mode the editor is in.)

5.3. The editor function

The main function editor has type:

editor :: edit_action -> state -> (state, output)

where edit_action has definition:

edit_action ::= Again search_dir |
Ask text |
Cerror text |
Change char |
Confirm text text reply |
Copy |
Ctrl num |
Cut |
Noconf text text |
Delete_word text |
Delete_Left_Word | Delete_Left_Line | Delete_Left_Doc |
Delete_Right_Word | Delete_Right_Line | Delete_Right_Doc |
Do key_action |

17

Dump5 |
Fetch file_name |
Finish reply |
Go direction num |
Goto num |
Insert_word text |
Keep |
Look text search_dir |
Mark |
Message text |
Move_Left_Word | Move_Left_Line | Move_Left_Doc |
Move_Right_Word | Move_Right_Line | Move_Right_Doc |
Normal char |
Paste |
Pop | Push edit_mode |
Redraw |
Find_rep text text | Find_rep_q text text |
Replace text reply |
Search text search_dir |
Store file_name reply |
Unmark

these are the editor commands. Note that editor does not have an interact type.

This is because it does not interact with the input stream but rather with

get_keyboard. editor and get_keyboard are joined together in the edit function:

edit :: interact state state
edit (in, st) = (rem_keyb, current_state, out)

where (rem_keyb, from_keyb, for_screen) = get_keyboard (in, [])
(current_state, out) = editor from_keyb st

(Note that from_keyb is an edit_action, which editor then applies to it). edit has

the correct type and can be used with the Thompson combinators.

 5 Dump is a special edit_action (accessed via typing Ctrl-A) that writes
out the current state of the editor to a specified (in the program code)
window. It is useful for debugging purposes.

18

The edit function needs to be placed in a “loop” and in the Thompson

combinators there is a while function:

while :: condition * -> interact * * -> interact * *
while cond inter
 = whi
 where
 whi = alt cond (inter $sq whi) null

and our condition predicate is:

continue_editing (in, st) = if get_mode st ~= End

(get_mode returns the first item of edit_mode) giving:

while continue_editing edit

as the function that forms the heart of the editor. Before this function is

evaluated some screen management must take place and the buffering must

be modified (by default all input is buffered until a return is pressed). This

leads to the function:

edit_prog :: interact state state
edit_prog =

alt start_off
(seq3 (write initialise_screen)

(while continue_editing edit)
(alt stop_on

(write shutdown)
(write "Failed to switch terminal to normal i/o")))

(write "Failed to initialise terminal")

where seq3 runs a sequence of three interactions (ensuring that any output

appears in the correct order). start_off6 returns True if normal keyboard

 6

start_off = begin off
begin :: (text, text, num) -> ([[char]], *) -> bool
begin (s, t, 0) (in, st) = True

19

buffering can be switched off similarly stop_on1 if it can be returned to

normal. initialise_screen and shutdown send control sequences to the screen to

perform various tasks (clear screen, position cursor, etc).

Finally, we use the combinator run (from Thompson2, as modified in

section 4) to provide the complete editor function (ns):

ns = run edit_prog start_state do_nothing

(run requires a function to be applied to the final state and do_nothing does

just that!). run also provides for the input stream to the interactive function

edit_prog to be standard input.

begin (s, t, n) (in, st) = False

stop_on = stop on
stop :: (text, text, num) -> ([[char]], *) -> bool
stop (s, t, 0) (in, st) = True
stop (s, t, n) (in, st) = False

where

off = system ttydisable
on = system ttyenable
ttydisable = "stty -echo -icanon min '^A' -isig -ixon <"++tty
ttyenable = "stty echo icanon min '^D' isig ixon < "++tty
tty = getenv "TTY"

ttydisable is the UNIX command string to switch buffering off, getenv
returns the value of the specified environment variable and system
returns a 3-tuple comprising of standard output, error output and exit
status.

20

6. The Editor

We set out to build an editor with a functionality and interface that could be

used by a “naive” computer user, with one caveat: response times Miranda

is an interpretive system and was never likely to provide response times quick

enough to satisfy a user actually using the system. Faster functional languages

are available. Miranda was chosen because it was both available and familiar.

Also, whereever possible in the programming of the editor, existing

commands were re-cycled to avoid writing specific code to perform specific

tasks. For instance, the delete left line command is programmed as a mark,

move to beginning of line, cut. This approach although defendable in software

engineering terms is unlikely to help produce software that has acceptable

response times (especially with an interpretive functional language!)

The desire to build an editor that was useful to the naive user was

fundamental in the choice to drive the editor through the functions keys (F1-

F8) and to implement all the features “advertised” on other keys7 delete

char, prev (page down), etc. (The keyboard in question being an HP

workstation keyboard although any other keyboard could easily be

implemented.) When the function keys are used all additional information

(filenames, search strings) is prompted for. There is also a mechanism to type

in the commands and parameters: this mode of operation is switched to by

pressing the Escape key. After this, all text typed up to the next return is dealt

with as a command and any missing information is prompted for. Switching

to “command” mode also moves the cursor to the bottom line of the screen

out of the actual text being edited. The bottom line is also used as a status line

(this is where all prompts appear): the status being Insert or Over with the

usual meanings. All commands can be abandoned by typing Ctrl-C.

 7 These functions are available via control key combinations for the
non-HP keyboard user. See section 6.3.

21

6.1. Functionality

The actual editing functions that the editor supports are drawn from Sufrin's

specification. The following is full description (divided into various

categories). These commands can only be typed after typing Esc ([] means

optional):

6.1.1. File Management

• get [<filename>] Read file. If filename not supplied then prompt. If

file does not exist then issue error message.

• sa [<filename>] [y/ n/ a] Save file. If no filename given get from

state. If none in state prompt. If file exists prompt for overwrite

permission ask for new name. If “a” abandon command. User can type

sa f i l e. dat y to automatically overwrite.

6.1.2. Searching & Replacing

All the search and replacing commands can recall their previous arguments.

• su [<text>] Search up

• sd [<text>] Search down

• au Repeat last search up (prompt if search string missing)

• ad Repeat last search down (prompt if search string missing)

• rp [<text>] Replace last found text with <text>

• fp [<text>] [<text'>] Replace text with text' throughout remainder of

file. Do not ask. Prompt for any missing information

• fq [<text>] [<text'>] Replace text with text' throughout remainder of

file. Ask. Prompt for any missing information

6.1.3. Cut & Paste

• mk Mark text. If used n times marks nth position only

• ct Cut text into buffer (checks for mark)

• cp Copy text into buffer (checks for mark)

• pt Paste from buffer

• um Unmark text

22

6.1.4. Left Movement & Deletion

• mlw Move left to word boundary (move left word)

• mll Move to beginning of line (also ^b)

• mld Move to beginning of document (also Home)

• dlw Delete to beginning of word

• dll Delete to beginning of line

• dld Delete to beginning of document

Right movement and deletion As above with r (mrl) with ^e for move to

end of line and shift+Home for end of document

6.1.5. Exiting

• ex [y/ n] Exit editor. If there are unsaved changes to the file the user

is asked whether to save the file or not (using store command) and

then editor exits. User can override with ex y .

6.1.6. Miscellaneous

• re Redraw screen.

• go <n> Goto line n.

• ch [<c>] Change delimiter to c. Default delimiters are space or \.

6.2. Function Keys

The function keys give the following menu choices:

F1 1) Get File

2) Save save file with automatic overwrite (if exists)

3) Save As save file with new name (or name file)

4) Save & Exit save file and exit (if file exists overwrite permission

requested)

5) Quit Quit. No questions asked.

23

F2 Search: 1) -> Search down

2) <- Search up

3) Replace

4) Find & Replace

5) Query

Repeat: 6) -> Repeat last search down

7) <- Repeat last search up

F3 1) Mark

2) Cut

3) Copy

4) Paste

5) Unmark

F4 Left -- Moves: 1) Word

2) Line

3) Doc

Deletes: 4) Word

5) Line

6) Doc

F5 Right version of F4

F8 1) Goto Line

2) Redraw

3) Change

6.3. Control Keys

The control key in combination with certain characters has meaning:

Ctrl-B: Move to beginning of line.

Ctrl-C: Abandon command! (This cannot be used to abandon, say, a

global search and replace operation once it has started because

the editor only processes the Ctrl-C when it has finished the

previous operation. Ctrl-C does not have its “normal” meaning

24

because normal keyboard buffering has been switched off by

the editor.)

Ctrl-D: Delete Character.

Ctrl-E: Move to end of line.

Ctrl-F: Equivalent to FIND key.

Ctrl-H: Backspace.

Ctrl-I: Insert/Overwrite.

Ctrl-J: Delete Line.

Ctrl-L: Insert Line.

Ctrl-N: Page down.

Ctrl-O: Beginning of document.

Ctrl-P: Page up.

Ctrl-R: Equivalent to REPLACE key.

Ctrl-S: Find next space.

Ctrl-T: End of document.

Ctrl used in conjunction with anything else produces the message "Ctrl n not

defined" (n = ASCII sequence number.)

6.4. Operation

The editor is simple enough to start, once in the Miranda environment, simply

enter ns as the expression to be evaluated8. The screen will then clear and

“Insert” will appear on the right-hand side of the status line. The editor is

now ready to be used. If, say, we now pressed F1 we would see:

1) Get Fi l e. 2) Save. 3) Save As. 4) Save & Exi t . 5) Qui t

(the remainder of the screen would be blank). We simply select the option we

require. If we chose 1, we would be prompted for the file name:

 8 In a UNIX environment, the environment variable TTY must be set
to the standard output so that normal terminal i/o can be switched off
and on via the system function use of the stty command (see footnote on
page 19).

25

Fi l ename:

and so on. When a search and replace operation is being performed the

recalled string always appears in the prompt. If “.m” was the last search

string, then F2,1 would produce:

Sear ch t ext [. m] :

(if there was no previous string then square brackets would contain nothing).

To change the string, simply type in a new one and the search will act on that.

26

7. Discussion

The development of the editor was intended to investigate the programming

of a Z specification in a functional language. During this exercise we also took

advantage of the opportunity to examine the usefulness of the Thompson

combinators and what type of development environment Miranda provided.

7.1. Z specification

Sufrin's specification was developed as a exercise in specifications and not

with a view to developing an editor (although it was programmed at the

time), the main motivation was to specify a screen editor. In our

implementation, as already stated in details in section 2.3, we moved away

from the specification for purely pragmatic reasons (a future exercise may well

involve a direct translation). We also changed the appearance of the user

interface in a number of ways and avoided using the inefficient mirror

definition.

Undoubtedly, Z has enormous power because of the precision and

clarity that mathematics gives to the specification (although mathematics

cannot stop errors or others faults in the specification). But assuming that the

specification is correct this still leaves the problem of ensuring that the

specification is programmed correctly.

Dealing with faults in a specification has been addressed by techniques

like the me-too6 method. me-too is an executable specification language that

allows specifications to be tested (but me-too is only intended for prototyping

not developing actual working programs). In a commercial environment this

allows the customer to use a working model that if acceptable can then be

developed into the final program. This still leaves the development of a

correctly working program as a problem but it does help ensure that a

working version of the specification can be inspected. This method views the

program as the specification. D.A. Turner, the designer of Miranda7, has

27

supported this approach in the absence of efficient implementations of

functional programming languages.

Clearly, some method of ensuring that a specification can be translated

into a usable working program is highly desirable. The ability to relate the

specification and the program together in the same fashion as a compiler does

for, say, Pascal and machine code should bring major benefits in program

reliability and ensuring that specifications are actually met; this would really

be a self-documenting program style. Some of the issues involved in

translating specifications to programs are discussed in C.B. Jones8.

7.2. Thompson Combinators

These proved a useful set of functions even though they lacked interactions

of the form get_char (which we added) and were not quite of the right type.

The minor changes and additions we have made do add a good deal to the

usefulness, as the additions we made were all driven by the need to develop

an interactive application that examined and could respond to every key

stroke. Less pleasing was the need use operating system specific code to

switch off normal keyboard buffering so that the application could receive

every character as it is typed.

These functions undoubtedly make the development of an interactive

functional program much simpler. The use of the state also makes quite

explicit the data structure that the application is using and by using selector9

functions to access the state, it can quickly and easily have its structure

changed. This gives great flexibility when developing a program to

incorporate new ideas or changes it is an excellent paradigm for

programming in any language because it packages up all the components of

the application into a single data structure. In an imperative program this

 9 Selector functions are used to extract parts of data structures.
Examples are fst and snd which extract the first and second components
of a 2-tuple (i.e. fst (x, y) = x)

28

information is potentially scattered about the various procedures whereas here

it is quite clear. (Indeed, the state in the specification never appears explicitly.)

7.3. Debugging and other developmental issues

Developing a reasonably large scale application like a screen-editor does allow

the appreciation of a language from not only the elegance of design or

implementation view but as a program development tool.

The editor developed here consists of approximately 1,000 lines of

program code (i.e. blank lines and comments are ignored). These 1,000 lines

are divided up into 20 different files. This, by modern standards, is positively

tiny (PC based Windows programs often consist of 100,000's of lines or more

of code), but we believe it is large enough to pose problems that allow the

examination of the language as a large scale program development tool.

Traditionally languages have some of debugging tool(s) available. The

debugger provides various mechanisms to get “inside” the program when it

is executing. Developmental/experimental languages do not generally have

this type of tool available (this is certainly the case with Miranda), usually

because the development of such tools would take considerable time and,

initially, are not required: the languages are not going to be used to produce

large/commercial programs. In the case of lazy functional languages the

reasons are deeper than just the inconvenience of production: the nature of

lazy evaluation does not lend itself to normal debugger methods. Unlike an

imperative language in which the sequence of evaluation is explicit, with a

lazy language evaluations are only done when they are needed and a

debugger that evaluated a function for whatever reason could, and probably

would, change the order of evaluation. This particular aspect of functional

languages is active area of research and a number of alternative debugging

methods have been proposed: algorithmic and semantic debugging9, dataflow

analysis10 and “time travelling”11. Investigations in this area may well form

part of a future research for us. In particular, we may consider the

29

development of a set of tools (a workbench) to aid the development and

debugging of functional programmes.

7.4. Conclusion

We have shown that a real interactive application can be developed using a

lazy functional languages. The resulting program is, at 1,000 lines, compact for

the functionality provided (this squares well with the often quoted statistic

that imperative language programs are five-to-ten times larger). Further

operations could easily be added but this would not alleviate the major

drawback: the program is simply far too slow to ever be used by anyone

wishing to do some “real” editing this will remain a problem (for Miranda)

until a compiler becomes available. As it stands our work could be viewed as

a prototype of an editor that we could now implement using a compilable

language or, better still, transform into a compilable language.

30

8. References

1. B. Sufrin, Formal Specification of a Display Editor, Programming Research
Group Research Report, Oxford University, 1981.

2. S.J. Thompson, Interactive Functional Programs: a method and a formal
semantics, UKC Computing Laboratory Report No 48, 1987

3. A. Diller, Z An Introduction to Formal Methods, Wiley, 1990

4. J.M. Spivey, The Z Notation. A Reference Manual, Prentice-Hall, 1989

5. I. Hayes (Ed), Specification Case Studies, Prentice-Hall, 1987

6. H. Alexander & V. Jones, Software Design and Prototyping using me too,
Prentice-Hall, 1990.

7. D.A. Turner, Functional Programs as Executable Specifications,
Mathematical Logic and Programming Languages (ed. C.A.R Hoare
and J.C Shepherdson), Prentice-Hall, 1985, pp29-50

8. C.B.Jones, Systematic Software Development using VDM, Prentice-
Hall,1990

9. C. Hall, K. Hammond & J. O'Donnell, An Algorithmic and Semantic
Approach to Debugging, Functional Programming (Glasgow 1990),
Workshops in Computing, Springer-Verlag, Aug 1990, pp44-53

10. D. Sinclair, Debugging by Dataflow, Functional Programming, Glasgow
1991,Springer-Verlag, 1991, pp347-351

11. A.P Tolmach & A.W.Appel, Debugging Standard ML without Reverse
Engineering, Proc ACM Conf on Lisp & Functional Programming 90,
June 1990, pp1-12

12. R. Bird & P. Wadler, Introduction to Functional Programming, Prentice-
Hall, 1987.

13. C. Reade, Elements of Functional Programming, Addison-Wesley, 1989.

14. Miranda System Manual, Research Software Limited, 1989

31

