R R R L L RN R RN LA R R N LR N R N N AN R R R N N N R R R IR IR AR AR N RN AT Y IHHIIHHH AR RSRNRRERD

Department of Computing Science and Mathematics
Unwversity of Stirling

O =2 A
A N AT IR

SOLVe: specification using an
object oriented, LOTOS based, visual language

Ashley M‘Clenaghan

Technical Report CSM-115

January 1994

Department of Computing Science and Mathematics
Unwersity of Stirling

SOLVe: specification using an
object oriented, LOTOS based, visual language

Ashley M¢‘Clenaghan

Department of Computing Science and Mathematics, University of Stirling
Stirling FK9 4LA, Scotland

Telephone +44-786-467421, Facsimile +44-786-464551
Email amc@compscistirling.ac.uk

Technical Report CSM-115

January 1994

Contents

Abstract

1 Introduction to SPLICE
1.1 Context

1.2 Objectives L e

1.3 Related work

1.4 Progress L e

2 What SOLVe is

3 Related work on interactive-systems

3.1 Backgroundo o

3.2 Existing tools e

4 The SOLVe system
5 Object-orientation

6 The SOLVe object-oriented model
6.1 Objects and messages

6.2 Instance parametersand methods. L.

7 The SOLVe language

8 Using SOLVe: an example

8.1 Informal requirements

8.2 The SOLVe specification e
8.3 The LOTOS specification i i o

8.4 Animating the specification

8.4.1 Start-up
8.4.2 Displaying event offers oo o0 oo

N — = =

10

14
14
14
16
17
17
18

9

10

11

8.4.3 Choosing events from the menu o 0oL

8.4.4 Choosing automatic animation

8.4.5 Direct interaction with the specification

The SOLVe toolset

9.1 The editor e
9.2 The parser e e e
9.3 The displayer e e e e e
9.4 The animator Lo e
9.5 The hippo simulator Lo

9.6 The solvescript Lo

Translating SOLVe to LOTOS

10.1 The SOLVe modelin LOTOS e
10.2 An outline of the translation algorithm
10.2.1 Translating the description shell and object declarations
10.2.2 Translating an object definition oo oL

10.2.3 Translation of a method definition

10.2.4 Translation of an Assign statement

10.2.5 Translation of an AskWait call

10.2.6 Translationofa Tellcall

10.2.7 Translation of an If statement

10.2.8 Translation of a While statement

Further work and conclusions

Architecture of the animator, displayer and hippo tools
A.1 Communications

A.2 Interworking architecture

File structure of SOLVe toolset
B.1 Structure of the SOILVe toolset

B.2 Modifications to SEDOS toolset

Syntax of the SOLVe language

C.1 SOLVe expressions v v v v vt it i e e e e
C.2 SHNINGS . . v v o e e e e
C.3 Reserved words L o

C.4 Other reserved identifiers

ii

20
21
22

25
25
26
26
26
27
27

38

43
43
44

45
45
47

48
48
50
50

C.5 Static semantic errors
D SOLVe specification of a VCR on-screen control system

E LOTOS specification of a VCR on-screen control system

iii

92

54

59

Abstract

SOLVe is a language and set of software tools developed by the SPLICET project [Tur92]. SOLVe
is experimental, it is not a mature system.

SOLVe is particularly suited for the formal specification and prototyping of interactive-systems.
A SOLVe specification consists of a number of inter-communicating objects. Objects control
on-screen icons. Clicking or dragging object icons send messages to the objects.

A SOLVe specification may be interactively animated. This is achieved by translating the
SOLVe spedification into LOTOS [ISO89], then executing the LOTOS using the hippo simulator.
Events output by the LOTOS simulation drive icons in an X widget and, reciprocally, mouse
manipulation of these icons drives the LOTOS simulation.

This document is a tutorial, user guide, and SPLICE project report on SOLVe.

Key phrases: requirements capture and prototyping, LOTOS generation, object-oriented, interactive-

systerins.

iv

Chapter 1

Introduction to SPLICE

1.1 Context

The requirements capture and specification activity is a difficult, yet extremely important part
of system development. Errors in the top-level specification have a major impact on later
refinements. The SPLICE project conjectures that the requirements capture activity can benefit
from an injection of formalism.

1.2 Objectives

The objective of the SPLICE project [Tur92] is to develop methods and software tools that
support the use of LOTOS [ISO89, Tur93b, Tur89] for requirements capture activities in a
number of selected application domains. The aim of the project is to make the benefits of
formal specification accessible to non-formalists. The methods and tools will present LOTOS
specifications in a fashion which is intelligible to users untrained in the use of LOTOS. SOLVe

is one thread of SPLICE research work.

1.3 Related work

Previous projects on requirements capture methods include CORE (Controlled Requirements
Expression), FOREST (Formal Requirements Specification, Alvey SE/015) and FORSITE (A
Specification Support Environments, Alvey SE/065). CORE was concerned with a method
rather than tools, and had no (mathematically) formal basis. FOREST and FORSITE were pri-
marily concerned with developing tools that directly manipulated formal notation. The SPLICE
conviction is to have the tool user indirectly manipulate the formal representation of the require-
ments via a familiar, front-end language. In this way the user can generate formal requirements
specifications without having to learn an esoteric formal notation.

1.4 Progress

SPLICE has chosen to look at three application domains: OSI services, neural networks and
interactive-systems. Prof. Kenneth J. Turner has been investigating the OSI services thread. He
presented some results from his investigation in an invited paper presentation [Tur93a] and has
developed an experimental tool which supports OSIservice concepts, in the m4-macro language.
Dr. J. Paul Gibson has been developing a tool, using the Sather language and Sunview, for the
LOTOS based specification of neural networks [Gib93b]. This document reports on the work
done by the author on the specification and prototyping of interactive-systems using LOTOS.

Chapter 2

What SOLVe is

SOLVe is:

e A language for specifying and prototyping the requirements of interactive-systems. When
we talk about interactive-systems we mean the human-oriented interface-systems to ma-
chines such as VCRs, hi-fi systems and TVs.

o A set of software tools for manipulating and animating SOLVe specifications.

SOLVe incorporates three important concepts:

e object-oriented specification
e interactive animation
e formal specification.

This is a snapshot of an example
SOLVe session where SOLVe has been
used to specify a simple system consist-
ing of a switch and a light.

Graphical icons represent the switch
object and the light object. An object’s
icon may reflect its state. The SOLVe
user may drag or click on an icon to ef-
fect a change in the object’s state (e.g.
cicking the switch icon will toggle the
switch object between the stateson and
off).

The specfied system’s behaviour un-
folds as sequences of messages between

objects. These messages are represents
by suitably structured LOTOS events.

Chapter 3

Related work on interactive-systems

3.1 Background

Commercially available tools for requirements cap ture for interactive-systems tend to be sophis-
ticated graphics editors. These systems help users collect and organize their thoughts about
the visual attributes of the interactive-systems. However the descriptions which these tools pro-
duce are often inadequate models of the behavioural requirements, cannot be used as executable
prototypes, and lack the rigour needed for testing and refinement.

The production of tractable specifications from the requirements capture activity is a desirable
precursor for a formal development strategy. Moreover, in a world ever more cluttered by “push-
button” devices (the TV/hi-fi/... interactive-systems targeted by SOIVe), the importance of
generating analysable models at the early, requirements capture stage takes on particular signifi-
cance. Thimbleby [Thi93a, Thi90] describes the ramifications of poorly conceived “push-button”
devices and demonstrates how building formal models of these leads to early problem identifi-
cation and promotes better designs.

3.2 Existing tools

The QUICK system [DDN92] inspired and shaped this work. QUICK (Quick User Interface
Construction Kit) is a toolkit which allows non-programmers to construct and exploring graph-
ical direct manipulation interfaces. In particular we have borrowed the ideas nurtured by
QUICK of “prototypical objects”, animation language, and response to graphical manipula-
tion. QUICK concentrates on graphical presentation and manipulation. SOILVe uses graphical
presentation and manipulation to convey the meaning of a specification but, unlike QUICK,
SOLVe’s primary concern is to deal with formal specifications. Other related work includes: XIT
[HHR92, HHR93], STATEMENT [HLN"90] (also [HdR91]), Hyperdoc [Thi93b, Thi93a, Thid0]
and work by [Naf91]. SOLVe has evolved from work under the name ReCap-IS [McC93] done
by the author. (Also see [McC94].)

Chapter 4

The SOLVe system

SOLVe is designed to be used by people who are not familiar with formal languages (in particular
LOTOS). SOLVe is a system for building formal requirements specifications using a simple
object-oriented language, and for exploring these specifications using interactive animation.

SOLVe is suitable for requirements capture in design domains in which systems are interactive
(producing feedback in response to user input) and can be represented by graphical animation.
The author has applied SOLVe to a number simple example systems, including: a VCR on-screen
controller, a database access abstraction, a light switch system, and a visualization of a message
passing communications protocol.

The challenge faced by SOLVe is how to provide users with little training in LOTOS a means
to:

e establish a (formal) LOTOS specification of the requirements

e explore requirements specifications.
SOLVe meets this challenge by:

e allowing the user to write the requirements specification in a simple, intuitive object-
oriented language which is then automatically translated into LOTOS

e graphically animating the LOTOS translation, allowing the user to explore the behaviours
of the specification by interacting with the animation (e.g. by clicking or dragging object
icons).

Chapter 5

Object-orientation

The SOLVe notion of object-orientedness includes:

e an object is an autonomous entity with well defined interface methods
e objects communicate via blocking or non-blocking message passing

e anobject can decide its future behaviour dependent on internal values and communications
with other objects

® a simple object has an icon — a visual representation maintained by the object

e interaction with the environment is in terms of message passing, e.g. when the user clicks
on an icon this is interpreted as a message being sent to the IconClicked method of the
object responsible for the icon

® a composite Object is a set of interworking simple 01 composite 0b jects.

A key feature of the SOLVe system is visualization. Each object is visualized as an icon a
displayed bitmap. An object is responsible for displaying and modifying its own object icon. An
object icon can be used to represent an abstraction of the state of an object or some part of the
total system under design. The object icons visually convey to the SOLVe user the behaviour
of the system under design.

Object-orientation sometimes supports “class” or “type” based objects [CW85], as opposed to
the “prototypical” objects [DDN92] supported by SOLVe object-orientation. (The distinction
between these two schools is clearest when looking at how objects are coded.) The key idea of
class-based inheritance is top-down spedalization, whereas the key idea of prototypical objects
is bottom-up composition of objects from simpler objects. Each SOLVe simple object is created
with all the characteristics of a basic prototypical object. A created object can be edited to
customize it. Using the SOLVe editor, the user may amass a construction kit of predefined
simple and composite objects. [DDN92] point out that prototypical objects support the two
often quoted advantages of inheritance: abstraction and reuse. In a prototypical paradigm
objects may be aggregated and the aggregate labelled to form a new abstract “class” or “type”.
Objects may be duplicated thus supporting reuse.

Other works relating object-oriented ideas and LOTOS include [vH89, Rud92, Gib93a, MC93].

Chapter 6

The SOLVe object-oriented model

This chapter outlines the SOLVe object-oriented model.

6.1 Objects and messages

A SOIVe specification consists of a number of objects which inter-communicate via messages.
A message either invokes an object method, or returns the value results of an invoked method.
Objects execute concurrently.

One of the objects in an executing SOLVe specification is an object called Interface. The
Interface object is implicit — it is declared and defined by the SOLVe system. In contrast,
all the other objects in a SOIVe specification have to be declared and defined explicitly by the
user. Figure 1 illustrates this architecture.

User

Figure 1: Inter-communicating objects in a SOLVe specification

The specification in figure 1 consists of the implicit object Interface and the 3 user-declared
objects GoLeft, GoRight and Cursor. Potential message communication paths are depicted by

the dotted lines. These show that all objects may communicate directly with one another. (This
is at the SOLVe language level; in chapter 10.1 we shall see how these direct message paths are
translated into indirect paths via the ObjectComms process at the LOTOS language level).

All communication between an executing SOIVe specification and the user is via the Interface
object which is responsible both for displaying object icons to the user, and for accepting click
and drag requests from the user.

Figure 2 provides a typical example of an interaction between an executing SOLVe specification
an its user.

user
1) click mouse 5) see the
pointer on object icon
object icon re—displayed
L

system
y Interface

2) IconClicked 4) Setlcon

Cursor

Figure 2: A typical message sequence

1. The user initiates the interaction by clicking the mouse over the icon representing the
GoLeft object.

2. This X display event is handled by a method within the Interface object which sends an
IconClicked message to the GoLeft object, notifying the GoLeft object that its icon has

been clicked.

3. Then GoLeft’s IconClicked method sends a Left message to the Cursor object.

4. The Cursor’s Left method responds issuing a SetIcon message to the Interface object,
requesting the Interface object to redisplay the Cursor icon one place to the left.

ot

. Responding to this request the Interface object instructs the X display to redisplay the
Cursor icon in its new position.

6.2 Instance parameters and methods

In a SOIVe specification all objects must be first declared and then defined (with the exception
of the Interface object). The object declaration block provides sort information used to check
assignment statements, method call parameters, etc. occurring within the object definition block.

Each object has a list of instance parameters and a set of methods. When users declare an
object they declare the sorts of its instance parameters. They also declare the names of the
object’s methods together with the invocation and return parameter sorts of these methods.

In addition to the declared instance parameters, each object has three implicitly declared in-
stance parameters called xPos, yPos, and iconPic of sort Int. These three parameters are used
to represent the x,y co-ordinates and the bitmap picture of the object’s icon.

In addition to the declared methods, each object has three implicitly declared methods called
Initialize, IconClicked and IconMoveRequest. The Initialize method of each object is
invoked immediately the SOLVe specification starts to execute. The Initialize method may be
used to assign initial values to an object’s instance parameters and to initialize the object’s icon.
The IconClicked and IconMoveRequest methods of an object are invoked when the user either
clicks on or attempts to drag the object’s icon. Although these three methods are implicitly
declared for each object, the specifier must explicitly define these methods for each object.

Chapter 7

The SOLVe language

The SOILVe language is simple to use. We have tried give it the feel of a simple, intuitive
object-oriented programming language, deliberately moving away from the esotericness and
algebraic feel of LOTOS. SOLVe object-oriented descriptions can be automatically translated
into LOTOS specifications. Some of the mechanics of the SOLVe object-oriented system are
coded in the LOTOS specification resulting from the translation. This is a disadvantage with
respect to the abstractness of the resulting LOTOS specification, but it supports object-oriented
requirements capture and it allows interactive animation of the resulting LOTOS specifications.
(See appendix C for a formal definition of the syntax of the SOLVe language.)

An outline of a SOLVe description looks like this:

System <name> Is

PicDecls
-- 1icon picture declarations
leftArrow, rightArrow

EndPicDecls

ObjectDeclarations
<object declarations>

EndObjectDeclarations

ObjectDefinitions
<object definitions>
EndObjectDefinitions

EndSystem

The user is expected to declare a list of the icon picture (bitmap) identifiers to be used in the
specification. These identifiers ought to be file names (without their .btm extensions) from the
SOLVe bitmap directory (see appendix B.1). The identifiers declared in the PicDecls statement
are given the sort Int. They are implicitly assigned successive Int values starting at 0 for the
first declared PicDecls identifier.

An object declaration describes the instance parameter sorts, names and method parameters

sorts of each object.

An object definition describes the inner details of the object. The definition must satisfy the
object’s declaration and define the declared methods including the implicitly declared methods
Initialize, IconClicked and IconMoveRequest.

10

Object Cursor(Bool) Is Left()() Right()() QueryXPos(Q)(Int) EndObject
Object GoLeft() Is EndObject

Above are two example object declarations. The object Cursor has the three explicitly de-
clared methods Left, Right and QueryXPos as well as the three implicitly declared methods
Initialize, IconClicked and IconMoveRequest. The object GoLeft has only the three im-
plicitly declared methods.

The two sets of parentheses after each method declaration are used to declare the sorts of the
method’s invocation and return parameters. The methods Left and Right have no invocation
or return parameters, while the method QueryXPos has no invocation parameters but has one
return parameter of the sort Int.

The parenthesis after an object name are used to declare the types of the object’s instance
parameters. The Cursor object has one explicitly declared instance parameter of type Bool, as
well as the three implicitly declared instance parameters xPos, yPos and iconPic all type Int.
The GoLeft object has only the three implicitly declared parameters.

Listed below is the minimum definition for the Cursor object given its declaration above.

Object Cursor(Bool:flashingOn) Is

Method Initialize() Is
-- This is a minimal definition of this method. Other SOLVe language
-- statements may be used in place of this comment to define more
-- functionality for this method. (This applies to the below methods also.)
Return()
EndMethod

Method IconClicked() Is
Return()
EndMethod

Method IconMoveRequest(Int:newXPos, Int:newYPos) Is
Return()
EndMethod

Method Left() Is
Return()
EndMethod

Method Right() Is
Return()
EndMethod

Method QueryXPos() Is
Return(xPos) -- XxPos is of sort Int which satisfies the
EndMethod - declaration of the return parameter types
- of this method.
EndObject

The variable flashing0On appears in the object’s instance parameter list satisfying the declara-
tion of one explicit instance parameter of type Bool. The implicit instance parameters xPos,
yPos and iconPic should not occur in the instance parameter list of the definition. All the
instance parameters (explicit and implicit) of an object may be referenced or assigned to within
the object’s methods. An instance parameter maintains its assigned value between methods
invocations until it is reassigned some other value.

Behaviour within any single simple object is sequential. This means that an object may only be
executing one method at any time.

11

The invocation and return parameter lists of the methods also satisfy the object’s declaration
inform ation.

The above definition provides the minimum definition of the Cursor object given its declaration.

The method definitions may be customized using any of the SOLVe language statements listed
below.

Assign(<variable>,<value>)

The Assign statement is used to assign a value to a variable. The SOLVe language supports
values and variables of the sorts Int (integer) and Bool (boolean). The Int operators are Succ,
Pred, Plus, Minus, Eqi, Nei, Le, Lt, Gt and Ge. The Bool operators are Not, Egb, Neb, And
and Or. The Int values are ..., =2, -1, 0, 1, 2, The Bool values are True and False.
SOLVe pre-defines the four Int constants XMIN, XMAX, YMIN, YMAX. These define the limiting
co-ordinates of the icon screen, and may be used like Int values.

AskWaitCall <object name>.<method name>(<invocation values list>)

(<return variables list>)

The AskWaitCall statement is used to invoke a particular method of a particular object with
a list of particular invocation values. An AskWaitCall blocks execution in the invoking object
until the call returns to assign values to the variables in the return variables list (these variables
must have been declared earlier). In effect the execution of an AskWaitCall statement sends a
request message to an object and waits for a reply message. An object can use an AskWaitCall
if it wants to invoke a method and ensure the completion of this method before continuing its

behaviour (see figure 3).

; f hronous .
client object asyncnronou server object
) communications
(method invoker) medium
AskWait
method call
"trereedl g method invocation
(execution
suspended) .
; Pt method return
: IRt iae
' ““"‘-
‘-"“‘
-"‘
Wait l<_"
Tell
method call
Tell e,
(execution not "rerees[— e method invocation
suspended)
(method ~&— method return
return
ignored)

12

Figure 3: A blocking AskWaitCall and a non-blocking TellCall

TellCall <object name>.<method name>(<invocation values list>)

The TellCall statement is used in a similar way to the AskWaitCall statement except that it
does not block execution in the invoking object. Any parameters returned by the invoked method
are ignored. An object can use a TellCall if it wants to invoke a method and immediately
continue its behaviour, not waiting for the completion of the invoked method (see figure 3).

If <condition> Then <statement> Else <statement> EndIf

The If statement provides simple conditional branching.

While <condition> Do <statement> EndWhile

The While statement provides a simple iterative loop structure.

Variables Int:exampleVarOne, Bool:exampleVarTwo EndVariables

The Variables statement provides a means to declare local variables with a lifetime of that of
the enclosing method definition and with a scope confined to the statements following within
the method definition.

-- <any comment here>

Comments are delimited by —— and the end-of-line character.

13

Chapter 8

Using SOLVe: an example

This chapter describes how to use SOILVe by applying it to a example. SOLVe is used to capture
the requirements of a simplified on-screen control system for a VCR.

8.1 Informal requirements
The informal requirements for the VCR on-screen control are as follow:

1. The system allows the VCR user to set an on-screen 24 hour cock using an on-screen
cursor manipulated via cursor control buttons. (Initial requirements statement.)

2. The 24 hour clock is represented by two on-screen digits representing tens of hours and
units of hours. (Simplifying assumption.)

3. An increment (decrement) button allows the data value (clock digit) pointed to by the
cursor to be incremented (decremented). (Derived requirement.)

4. It should not be possible to move the cursor to unmeaningful screen positions where the
cursor is pointing at unmodifiable data. (Refined requirement.)

5. It should not be possible to modify the clock to a value outside the range 0-24. (Refined
requirement.)

6. Incrementing the least significant clock digit when the clock displays, say, 09 will result in
the new display 10 (and vice versa for decrementing). (Refined requirement.)

8.2 The SOLVe specification

The SOLVe specification listed in appendix D captures the informal requirements of chapter 8.1.
Normally the SOLVe editor tool (described in chapter 9.1) would be used to write SOLVe de-
scriptions. This tool would provide an environment for checking the syntax of the description
incrementally as it is written, and would provide access to a construction kit of objects prede-

fined for the particular problem domain at hand. However, at present this tool is still to be
developed, and we have edited this simple SOLVe description using vi.

14

The mapping between the informal requirements and the SOLVe specification is straightforward.
The following table shows the objects, attributes, methods, etc. which have been identified from
analysing the informal requirements.!

Object Category Attributes Methods provided Methods called
Units on-screen digit value Inc TensDigit. Query Value
entity Dec
Tens on-screen digit value Inc
entity Dec
QueryValue
Cursor on-screen X position Left
entity Right
QueryXPos
GoLetft push-bu tton IconClicked Cursor. Left
entity
GoRight push-button IconClicked Cursor.Right
entity
IncNum push-button IconClicked Cursor. QueryXPos
entity Tens.Inc
Units.Inc
DecNum push-button IconClicked Cursor. QueryXPos
entity Tens.Dec
Units.Dec

The mamal operation of any of the four push-button objects is represented by the user clicking
on the icon of the object. For instance, to make the on-screen cursor move to the right, the VCR
user would push the GoRight button. In executing the SOLVe specification, this is represented
by the user clicking on the GoRight object icon. This invokes the IconClicked method of the
GoRight object which sends a Right message to the Cursor object requesting it to move itself
to the right. The Cursor object may respond by moving its icon one position to the right
depending on its current position. If its already under the UnitsDigit then it will not move
any further right, thus complying with requirement 4.

This is an example of what we mean by interactive-animation. The graphically animated SOLVe
specification reacts to direct manipulation (via the graphical interface) from the user.

Bye way of an explanatory example, we study what might happen if the VCR user were to push
the IncNum button. Consider figure 4 which shows one possible sequence of messages resulting
from the IncNum button being pressed.

1. The user clicks on the IncNum object icon (representing the VCR user pushing the IncNum
button).

2. The Interface object sends a IconClicked message to the IncNum object to tell it that
its icon has been clicked.

3. The IncNum object solicits the Cursor object for its current position. Assume that Cursor
responds with the value 2 which indicates that it is pointing at the Units digit.

4. The IncNum object requests the Units object to increment the units digit.

! Only the objects, methods, etc. which are directly relevant to the VCR requirements (and are not just artifacts
of the SOIVe specification) have been included in the table.

15

5. The Units object solicits the Tens object for the value of the tens digit. Assume that the
Tens responds with the value 1.

6. Assume that the current value of the units digit is 9. Then, an attempt to increment the
value of the units digit ought to result in the tens digit being incremented and the units

set to 0, i.e. the clock value goes from 19 to 20. The Units object sends an Inc message
to the Tens object to tell it to increment the value of the tens digit.

7. The Units object sends an SetIcon message to the Interface object to tell it to redisplay
its icon (using a bitmap which represents the value 0).

8. The user sees the Units digit change to O.

9. The Tens object sends an SetIcon message to the Interface object to tell it to redisplay
its icon (using a bitmap which represents the value 2).

10. The user sees the Tens digit change to 2.

The If statements in the Inc and Dec methods of the Units object ensure that a clock value of
24 cannot be incremented and that a clock value of 00 cannot be decremented (see the SOLVe
listing in appendix D).

User Interface IncNum Cursor Units Tens

1) push button

|

2) IconClicked

3) QueryXPos

- 2
4) Inc o
5) QueryValue
- 1
6) Inc
. 7) Setlcon
8) seen by the User |‘
- 9) Setlcon

—
|

10) seen by the User

Figure 4: An example sequence of messages from the VCR system

8.3 The LOTOS specification

If a syntactically correct version of the VCR SOLVe specificationisstored in the file ver .solve . oo
then executing the command solve vcr will generate the LOTOS specification ver.solve.lot
and then visually animate this specification. This process will generate various other ver . solve
files — see chapter 9.6. The LOTOS specification of our VCR example is listed in appendix E.

16

To specify our VCR example in object-oriented SOLVe takes approximately 250 lines of SOLVe
code. The equivalent LOTOS specification, automatically generated from the SOIVe speci-
fication by the parser, consists of approximately 1700 lines of LOTOS. This example shows
that SOLVe yields a favourable user-erart to productivity ratio (i.e. the amount of SOILVe code

written by the user compared to the amount of equivalent, object-oriented styled, LOTOS code).

8.4 Animating the specification

In a real situation the analyst will want to check that a SOLVe specification is correct with
respect to the informal requirements. To do this the analyst may animate the specification using
the SOLVe toolset. Together the analyst and customer may explore and assess the animated
behaviour of the specified system to establish its correctness and completeness. The SOLVe
animator represents, and provides interaction with the specified system in a way which is
intelligible and intuitive to the customer.

The command solve vcr will invoke the animator once it has parsed the SOIVe specification
and generated the equivalent LOTOS specification. The following sections provide a story-
board account of an example session of using the SOLVe animator to interact with the VCR
sp ecification.

8.4.1 Start-up

When the animator is invoked an
animator window and a displayer
window appear.

The animator window provides a menu
of possible next events. When the VCR
starts seven internal events are possi-
ble. These seven events comprise of
the Tell calls within the Initialize
methods of the seven objects. These
Tell calls initialize the icons for each
of these objects.

Before these Ten calls occur the
animator displays default bitmaps for
the objecticons at a default location —
the result is the unintelligible graphic
at the left of the displayer window.
Initially this graphic is unintelligible
because the icons overwrite each other
since they are all written to the same
default location.

17

8.4.2 Displaying event offers

The animator user may select a view
option which displays the event of-
fers coming in from the hippo tool and
the event offers coming in from the
displayer tool. Section 9.4 describes
how the menu of possible next events
is established by matching the hippo
event offers with the displayer event
offers.

Once this view option has been se-
lected, the animator displays a total
of four windows.

18

This window displays the event of-
fers from hippo. (This window
has the label event offers from the
specified system because, in effect,
hippo is acting the role of the specified
system.) At present, the VCR is offer-
ing seven internal events (the Tel1lCall
icon initialization events) and two ob-
servable event offers (corresponding to
any of the objects accepting either an
IconClicked or an IconMoveRequest
operation®). The seven internal events
are listed in the top window because
these are possible next events (being
internal events they need not be syn-
chronized with the event offers from the
displayer). The two observable event
offers are not listed in the top window
because they cannot be matched with
any event offers from the displayer
tool.

This window displays the event offers
from the displayer tool. (This win-
dow has the label event offers from
the specified

system’s enviromment because, in ef-
fect, the displayer is acting the role
of the specified system’s user.) At the
moment there are no displayer event
offers.

“Although any of the objects can accept
these operations, only the GoLeft, GoRight,
IncNum and DecNum objects act on receiving
IconClicked messages.

19

8.4.3 Choosing events from the menu

By default the animator tool assumes
the the selection of an event from the
menu of possible next events is user
prompted. To select the next event the
user simply clicks the mouse pointer on
the desired event which will be high-
lighted as shown. This event will occur,
the simulated system will be moved
into its next state, and the animator
window displays will be updated.

The chosen event corresponds to the
Units object sending a Tell message
to the Interface object.

The chosen event corresponds to the
Interface object receiving a Tell
message from the Units object.

The chosen event corresponds to the
Interface object displaying a partic-
ular object icon. The structure of this
event 1s:

Interface!Setlcon
I<client object I1D>
1<x coordinate of icon>
I<y coordinate of icon>

I<bitmap 1D of icon>

(If, as in this case, the text of an event
is too long of the window then the win-
dow can be scrolled or enlarged.)

Once the SetIcon event has occurred
the displayer window will update its
display accordingly. This SetIcon
event corresponds to an icon being dis-
played which represents the Units ob-
ject — the bitmap which looks like a
zero digit in the on-screen clock display.
(The Units icon has been moved from
its default position to its specified ini-
tial position. At this stage the other
object icons have yet to be moved from
their default positions to their specified
initial positions and bitmaps.)

20

8.4.4 Choosing automatic animation

An animation
option allows the animator tool to
run in automatic mode. In this mode
events are automatically selected from
the menu of possible next events
user promp ted selection is not then re-
quired. The animation option sum-
marizes the basis on which automatic
next event selection takes place.

The tool is in automatic mode and all
remaining events in the possible next
event menu have been executed. These
remaining events cause the rest of the
object icons to be displayed at their
specified initial positions and with their
specified initial bitmaps.

21

8.4.5 Direct interaction with the specification

The animator user may act in the role
of the VCR user by direct graphical
manipulation of the object icons (e.g.
by clicking on or dragging the object
icons). This screen dump shows a sit-
uation where the user has just clicked
upon the GoLeft icon (corresponding
to the VCR user pushing the button to
make the on-screen cursor move to the
left).

This interaction has been captured by
the displayer tool which then offers
an IconClicked event to the VCR sys-
tem.

The VCR system (simulated by hippo)
is itself offering to synchronize on an
IconClicked event.

The animator matches the event offers
from the displayer and from hippo,
resulting in the shown possible next
event menu. Since the animator tool
is in automatic mode, this event will
automatically be chosen. The execu-
tion of this event will initiate a ‘chain
reaction’ of events (all chosen automat-
ically). This chain of LOTOS events
will represent the sequence of SOLVe
object message invocations which rep-
resent the activation of the GoLeft but-
ton and the subsequent movement of
the Cursor to the left (in accordance
with the requirements for the VCR,
chapter 8.1, and the example message
sequence explained in figure 2).

22

This chain of execution will result in

the Cursor moving to a position under
the Tens digit of the on-screen clock.

23

Input from the VCR user is queued.
If the user, say, quickly clicks three
times in succession on the IncNumicon,
three IconClicked events are regis-
tered in the possible next event menu
as shown. In automatic mode these will
be selected on a FIFO basis. In user
prompted mode these can be selected
in any order by the user.

This shows the state of the VCR sys-
tem resulting from the completion of
the above three IconClicked events.
The Units digit has become 3.

24

Chapter 9

The SOLVe toolset

The SOLVe toolset consists of 6 main programs: editor, parser, displayer, animator, a
modified version of hippo [Mar89], and solve. The tools are written in C, X [You89] (using
XDesigner [Tec92]), YACC and UNIX shell.

9.1 The editor

The editor tool has not been written. (SOLVe is only a prototype system and the implementa-
tion of the editor tool was not necessary to assess the worth of the SOILVe idea.) The editor
tool would appear as an X window with a number of pull-down menus. The editor tool would

allow the user to:

e invoke a standard UNIX editor (e.g. vi) to edit the text of a SOLVe description
e browse a bitmap library of object icons
e browse a library for previously defined objects

e cut, copy and paste objects from the library to the description under construction, and

vice versa

e invoke the parser tool to check the syntax of a SOLVe description.

The facility to cut, copy and paste objects would preserve the relative references of the manip-
ulated objects. For example, say we want to copy a composite object which is composed of the
simple objects x and y, where object x sends a message to object y. The copy facility will make
copies, z”and y", of the defining texts of and y. In the original text x makes a message call to
y, but the copy facility will have replaced this text in the copy text with a message call from z"
to y".

The editor tool would create files containing SOLVe descriptions (name.solve.oo files) and
files containing the object library (name.solve.1lib files).

25

9.2 The parser

The parser tool has been written using YACC. The parser accepts a name .solve. oo file contain-
ing a SOLVe specification. If this specification is syntactically correct then the parser produces
a name.solve.lot file (containing a LOTOS specification) and a name.solve.anim file (con-
taining information needed for animation). However, if the description is syntactically incorrect
then the parser produces a name.solve.err file (containing a list of error messages).

9.3 The displayer

The displayer tool appears as a X window. The displayer performs two main tasks. It
displays object icons (bitmaps and identification text) in response to requests from the animator
tool, and it passes requests to click or drag object icons (indicated by mouse pointer events)
from the user to the animator tool.

9.4 The animator

The animator tool appears as a set of X windows with pull-down menus. Its function is to man-
age the interactive animation of a SOILVe specification. When invoked with a name.solve.lot
file and a name.solve.anim file, the animator tool spawns the displayer tool and the hippo
tool as child processes. The hippo tool is initialized with the file name .solve.lisa (produced
by first running the hippo toolset’s sclotos, lastb and lisa programs on thename.solve.lot
file), and the displayer tool is initialized with the name.solve.anim file. The animator com-
municates via UNIX pipes to/from the stdin and stdout of hippo and displayer (see ap-
pendix A.1).

The hippo tool simulates the LOTOS specification that it is given. This, in effect, defines the
behaviour offered by the specified system. The displayer tool turns user input into event
offers. This, in effect, defines the behaviour offered by the environment of the specified system.
To manage an interactive animation, the animator synchronizes the hippo events offers and
the displayer event offers. This is possible because both the parser and displayer tools
generate only (a small number of) predefined LOTOS event structures. (A diagram outlining
the architecture and interworking of the animator, displayer and hippo tools is given in
appendix A.2.)

At any one instant during an animation there may be a choice of possible events. A menu option
can be set so that the either the animator resolves a choice between possible events itself, or
it prompts the SOIVe user to resolve a choice when it occurs. If the first option is set, the
animator resolves choices between possible events on the basis that internal events have highest
priority, SetIcon observable events next, and then other observable events are chosen in the
order in which they are offered. This basis makes sense for the object-oriented architecture of
the SOLVe generated LOTOS specifications.

26

9.5 The hippo simulator

The SOLVe system uses various programs from the SEDOS toolset [Mar89] to generate a
<name>.solve.lisa file from a <name>.solve.lot file, and uses a modified version of the
SEDOS hippo sinulator tool to simulate a <name>.solve.lisafile (under the management of
SOIVe’s animator tool). Minor modifications to hippo have been made to make it easier to

parse hippo output.

9.6 The solve script

Given a set of name.solve.x* files the solve shell/make script invokes, as appropriate, the
programs parser, lastb, lisa, sclotos, animator (and displayer and hippo). The table
below summaries the programs invoked by the solve script and the resulting files, etc.

Fun ction Programs Input files Output files

syntax and static semantics (SOLVe) parser name.solve.oo name.solvelot (if ok)

check SOLVe specification name.solve.anim (I ok)
name.solve.err (if error)

syntax check LOTOS (SEDOS) sclotos name.solve lot

specification

static semantics check and (SEDOS) lastbilisa name.salvelot name.solve.lisa (if ok)

flattening LOTOS

specification

interactive animation of (SOLVe) animator produces an

specification (SOLVe) displayer ~ name.solve.anim X based graphical

(SEDOS) hippo name.solve lot animation

27

Chapter 10

Translating SOLVe to LOTOS

This chapter describes how a SOIVe specification is represented in LOTOS. We describe how

the SOLVe model is supported at the LOTOS language level. Then we outline, by example, the
algorithm used to translate a SOLVe specification into a LOTOS specification.

10.1 The SOLVe model in LOTOS

Figure 5 illustrates the architecture of a SOLVe design at the LOTOS specification level.

user

. Interface

system

Interface

Figure 5: Architecture of a design at the LOTOS specification level

At the LOTOS specification level objects are realized as LOTOS processes. These object pro-
cesses synchronize on a process called ObjectComms which acts as a communications medium.
All inter-object (intra-system) communication occurs at the hidden LOTOS gate Messages. All

system-user communication occurs at the observable LOTOS gate Interface.

For two resons we support inter-object communication using an ObjectComms process instead
of supporting direct synchronization between communicating objects. Most importantly the
ObjectComms process model supports non-blocking Tell method invocations. Tell calls are

28

effectively queued within the ObjectComms process until the targeted process (server object)
is ready to receive them. The ObjectComms process is always willing to accept Tell calls,
thus the sending process (client object) never has to wait to synchronize on a Tell Send event
(see figure 6). The second reason for using the ObjectComms process model is its flexibility
in routing message communications. This communications model supports an object model in
which the communication connections between objects can be dynamically modified. This is a
feature of most object-oriented models, although the features of dynamic object creation and

dynamic modification of communication connections are not supported in the current version of
the SOLVe language.

client process communications server process
process

AskWait (1)

method call
(meth,Ask,Send)
ek @ @
(meth,Ask,Receive) method invocation
event

®)
(meth,Wait,Send) method return
event

4
. (meth,Wait,Receive)
Wait @
Tell
method call 1)

(meth,TeII,S@
Tell @

@

(meth,Tell,Receive) method invocation
event

Figure 6: Realization of AskWaitCalls and TellCalls as LOTOS event sequences

Figure 6 provides two event sequence diagrams which show how AskWait and Tell method in-
vocations are conceptualized at the LOTOS specification level. An AskWait method invocation
consists of an Ask message communication followed by a complementary Wait message commu-
nication. A Tell method invocation consists solely of a Tell message communication. Fach
Ask, Wait or Tell message communication is delimited by two LOTOS events carrying the pa-
rameters Send and Receive. For example, an Ask message communication consists of an event
with parameters (meth,Ask, Send) followed by an event with parameters (meth, Ask,Receive),
where the meth parameter is any legitimate method name.

The ObjectComms process is always willing to synchronize on any message event, thus it never
delays the progress of object processes. The ObjectComms process queues Receive event offers,

thus the responsibility for the acceptance of events representing method invocations and returns
rests purely with the targeted object processes.

29

10.2 An outline of the translation algorithm

Here we briefly outline the translation of a SOLVe language description into a LOTOS specifica-
tion. We describe, for example cases, the results produced by parts of the translation function.
_TRANS is used to denote the translation function, and < > brackets mark the position of de-
tailed text which has been suppressed for brevity. See appendix D for an example of a complete
SOLVe specification and appendix E for the corresponding LOTOS specification automatically
generated by the parser tool.

10.2.1 Translating the description shell and object declarations

Consider the translation of the following SOLVe text:

“TRANS(

System VcrControl Is

PicDecls
digitZero, digitOne, <more PicDecls>

EndPicDecls

ObjectDeclarations
Object Cursor() Is Left()() Right()() QueryXPos()(Int) EndObject
<declaration of other objects>

EndObjectDeclarations

ObjectDefinitions
<definition of Cursor object>
<definitions of other objects>

EndObjectDefinitions

EndSystem
This is expanded to the following LOTOS text:

(* System *)
SPECIFICATION VerControl [Interface] :NOEXIT

LIBRARY Boolean, Integer ENDLIB

<TYPE definitions for
MessagePrimitiveType (ie. Send, Receive),
MessageDescriptorType (ie. Ask, Wait, Tell),
SystemConstantsType (ie. XMIN, YMIN, XMAX, YMAX),

PicConstantsType (ie. the user declared icon picture identifiers)>

(* ObjlInstDecls *)
BEHAVIOUR
HIDE Messages IN
(ObjectComms[Messages]
—[Messages]-
[¢ Interface[Interface,Messages]
— initCursor[Messages](0,0,0)
—— <instantiations of processes representing other objects>
)
)
WHERE
<TYPE definition for objNamesType>
<TYPE definition for NamesType>
(* EndObj InstDecls *)

30

(* ObjlInstDefns *)
"TRANS(<definition of Cursor object>)
"TRANS(<definitions of other objects>)

(* process *)
PROCESS Interface[Interface,Messages] :NOEXIT :=
(* method Setlcon *)
<accept a (Setlcon,Ask/Tell,Receive) event from an object>
<redisplay the appropriate object icon on the display>
<if an Ask event was accepted then
send a confirming (Send,Setlcon,Wait) event back to the object>

<recurse>

(* call an IconClicked method *)
<accept an lIconClicked event from the user>
<send a (lconClicked,Tell,Send) event to the appropriate object>

<recurse>

(* call an IconMoveRequest method *)

<accept an IconMoveRequest event from the user>

<send a (lIconMoveRequest,Tell,Send) event to the appropriate object>
<recurse>

ENDPROC

PROCESS ObjectComms[Messages] :NOEXIT :=
(* carrier text for messages of method Interface.Setlcon *)

<accept a (Interface.Setlcon,Ask/Tell,Send) event>

(
<offer a corresponding (Interface.Setlcon,Ask/Tell,Receive) event>
STOP
ObjectComms[Messages]
)
u]
<accept a (Interface.Setlcon,Wait,Send) event>
(
<offer a corresponding (Interface.Setlcon,Wait,Receive) event>
STOP
ObjectComms[Messages]
)
(* end carrier text for messages of method Interface.Setlcon *)
O
<carrier text for messages of method <anyObject>.lconClicked>
u]
<carrier text for messages of method <anyObject>.lconMoveRequest>
]

<carrier text for messages of each of the user declared methods>
ENDPROC
(* EndObjInstDefns *)

ENDSPEC
(* EndSystem *)

e Notice that the top-level LOTOS behaviour expression reflects the object-oriented architec-
ture depicted in figure 5. The Interface, Cursor and other objects inter-communicate,
asynchronously, via the hidden gate Messages of the ObjectComms process. Only the

Interface object communicates with the system user via the external gate Interface.

e The Interface object offers three functions: displaying an object icon in response to
a SetIcon message from an object; sending an IconClicked message to an object in
response to a user initiated event; or sending an IconMoveRequest message to an object

31

in response to a user initiated event.

e The ObjectComms consists of a choice of behaviours expressions. Each of these behaviour
expressions carries messages for one method type. The method types are the implicitly
declared methods SetIcon, IconClicked and IconMoveRequest, and each of the user-

declared methods.

For each of these method types, the O0bjectComms process offers to accept any Send event
then (concurrently) both recurse and offer to provide a complementary Receive event.
In this way the ObjectComms process offers to queue an unlimited number of inter-object
communication messages. This scheme supports non-blocking Tell method invocations
(see figure 3).

10.2.2 Translating an object definition

Consider the translation of the following SOLVe text:

“TRANS(
Object Cursor() Is

<definition for the method Initialize>)
method IconClicked>)
<definition for the method IconMoveRequest>)
method Left>)
method Right>)
method QueryXPos>)

<defin

EndObject
This is expanded to the following LOTOS text:

(* Object *)
(* object Cursor *)
PROCESS initCursor[Messages](xPos: Int,yPos: Int,iconPic:Int) :NOEXIT :=
Initialize[Messages](xPos,yPos,iconPic)
WHERE
PROCESS Cursor[Messages] (xPos: Int,yPos: Int,iconPic:Int) :NOEXIT :=
IconClicked[Messages](xPos,yPos, iconPic)
0
IconMoveRequest[Messages] (xPos,yPos, iconPic)
u]
Left[Messages](xPos,yPos, iconPic)
O
Right[Messages] (xPos,yPos, iconPic)
O
QueryXPos[Messages](xPos,yPos, iconPic)
ENDPROC

"TRANS(<definition for the method Initialize>)
"TRANS(<definition for the method IconClicked>)
"TRANS(<definition for the method IconMoveRequest>)
"TRANS(<definition for the method Left>)
"TRANS(<definition for the method Right >)
"TRANS(<definition for the method QueryXPos>)
ENDPROC
(* EndObject *)

e The process initCursor calls the process Initialize in order to perform any user-defined
initialization of the object.

32

e Once Initialize has completed its behaviour it calls the process Cursor which infinitely
often offers the remaining methods of the object.

e Object methods are offered as alternate threads of behaviour because of the use of the
LOTOS choice operator within the Cursor process.

10.2.3 Translation of a method definition

Consider the translation of the following SOLVe text:

“TRANS(
Method QueryXPos() Is
Return(xPos)
EndMethod

This is expanded to the following LOTOS text:

(* Method *)
(* method QueryXPos *)
PROCESS QueryXPos[Messages](xPos: Int,yPos: Int,iconPic:Int) :NOEXIT :=
Messages!Receive?clientObj :ObjNamesSort!Cursor?msgDescr :MessageDescriptorSort
1QueryXPos[(msgDescr eq Ask) or (msgDescr eq Tell)];
(LET dummyPlaceHolder:zInt = 0 IN
(* MethodFinish *)
(
([msgDescr eq Ask]->
Messages!Send!Cursor!clientObj Wait!QueryXPos!xPos;
Cursor[Messages] (xPos, yPos, iconPic)
)
O
([msgDescr eq Tell]->

Cursor[Messages] (xPos, yPos, iconPic)

)
(* EndMethodFinish *)

)
ENDPROC
(* EndMethod *)

e The first event offer corresponds to an (QueryXpos,mesgDescr,Receive) message com-
munication event (see figure 6).

e The LET statement is where local variable declarations (declared using Variables
EndVariables, see chapter 7) would be placed if there where any for this method definition.

o If the method is invoked using an Ask message (i.e. msgDescr eq Ask) then the method
finishes by returning a complementary Wait message, before re-instantiating the Cursor
object process (the process from which this method process was instantiated). If the
method is invoked using a Tell message (i.e. msgDescr eq Tell) then no return message
is expected so the method simply re-instantiates the Cursor object process.

e Note that Initialize method definitions are translated in a way different to other method
definitions (such as this QueryXPos method). Initialize translations contain no initial
Receive or final Send events.

33

10.2.4 Translation of an Assign statement

Consider the translation of the following SOLVe text:

" TRANS(
Assign(xPos,xPos Plus 1)
<more SOLVe text>

)

This is expanded to the following LOTOS text:

(* Assignment *)
(LET xPos:Nat = xPos + succ(0) in
"TRANS(<more SOLVe text>)

10.2.5 Translation of an AskWait call
Consider the translation of the following SOLVe text:

“TRANS(
AskWaitCall DataBase.QueryValue()(reply)
<more SOLVe text>

)

This is expanded to the following LOTOS text:

(* AskWaitCall *)
Messages!Send!Userl!DataBase!Ask!QueryValue;
Messages!Receive!DataBase!User1!Wait!QueryValue?reply:int;
(* EndAskWaitCall *)

"TRANS(<more SOLVe text>)

e The method invoker is an object called Userl (a data type constant defined through the
translation process). The Userl object calls the QueryValue method of an object called
DataBase.

e From the perspective of the Userl object, the AskWait method call consists of two con-
secutive events which correspond to the the events labelled (1) and (4) in the AskWait
call depicted in figure 6.

e Events representing message communications have the structure:

Messages!<Send/Receive>!<ID of sender object>!<ID of receiver object>

1<Ask/Wait/Tell>!<method name>!<data parameters, if any>

e The method returns with an Int data value which is stored in the variable reply.

10.2.6 Translation of a Tell call
Consider the translation of the following SOLVe text:

“TRANS(
TellCall Robot.Setlocation(2,1)
<more SOLVe text>

This is expanded to the following LOTOS text:

(* Tellcall *)
Messages!Send!User1!Robot!Tell!SetLocation!Succ(Succ(0))!Succ(0);
(* EndTellCall *)

"TRANS(<more SOLVe text>)

e The method invoker is an object called Userl. The Userl object calls the SetLocation
method of an object called Robot, with the data parameters 2,1. (Also see the Tell call
depicted in figure 6.)

10.2.7 Translation of an If statement

Consider the translation of the following SOLVe text:

" TRANS(
If ((xPos Plus 1) Gt XMAX)
Then
<more SOLVe text (1)>
Else
<more SOLVe text (2)>
EndIf
<more SOLVe text (3)>

This is expanded to the following LOTOS text:

(GELLEY)
(
(* Then *)
([(xPos + succ(0)) Gt XMAX]->
"TRANS(<more SOLVe text (1)>)
)
O
(* Else *)
([Not((xPos + succ(0)) Gt XMAX)]->
"TRANS(<more SOLVe text (2)>)
)
1]
(* dummy EXIT list *)
([True eq False]->

EX1T(cursorXPos, iconPic,yPos,xPos)

)

(* EndIf *)

>> ACCEPT cursorXPos: Int,iconPic: Int,yPos: Int,xPos: Int IN
“TRANS(<more SOLVe text (3)>)

35

e The Then and Else branches of a SOLVe If statement are represented in LOTOS as
guarded behaviours within a choice expression.

e The third alternative behaviour can never occur (True eq False is never true). This third
alternative behaviour is introduced to ensure that the ACCEPT statement, which always
follows If statement behaviour, is satisfactorily matched with EXIT behaviour (even when
the Then and Else branches do not EXIT) — a LOTOS static semantics requirement.

e FEach parameter list contains the variables and implicitly declared instance parameters
which are in scope at that point.

10.2.8 Translation of a While statement

Consider the translation of the following SOLVe text:

"TRANS(
While (line Eqi Busy) Do
<more SOLVe text (1)>
Endwhile
<more SOLVe text (2)>

This is expanded to the following LOTOS text:

Whi leLoopO[Messages] (arg2,argl,iconPic,yPos,xPos)
>> ACCEPT arg2:Int,argl:Bool,iconPic:Int,yPos:Int,xPos:Int IN
“TRANS(<more SOLVe text (2)>)

<the WhileLoopO process is defined as a local process definition within the
process definition of the object in which the While statement occurred>
WHERE

<>

(* a process embodying a while-loop *)
PROCESS Whi leLoopO[Messages](arg2: Int,argl:Bool, iconPic: Int,yPos: Int,xPos: Int)
SEXIT (Int,Bool, Int, Int, Int):=
(* While *)
(
(* Do loop *)
([line eq Busy]->
“TRANS(<more SOLVe text (1)>)
>> ACCEPT arg2:Int,argl:Bool,iconPic:Int,yPos:Int,xPos:Int IN
Whi leLoopO[Messages](arg2,argl, iconPic,yPos,xPos)
)
a
(* exit from loop *)
([Not(line eq Busy)]->
EXIT(arg2,argl, iconPic, yPos,xPos)

)
(* Endhile *)
ENDPROC

e In LOTOS the While loop is defined within a process definition (WhileLoopO0) local to the
process definition of the object.

e Each instantiation of WhileLoopO corresponds to one iteration of the SOLVe While loop.

36

e On each instantiation, the process WhileLoopO recurses if the While condition is not
satisfied. If the While condition is satisfied then the process WhileLoopO EXITs.

e The parameters iconPic, yPos and xPos are implicit object instance parameters. The
parameters arg2 and argl are either local method variables declared earlier using the
Variable statement, or explicitly declared object instance parameters.

37

Chapter 11

Further work and conclusions

The following list indicates some of the areas in which further work is needed on SOLVe.

e The SOLVe editor tool has not been implemented.

o Enhancements to the SOLVe object-oriented language, for example:

— Introduce complex data types into the language — presently the language only han-
dles simple values of the sort Int or the sort Bool.

— Provide inheritance or some other form of reference and description. Presently the
user must provide explicit definitions of all the dedared objects and methods. With
an inheritance mechanism the definitions of objects or methods could be simple ref-
erences to suitable definitions of previously defined objects or methods. Also, if a
definition of a declared object or method was not given, then the definition would
default to a reference to the definition of some other appropriate object or method.

— Allow objects to be dynamically created and destroyed. Section 10.1 describes how
the LOTOS 0bjectComms process model supportsthe dynamic routing of inter-object
message communication which is, in general, needed to support dynamic object cre-
ation and destruction.

— Presently objects are represented by bitmap icons. This idea could be greatly elabo-
rated to have objectsrepresented by sound, text or vector graphics, ete. (“multi-media
objects”).

A point to remember is that such extensions to the SOLVe language have drawbacks. At
the moment, a LOTOS specification can be generated during a single pass through the
SOLVe source description. This might no longer be the case if dynamic object creation
or inheritance were introduced. Another possible disadvantage of enhancing the SOLVe
language would be the additional complexity of the generated LOTOS specifications. At
present, the generated LOTOS specification do not contain an excess of ‘object-oriented
support mechanism’ — the structure of the generated LOTOS specification is very readable
and closely reflects the structure of the SOLVe source descriptions.

Modify the displayer tool to provide immediate shadow feedback when the user clicks
or drags an icon. At present, if the user drags an icon nothing immediately happens until
the triggered sequence of events has been executed. This execution via hippo often takes

38

some time. An immediate shadow feedback feature would provide an immediate moving
outline of the icon.

e Thereis a problem with the amount of memory which the hippo program mallocs. Hippo
monotonically increases its memory requirements per event occurrence. (On my worksta-
tion hippo it exhausts its 24Mbyte virtual data segment after about 100 events, and comes

to a halt.)

The animator forks hippo as a subprocess and communicates with hippo’s stdin and
stdout via UNIX pipes. As far as the author is aware, it is impossible to communicate
with any of the other currently available LOTOS engines in such a straightforward way.
However the future release 4.0 of SMILE [vE88] may provide a solution to this problem.
SMILE’s memory demands are not as great as hippo’s, and the new version of SMILE will
provide a Tool Control Language interface which may allow the animator to interact with
SMILE in a fashion similar to present way in which the animator interacts with hippo.

e It might be useful to directly define semantics for the SOLVe language. At present the

SOLVe semantics are defined indirectly by the SOIVe to LOTOS translation function.
A stand alone definition of the SOLVe semantics would allow us to reason more directly

about a SOLVe description, would make SOLVe LOTOS independent, and might uncover
ways in which to improve the language.

e If the SOLVe approach (of coding in a programming like language and automatically
generating LOTOS) proves useful then it might be better to drop the SOLVe object-
oriented language in favour of a well known object-oriented language such as CLOS, but
still use the SOLVe approach.

e This document has focussed on the SOIVe language and supporting software tools but has
not discussed a supporting methodology. It may be useful to explore how the so-called
classic object-oriented analysis and design techniques can be used with SOLVe.

In conclusion, we hope that it will prove easier to code requirements using the program-like
SOLVe language than using the LOTOS language, for anyone who is unfamiliar with formal
languages. A SOLVe editor would allow the user to quickly create requirements descriptions
by copying and customizing predefined objects from construction kit libraries for the problem
domain at hand. The SOIVe parser automatically generates LOTOS specifications from SOIVe
descriptions. The SOLVe animator supports the visualization of SOLVe generated LOTOS spec-
ifications. The animator makes it easy to prototype requirements specifications using interactive
animation.

The basic concepts of SOLVe are quite general. LOTOS processes (etc.) represent objects.
Objects represent interactive graphical entities. These graphical entities could be customized
for the visualization of the behaviour of, say, a communication service, an electronic circuit, an
interface design or a space invaders game.

The SOLVe toolset should be regarded as experimental software developed to demonstrate the
SOLVe approach. We believe that SOLVe is a useful prototype in the path towards the develop-
ment of more mature systems for the object-oriented, visual, formal specification of interactive-
systems.

39

References

[CWS5]

[DDN92]

[Gib93a)

[Gib93b]

[HARO1]

[HHR92]

[HHR93]

[HLN+90]

[1SO89]

[Mar89]

[MC93]

Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and
polymorphism. AcM computing surveys, 17(4):471 522, December 1985.

Sarah Douglas, Eckehard Doerry, and David Novick. QUICK: a tool for graphical

user-interface construction by non-programmers. The visual Computer, 8(2):117
133, 1992.

J. Paul Gibson. Formal Object Oriented Development of Software Systems using
Lotos. PhD thesis, Uni. of Stirling, Scotland, 1993.

J. Paul Gibson. A LOTOS-based approach to neural network specification. Technical
Report TR112, Uni. of Stirling, May 1993.

C. Huizing and W. P. de Roever. Introduction to design choices in the semantics of
statecharts. Information Processing Letters, 37:205-213, February 1991.

Jurgen Herczeg, Hubertus Hohl, and Matthias Ressel. Progress in building user
interface toolkits: The world according to XIT. In Proc. of the ACM Symp. on User
Interface Software and Technology, November 1992.

Jurgen Herczeg, Hubertus Hohl, and Matthias Ressel. A new approach to visual
programming in user interface design. In Proc. of HCI Int. 1993, 5th Int. Conf. on
Human-Computer Interaction jointly with 9th Symp. on Human Interface (Japan),

Orlando, Florida, August 1993.

David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi, Rivi Sher-
man, Aharon Shtull-Trauring, and Mark Trakhtenbrot. STATEMENT: A working

environment for the development of complex reactive systems. IEEE Transactions
on Software Engineering, 16(4)1403*414, Aprﬂ 1990.

I[SO. Information processing systems — open systems interconnection — LOTOS —
a formal description technique based on the temporal ordering of observational be-
haviour. International Organization for Standardization, 1989. 8807.

A. K. Marshall. Introduction to LOTOS tools. In pevbse). North-Holland, 1989.

Ana M. D. Moreira and Robert G. Clark. Using rigorous object-oriented analy-
sis. Technical Report TR111, Department of Computing Science and Mathematics,
University of Stirling, Stirling, Scotland., August 1993.

40

[McC93]

[McC94]

[Nafol]

[PRO1]

[Rud92]

[Tec92]

[Thi90]

[Thi93a]

[Thi93b)]

[Tur89)

[Tur92)

[Tur93a]

[Tur93b]

[VESS]

[VEVDSY)]

[VH89]

Ashley McClenaghan. ReCap-IS: a tool for capturing the requirements of interactive-
systems, using LOTOS. Technical Report SPLICE/9, University of Stirling, May
1993. Rejected FORTE93 submission.

Ashley McClenaghan. XDILL: an X-based sinulator tool for DILL. Technical Report
to be released, University of Stirling, January 1994.

Maurice Naftalin. A visual refinement system. Technical Report TR73, Uni. of
Stirling, August 1991.

Ken Parker and Gordon Rose, editors. FORTE'91, Fourth International Confer-
ence on: Formal Description Techniques, Sydney7 AllStI‘alia,, 1991. Elsevier Science

Publishers B.V.

Steve Rudkin. Inheritance in LOTOS. In [pro1j, pages 409 424, 1992.

Imperial Software Technology. X Designer. Imperial Software Technology Limited,
95 London St., Reading, Berkshire, U.K., 1992.

Harold W. Thimbleby. user Interface Design. Addison-Wesley, 1990.

Harold W. Thimbloby. The Frustrations of a Push-Button World, Pages 202-219.
Encyclopaedia Britannica yearbook of Science and the Future. Encyclopaedia Bri-
tannica, 1993.

Harold W. Thimbleby. Hyperdoc: a system combining systems and their manuals in
the same hypertext. Technical report, University of Stirling, Febrauary 1993.

Kenneth J. Turner. A LOTOS-based development strategy. In [woss], pages 157—
174, November 1989.

Kenneth J. Turner. SPLICE I: Specification using LOTOS for an interactive customer

environment — Phase I. Technical Report SPLICE /1, University of Stirling, February
1992.

Kenneth J. Turner. An engineering approach to formal methods. In 13th IFIP
Symp. on Protocol Specification, Testing and Verification, Lg&ge, And€ Danthine,

Guy Leduc and Pierre Wolper (eds), 1993.

Kenneth J. Turner. using Formal Description Techniques: An Introduction to ES-
TELLE, LOTOS and sbL. John Wiley & Sons, Inc., first edition, 1993.

Peter H. J. van Eijk. software tools for the Specification Language LOTOs. PhD
thesis, Twente University of technology, Enschede, Netherlands, 1988.

Peter H. J. van Eijk, Chris A. Vissers, and Michel Diaz, editors. The Formal De-
scription Technique LOTOS. North-Holland, 1989.

Wilfried H. P. van Hulzen. Object-oriented specification style in LOTOS. Technical
Report Lo/WP1/T1.1/RNL/N0002, European LOTOSPHERE Consortium, Esprit
2304, July 1989.

41

[VUOSQ] Son T. VU_OIlg, editor. The IFIP TC/WG 6.1 Second International Conference on
Formal Description Techniques for Distributed Systems and Communications Proto-

cols, FORTE ‘89, Vancouver, Canada, 1989. North-Holland.

[You89] Douglas A. Young. x window Systems: Programming and Applications with Xt.
Prentice Hall, 1989.

42

Appendix A

Architecture of the animator,
displayer and hippo tools

A.1 Communications

—_—

—stderr

displayer

handles

~4— fdanim
~— bitmap file

o
2z
(]
Sz
S
-+ £— - T35
B En
b _—
[T
&l
5
— -
e}
2
7]

displayer_to
animator[0]

_»
—stdout —®

—stdin

—_—

— stderr

animator

~4— fdcomms

—

stderr

o
e
5=
- — g
=}
Ego 5
cc
o |
=
g% 2]
=
=}
28 z
g.E
o
og
<

Figure 7: Communication via UNIX file descriptors

43

A.2 Interworking

architecture

design user

'

user invokes
click or drag
requests on icons

[}

user sees
modifications to
icon graphics
display

displayer tool

!

interpreted as
IconClicked or
IconMoveRequest
method invocations

translated into
LOTOS event offers

interpreted as

a Setlcon method
invocation

translated from
LOTOS event

structure
animator tool
Y generated
next event
event synchronization choice
matcher /

\

generated
menu of possible
next events ~

the SOLVe generated
— LOTOS specification
of the design

user prompted
next event choice

query event menu of choose next
offers event offers event

'

~Sas

observe
menu

SOLVe user

hippo tool

start-up the
> simulator with

the specification

Key:

> indicates flow of
information

Figure 8 Interworking architecture of animator, displayer and hippo

44

Appendix B

File structure of SOLVe toolset

This appendix describes the structure of the SOLVe toolset directory tree, provides information
necessary for making the SOLVe toolset, and points out a few implementation details.

The SOLVe programs solve and animator interact with programs from the SEDOS toolset. To
support this interaction minor modifications have been made to a few of the SEDOS programs.
These modifications are described in appendix B.2, but for now we concentrate on describing
the SOLVe programs.

B.1 Structure of the SOLVe toolset

The following tree incudes the important source code and executable SOLVe files.

SOLVe
bin
solve
solve.animator
solve.displayer
solve.parser
lib
solve.make
bitmaps
cursorPtr.btm
left Arrow.btm
rightA rrow. bt m
digitZero.btm

specs
ver.solve.oo
Is.solve. 0o

src

m akefile

solve.typedefs.h

animator
makefile
animator.xmain.xd
animator.xmain.c
animator. ADD_TO_MAIN .c
animator.typedefs.h
animator.init.c
animator.init.h
animator.xincludes.h

animator. utilities.h
animator. utilities.c
animator. call backs.h
animator. callbacks.c
animator.eventmenu.h
animator.eventmenu.c
animator.parsehippo.h
animator. parsehippo.c
animator. parsedisplayer.h
animator. parsedisplayer.c
displayer
makefile
displayer.xmain.xd
displayer.xmain.c
displayer.ADD_TO_MAIN.c
displayer.typedefs.h
displayer.init.c
displayer.init.h
displayer.xincludes.h
displayer.utilities.h
displayer.utilities.c
displayer.callbacks.h
displayer.callbacks.c
displayer.eventhandlers.h
displayer.eventhandlers.c
parser
makefile
parser.main.c
parser.typedefs.h
parser.lotosstrs.h
parser.yacc.h
parser.yacc.y

Environment variables: The UNIX environment variable SOLVEDIR should contain the path
of the root of the SOLVe directory tree (e.g. /usr/local/lib/S0LVe). The variable
LOTOSDIR should contain the path of the root of SEDOS root directory.

Path: The PATH variable should be set to include the paths ($SOLVEDIR)/bin and
($LOTOSDIR) /bin.

Makefiles: The top-level makefile ($SOLVEDIR)/src/make invokes three makefiles to make the
three binaries in the bin directory.

Executables: The bin directory contains the shell script solve (described in chapter 9.6) and
the binaries created my the SOLVe make files.

The orderly building of a SOLVe specification: The make script solve.make is invoked
by the solve script to orderly parse, translate and animate a SOLVe specification as
outlined in chapter 9.6.

Bitmaps: The displayer program expects to find bitmap files for the object icons in the
bitmaps directory. To change where the displayer looks for its bitmap files, modify the
constant iconPicNamesPath in the ($SOLVEDIR) /src/displayer/displayer.typedefs.h
file.

Bitmap filenames have the format name . btm where name can be used as an identifier within
a PicDecls statement in a SOLVe specification (see chapter 7). Bitmap files can be created

46

using the X bitmap tool. Bitmaps are expected to be 48 x48 (this can be changes by alter-
ing the constants PIXMAP WIDTH and PIXMAP HEIGHT in the
($SOLVEDIR) /src/displayer/displayer.typedefs.hfile).

Example specifications: The lib/specs directory contains two example SOLVe specifica-
tions: ver.solve.oo a simple VCR on-screen control system (the example used in chap-
ter 8; and ls.solve.oo a simple light switch system.

XDesigner code: The X utility XDesigner has been used to generate code for the animator
and displayer programs. The XDesigner readable files
animator.xmain.xd and displayer.xmain.xd contain data which can be used by the
XDesigner program to re-generate the C files animator.xmain.c anddisplayer.xmain.c.
For example, the user may modify the animator X interface by loading the animator .xmain.xd
file into XDesigner, modifying the interface design, and then instructing XDesigner to
generate the animator.xmain.c file (not forgetting to save the now modified version
of the animator.xmain.xd file). Before remaking the animator executable, the user
must edit the animator.xmain.c file to copy the animator.ADD_TO_MAIN.c file into the
animator.xmain.c at the position described in the animator.ADD_TO MAIN.c file. The
animator.ADD_TO_MAIN.ccontains necessary code not generated from the animator .xmain.xd
file by XDesigner. The user may now re-make the animator.

Source code size: The parser source consists of approximately 3000 lines of C and YACC code.
The animator source consists of approximately 2000 lines of handwritten C code and 500
lines of XDesigner generated C code. The displayer source consists of approximately 1000
lines of handwritten C code and 300 lines of XDesigner generated C code.

B.2 Modifications to SEDOS toolset
We have made the following minor alterations to the SEDOS toolset:

e In order for the SOLVe animator to read hippo’s stdout via a UNIX pipe we have:

— set hippo’s stdout to be line buffered

— replaced the use of the forked programs more and cat by direct writes to hippo’s
stdout

— carried out these modifications to the ($LOTOSDIR)src/hippo/simkernel files
io.ask.c, io.ask.yacc.y and io.disp.c.

e To allow the SEDOS programs to handle the sometimes long LOTOS text lines generated
by the SOLVe parser we have increased the -w -p arguments of
($LOTOSDIR) src/hippo/simkernel/procsim.c’s invocation of pplotos.

e Appropriate modifications to path names in the various makefiles.

47

Appendix C

Syntax of the SOLVe language

The BNF rules in appendixes C.1-C.4 define the syntax of the SOLVe language. ({} indicates
zero or more occurrences. [] indicates zero or one occurrence. "" indicates a terminal symbol.
<> indicates a comment.)

Appendix C.5 lists the static semantic errors checked for by the SOLVe parser.

C.1 SOLVe expressions

system = SYS_SYMBOL IDENT IS_SYMBOL
pic_decls obj_inst_decls obj_inst_defns
SYS_END_SYMBOL
pic_decls = PIC_DECLS_SYMBOL pic_decl_list PIC_DECLS_END_SYMBOL
pic_decl_list = pic_decl {pic_decl} .
pic_decl = IDENT .
obj_inst_decls = 0BJ_INST_DECLS_SYMBOL
obj_inst_decl_list
0BJ_INST_DECLS_END_SYMBOL
obj_inst_decl_list = [obj_inst_decl_list2]
obj_inst_decl_list2 = obj_inst_decl {obj_inst_decl}
obj_inst_decl = 0BJECT_SYMBOL
IDENT " (" sort_param_list ")" IS_SYMBOL
meth_inst_decl_list

0BJECT_END _SYMBOL

meth_inst_decl_list = {meth_inst_decl}

meth_inst_decl = IDENT " (" sort_param_list ")" "(" sort_param_list ")"

obj_inst_defns = 0BJ_INST_DEFNS_SYMBOL
obj_inst_defn_list

0BJ_INST_DEFNS_END_SYMBOL
obj_inst_defn_list = {obj_inst_defn}

obj_inst_defn = OBJECT_SYMBOL
IDENT " (" ident_decls ")" IS_SYMBOL
methods
0BJECT_END _SYMBOL

methods = method_list.
method_list = {method} .

method = METHOD_SYMBOL
IDENT "(" ident_decls ")" IS_SYMBOL
vars_decls
aZ2meth_body
METHOD_END _SYMBOL

vars_decls = {VARS_SYMBOL ident_decls VARS_END_SYMBOL}
aZmeth_body = method_body

method_body = method_finish

| askwait_call method_body

| tell_call method_body

| assign?2

| while_statement method_body
| if_statement method_body

<NULL>
method_finish

enclosed_meth_body

|
| askwait_call enclosed_meth_body
| tell_call enclosed_meth_body
| assign3

| while_statement enclosed_meth_body
| if_statement enclosed_meth_body .

assign2 = ASSIGN_SYMBOL " (" IDENT "," value_expr ")" method_body

assign3 = ASSIGN_SYMBOL "(" IDENT "," value_expr me enclosed_meth_body

while_statement = WHILE_SYMBOL "(" condition ")" DO_SYMBOL
enclosed_meth_body
WHILE_END_SYMBOL

if_statement = IF_SYMBOL "(" condition ")" THEN_SYMBOL
enclosed_meth_body
ELSE_SYMBOL
enclosed_meth_body
IF _END_SYMBOL .

method_finish = METHOD_FINISH_SYMBOL value_expr_list

askwait_call = ASKWAITCALL_SYMBOL IDENT '"." IDENT
value_expr_list " (" var_param_list ")"

tell_call = TELLCALL_SYMBOL IDENT "." IDENT
value_expr_list

sort_param_list = [sort_param_1list2]
sort_param_list2 = a_sort_param {a_sort_param}

a_sort_param = IDENT

var_param_list = [var_param_list2]
var_param_list2 = a_var_param {"," a_var_param}
a_var_param = IDENT .

ident_decls [ident _decl_list]
ident_decl_list = ident_decl {"," ident_decl}
ident_decl = SORT ":'" IDENT
condition = value_expr .
value_expr_list = "(" [value_expr_list2] ")"
value_expr_list2 = value_expr {"," value_expr}
value_expr = temm

| unary_op temm

| value_expr binary_op term .

unary_op = BOOL_UNARY_OP
| INT_UNARY_OP

binary_op = BOOL_BINARY_OP
| INT_BINARY_OP .

IDENT

term =
| INTEG
I
I

n (u value_expr u) n
SYS_LABEL_CONSTANT

C.2 Strings

IDENT = <string of A-Z,a-z letters> .

INTEG

<string of 0-9 digits>

C.3 Reserved words

50

SYS_SYMBOL = "System"

IS_SYMBOL = "Is"

SYS_END_SYMBOL = "EndSystem"
O0BJ_INST_DECLS_SYMBOL = "ObjectDeclarations"
0BJ_INST_DECLS_END_SYMBOL = "EndObjectDeclarations'
0BJ_INST_DEFNS_SYMBOL = "ObjectDefinitions"
OBJ_INST_DEFNS_END_SYMBOL = "EndObjectDefinitions"
OBJ_INST_DEFN_SYMBOL = "Object"
0BJ_INST_DEFN_END_SYMBOL = "EndObject"
METHOD_SYMBOL = "Method"

METHOD _END _SYMBOL = "EndMethod"

IF_SYMBOL = "If"

IF_END_SYMBOL = "EndIf"

THEN_SYMBOL = "Then"

ELSE_SYMBOL "Else"
ASKWAITCALL_SYMBOL = "AskWaitCall"
TELLCALL_SYMBOL = "TellCall"
METHOD_FINISH_SYMBOL = "Return"
VARS_SYMBOL = "Variables"
VARS_END_SYMBOL = "EndVariables"
ASSIGN_SYMBOL = "Assign"
WHILE_SYMBOL = "While"
WHILE_END_SYMBOL = "EndWhile"
DO_SYMBOL = '"Do"

PIC_DECLS_SYMBOL "PicDecls"

PIC_DECLS_END_SYMBOL = "EndPicDecls"

C.4 Other reserved identifiers

51

SORT = "Bool" | "Int"

BOOL_UNARY_OP = "Not"

BOOL_BINARY_OP = "Egb" | "Neb" | "And" | "Or"

BOOL_VALUE = “"True" | “"False"

INT_UNARY_OP = "Succ" | "Pred"

INT_BINARY_OP = "Plus" | "Minus" | "Eqi" | "Nei" | "Le" | "Lt" |
SYS_LABEL_CONSTANT = "XMIN" | "XMAX" | "YMIN" | "“YMAX"

C.5 Static semantic errors

-- redeclaration of identifier

-- method definitions missing for this object

-- ObjIdent identifier has not been declared

-- MethIdent identifier not known for this object

-- Sort identifier not known

-- UnaryOp identifier not known

-- BinaryOp identifier not known

-- identifier is not a Var or a SortConst or a SysConst

-- If condition is not of Sort Bool

-- Sort of operand not compatible with unary operator

-- Sort of first operand not compatible with binary operator

-- Sort of second operand not compatible with binary operator

-- attempted redefinition of object

-- actual parameter Sort mismatch

-- too few actual parameters

-- redefinition of method within this object

-- too few formal parameters

-- formal parameter Sort mismatch

-- called object does not serve the specified method

-- all declared objects have not been defined

-- too many parameters

-- self referencing call

-- nested Ifs or Whiles too deep

-- too few variable parameters

-- variable parameter Sort mismatch

-- variable, in variable paramter list, undeclared

-- attempted assigmment to non-variable

-- Sort of assigned value not compatible with variable Sort

-- identifier in parameter declaration list is not a Sort

-- the first three parameters in a declaration of object instance
variables must be of Sort Int

-- no in parameters are expected for the IconClicked method

-- only two in parameters expected for the IconMoveRequest method

-- the two in parameters are expected to be of Sort Int for the
IconMoveRequest method

-- no out parameters are expected for the IconClicked method

-- too many parameters (maximum is %d)

-- no out parameters are expected for the IconMoveRequest method

-- must have two in parameters for an IconMoveRequest method

52

neag"

"Ge"

-- method already declared for this object (Note Initialize, IconClicked
and IconMoveRequest are implicitly declared)

93

Appendix D

SOLVe specification of a VCR

on-screen control system

The following listing is a complete SOLVe specification of a VCR on-screen control system.

-- File: ver.solve.oo
-- Author: Ashley McClenaghan
-- Date: 19/11/93

-- This is a specification of an extremely simplified an on-screen control
-- system for a VCR. The specified system allows the VCR user to set

-- an on-screen 24 hour clock using an on-screen cursor manipulated

-- via cursor control buttons.

System VcrControl Is

——————————————————————— piclcon declarations

PicDecls
digitZero, digitOne, -- declare piclcons to represent digits
digitTwo, digitThree, -- (exploit the fact that the integer
digitFour, digitFive, -- values which are assigned to this
digitSix, digitSeven, -- enumeration of piclcons will correspond to
digitEight, digitNine, -- the number values represented by the piclcons)
cursorPtr, leftArrow, -- declare piclcons to represent the cursor and
rightArrow, plusSign, -- cursor controls
minusSign

EndPicDecls

object declarations

ObjectDeclarations
Object Tens() Is IncQQ(DecQQ() Queryvalue()(Int) EndObject
Object Units() Is IncQ(Q Dec(D() EndObject
Object Cursor() Is Left(Q() Right()() QueryXPos()(Int) EndObject
Object GoLeft() Is EndObject
Object GoRight() Is EndObject
Object IncNum() Is EndObject
Object DecNum() Is EndObject

EndObjectDeclarations

ObjectDefinitions

Object Tens() Is

Method Initialize() Is
Assign(xPos,1)
Assign(yPos,1)
Assign(iconPic,digitZero)
TellCall Interface.Setlcon(xPos,yPos,iconPic)
Return()
Endvethod

Method IconClicked() Is Return() EndMethod
Method IconMoveRequest(Int:a,Int:b) Is Return() EndMethod

Method Inc() Is
If (iconPic Eqi 2) -- maximum value for tens for hours?
Then
-- do nothing
Else
Assign(iconPic, iconPic Plus 1) -- inc value
TellCall Interface.Setlcon(xPos,yPos, iconPic) -- redisplay
EndIf
Return()
EndMethod

Method Dec() Is
If (iconPic Eqi 0) -- minimum value for tens for hours?
Then
-- do nothing
Else
Assign(iconPic, iconPic Minus 1) -- dec value
TellCall Interface.Setlcon(xPos,yPos, iconPic) -- redisplay
EndIf
Return()
EndMethod

Method Queryvalue() Is
Return(iconPic)
EndMethod

EndObject

Object Units() Is

Method Initialize() Is
Assign(xPos,2)
Assign(yPos,1)
Assign(iconPic,digitZero)
TellCall Interface.Setlcon(xPos,yPos,iconPic)
Return()
EndMethod

Method IconClicked() Is Return() EndMethod
Method IconMoveRequest(Int:a,Int:b) Is Return() EndMethod

Method Inc() Is
Variables Int:hourTensValue Endvariables
AskWaitCall Tens.QueryValue()(hourTensValue)
If ((hourTensValue Eqi 2) And (iconPic Eqi 4))-- maximum value for clock?
Then
-- do nothing
Else

If (iconPic Eqi 9) -- need to inc tens?

59

Then

TellCall Tens.IncQ) -- inc tens
Assign(iconPic, digitZero) -- set units to zero
Else
Assign(iconPic, iconPic Plus 1) -- inc units
EndIf
TellCall Interface.Setlcon(xPos,yPos,iconPic) -- redisplay
EndIf
Return()
EndMethod

Method Dec() Is
Variables Int:hourTensValue Endvariables
AskWaitCall Tens.QueryValue()(hourTensValue)

If ((hourTensValue Eqi 0) And (iconPic Eqi 0))-- minimum value for clock?

Then
-- do nothing
Else
If (iconPic Eqi 0) -- need to dec tens?
Then
TellCall Tens.Dec() -- dec tens
Assign(iconPic, digitNine) -- set units to nine
Else
Assign(iconPic, iconPic Minus 1) -- dec units
EndIf
TellCall Interface.Setlcon(xPos,yPos,iconPic) -- redisplay
EndIf
Return()
Endvethod
EndObject

Object Cursor() Is

Method Initialize() Is
Assign(xPos,2)
Assign(yPos,2)
Assign(iconPic,cursorPtr)
TellCall Interface.Setlcon(xPos,yPos,iconPic)
Return()
Endvethod

Method IconClicked() Is Return() EndMethod

Method IconMoveRequest(Int:a,Int:b) Is Return() EndMethod

Method Left() Is

If (xPos Eqi 1) -- already at leftmost cursor position?
Then
-- do nothing
Else
Assign(xPos, xPos Minus 1) -- dec cursor pos
TellCall Interface.Setlcon(xPos,yPos,iconPic) -- redisplay
EndIf
Return()
EndMethod

Method Right() Is

If (xPos Eqi 2) -- already at rightmost cursor position?
Then
-- do nothing
Else
Assign(xPos, xPos Plus 1) -- inc cursor pos
TellCall Interface.Setlcon(xPos,yPos,iconPic) -- redisplay

96

EndIf
Return()
EndMethod

Method QueryXPos() Is
Return(xPos)
Endvethod

EndObject

Object GoLeft() Is

Method Initialize() Is
Assign(xPos,6)
Assign(yPos,5)
Assign(iconPic, leftArrow)
TellCall Interface.Setlcon(xPos,yPos,iconPic)
Return()
Endvethod

Method IconClicked() Is

TellCall Cursor.Left()

Return()

Endwethod

Method IconMoveRequest(Int:a,Int:b) Is Return() EndMethod

EndObject

————————————————— definition of object GoRight --------------oueo
Object GoRight() Is

Method Initialize() Is
Assign(xPos,7)
Assign(yPos,5)
Assign(iconPic, rightArrow)
TellCall Interface.Setlcon(xPos,yPos,iconPic)
Return()
EndMethod

Method IconClicked() Is
TellCall Cursor.Right()
Return()

EndMethod

Method IconMoveRequest(Int:a,Int:b) Is Return() EndMethod

EndObject

Object InchNum() Is

Method Initialize() Is
Assign(xPos,8)
Assign(yPos,4)
Assign(iconPic,plusSign)
TellCall Interface.Setlcon(xPos,yPos,iconPic)
Return()
EndMethod

Method lIconClicked() Is
Variables Int:cursorXPos EndVariables

o7

AskWaitCall Cursor.QueryXPos()(cursorXPos) -- find out where the cursor is
If (cursorXPos Egi 4)

Then -- cursor under tens of hours digit
TellCall Tens.Inc() -- request tens of hours to inc
Else -- cursor under units of hours digit
TellCall Units.Inc() -- request units of hours to inc
EndIf
Return()
Endvethod

Method IconMoveRequest(lInt:a,Int:b) Is Return() EndMethod

EndObject

Object DecNum() Is

Method Initialize() Is
Assign(xPos,8)
Assign(yPos,5)
Assign(iconPic,minusSign)
TellCall Interface.Setlcon(xPos,yPos,iconPic)
Return()
EndMethod

Method IconClicked() Is
Variables Int:cursorXPos Endvariables
AskWaitCall Cursor.QueryXPos()(cursorXPos) -- find out where the cursor is
IT (cursorXPos Eqi 4)
Then -- cursor under tens of hours digit
TellCall Tens.Dec() -- request tens of hours to dec
Else -- cursor under units of hours digit
TellCall Units.Dec() -- request units of hours to dec
EndIf
Return()
EndMethod

Method IconMoveRequest(Int:a,Int:b) Is Return() EndMethod
EndObject
EndObjectDefinitions

EndSystem

38

Appendix E

LOTOS specification of a VCR

on-screen control system

The following listing is a complete LOTOS specification of a VCR on-screen control system.
It has been automatically generated by the parser tool from the SOLVe specification listed in
appendix D.

(* System *)

SPECIFICATION VcrControl [Interface] :NOEXIT

LIBRARY
Boolean, Integer
ENDLIB

TYPE MessagePrimitiveType IS Integer
SORTS
MessagePrimitiveSort
OPNS
Send: ->MessagePrimitiveSort
Receive:->MessagePrimitiveSort
" eq 7,” ne :MessagePrimitiveSort,MessagePrimitiveSort->Bool

Ord:MessagePrimitiveSort->Int

EQNS
FORALL x,y:MessagePrimitiveSort
OFSORT Int

Ord(Send) = 0;
Ord(Receive) = Succ(0);
OFSORT Bool
x eq y = 0rd(x) eq Ord(y);
X ne y = 0rd(x) ne Ord(y);
ENDTYPE

TYPE MessageDescriptorType 1S Integer

SORTS
MessageDescriptorSort

OPNS
Ask:->MessageDescriptorSort
Wait:->MessageDescriptorSort
Tell:->MessageDescriptorSort
" eq ,” ne " :MessageDescriptorSort,MessageDescriptorSort->Bool

Ord:MessageDescriptorSort->Int

99

EQNS
FORALL x,y:MessageDescriptorSort
OFSORT Int
Ord(Ask) = 0;
Ord(Wait) = Succ(0);
ord(Tell) = Succ(Succ(0));
OFSORT Bool
x eq y = 0ord(x) eq Ord(y);
x ne y = 0ord(x) ne Ord(y);
ENDTYPE

TYPE SystemConstantsType IS Integer
OPNS
XMIN:->Int
YMIN:->Int
XMAX:->Int
YMAX:->Int
EQNS
OFSORT Int
XMIN = Succ(0);
YMIN = Succ(0);
XMAX = Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(0))NN));
YMAX = Succ(Succ(Succ(Succ(Succ(0)))));
ENDTYPE

(* PicDecls *)
TYPE PicConstantsType IS Integer
OPNS

digitZero:->Int
digitOne:->Int
digitTwo:->Int
digitThree:->Int
digitFour:->Int
digitFive:->Int
digitSix:->Int

digitEight:->Int

digitNine:->Int

cursorPtr:->Int

leftArrow:->Int

rightArrow:->Int

plusSign:->Int

minusSign:->Int

EQNS

OFSORT Int

digitZero = 0;

digitOne = Succ(0);

digitTwo = Succ(Succ(0));

digitThree = Succ(Succ(Succ(0)));

digitFour = Succ(Succ(Succ(Succ(0))));

digitFive = Succ(Succ(Succ(Succ(Succ(0))))):

digitSix = Succ(Succ(Succ(Succ(Succ(Succ(0))))));

digitSeven = Succ(Succ(Succ(Succ(Succ(Succ(Succ(0)))))));

digitEight = Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(0))))N)));

digitNine = Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(0NN);

cursorPtr = Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(NNN));

leftArrow = Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(0))NNN);

rightArrow = Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(0)))DNINI);

plusSign = Succ(Succ(Succ(Succ(Succ(Suce(Succ(Succ(Succ(Succ(Succ(Succ(Succ(0)DNINN));

minusSign = Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(0)MMNINNID);
ENDTYPE
(* EndPicDecls *)

60

(* ObjlInstDecls *)

BEHAVIOUR
HIDE Messages IN
(
ObjectComms[Messages]
—[Messages]-
(
Interface[Interface,lessages]
itTens[Messages](0,0,0)
initUnits[Messages](0,0,0)
initCursor[Messages](0,0,0)
initGoLeft[Messages](0,0,0)
initGoRight[Messages](0,0,0)
initIncNum[Messages](0,0,0)
initDecNum[Messages](0,0,0)
)
)
WHERE

TYPE ObjNamesType IS Integer

SORTS
ObjNamesSort

OPNS
Interface:->0bjNamesSort
Tens:->0bjNamesSort
Units:->0bjNamesSort
Cursor:->0bjNamesSort
GoLeft:->0bjNamesSort
GoRight:->0bjNamesSort
IncNum:->0bjNamesSort
DecNum:->0bjNamesSort
" eq ", ne " :ObjNamesSort,ObjNamesSort->Bool
Ord:ObjNamesSort->Int

EQNS
FORALL x,y:ObjNamesSort
OFSORT Int

ord(Interface) = Succ(0);
Ord(Tens) = Succ(Succ(0));
Ord(Units) = Succ(Succ(Succ(0)));
Ord(Cursor) = Succ(Succ(Succ(Succ(0))));
Ord(GoLeft) = Succ(Succ(Succ(Succ(Succ(0)))));
Ord(GoRight) = Succ(Succ(Succ(Succ(Succ(Succ(0))))));
Oord(IncNum) = Succ(Succ(Succ(Succ(Succ(Succ(Succ(0)))I);
Oord(DecNum) = Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(0)NIN));
OFSORT Bool
x eq y = Ord(x) eq Ord(y);
X ne y = 0Ord(x) ne Ord(y);
ENDTYPE

TYPE MethNamesType IS Integer

SORTS
MethNamesSort

OPNS
Setlcon:->MethNamesSort
IconClicked:->MethNamesSort
IconMoveRequest: ->MethNamesSort
Initialize:->MethNamesSort

Inc:->MethNamesSort

61

Dec: ->MethNamesSort

QueryValue:->MethNamesSort

Left:->MethNamesSort

Right:->MethNamesSort

QueryXPos: ->MethNamesSort

" eq 7,” ne :MethNamesSort,MethNamesSort->Bool
Ord:MethNamesSort->Int

EQNS
FORALL x,y:MethNamesSort
OFSORT Int

Ord(Setlcon) = Succ(0);

Ord(lIconClicked) = Succ(Succ(0));

Ord(lIconMoveRequest) = Succ(Succ(Succ(0)));

ord(Ini ize) = Succ(Succ(Succ(Succ(0))));

ord(Inc) = Succ(Succ(Succ(Succ(Succ(0)))));

Ord(Dec) = Succ(Succ(Succ(Succ(Succ(Succ(0))))));

Ord(Queryvalue) = Succ(Succ(Succ(Succ(Succ(Succ(Succ(0)))))));

Ord(Left) = Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(0))))))));

ord(Right) = Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(0))))N)));

Ord(QueryXPos) = Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(0))NN);
OFSORT Bool

x eq y = 0rd(x) eq Ord(y);
X ne y = 0rd(x) ne Ord(y);
ENDTYPE

(* EndObj InstDecls *)

(* ObjlInstDefns *)

(* Object *)
(* object Tens *)
PROCESS initTens[Messages](xPos:Int,yPos: Int,iconPic:Int) :NOEXIT :=

lize[Messages](xPos,yPos, iconPic)

PROCESS Tens[Messages](xPos:Int,yPos:Int,iconPic:Int) :NOEXIT :=
IconClicked[Messages] (xPos,yPos, iconPic)
1]
IconMoveRequest[Messages] (xPos, yPos, iconPic)
O
Inc[Messages](xPos,yPos, iconPic)
O
Dec[Messages](xPos, yPos, iconPic)
u]
QueryValue[Messages](xPos,yPos, iconPic)
ENDPROC

(* Method *)
(* method Init ze *)
PROCESS Initialize[Messages](xPos:Int,yPos:Int,iconPic:Int) :NOEXIT :=

(let dummyPlaceHolder:Int = 0 IN
(* Assignment *)
(LET xPos:Int = Succ(0) IN
(* Assignment *)
(LET yPos:Int = Succ(0) IN
(* Assignment *)
(LET iconPic:Int = digitZero IN
(* Tellcall *)
Messages!Send!Tens! Interface!Tel I!Setlcon!xPos!yPos!iconPic;
(* EndTellCall *)
(* MethodFinish *)

Tens[Messages](xPos,yPos, iconPic)

62

(* EndMethodFinish *)

)
ENDPROC
(* EndMethod *)

(* Method *)
(* method IconClicked *)
PROCESS IconClicked[Messages] (xPos: Int,yPos: Int, iconPic: Int) :NOEXIT :=

Messages!Receive?clientObj:0Obj rt!Tens?msgDescr:MessageDescriptorSort!IconClicked

[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 1IN
(* MethodFinish *)

(

([msgDescr eq Ask]->
Messages!Send!Tens!clientObj!Wait! IconClicked;
Tens[Messages](xPos,yPos, iconPic)

)

a

([msgDescr eq Tell]->
Tens[Messages](xPos,yPos, iconPic)

)

)
(* EndMethodFinish *)
)
ENDPROC

(* Endvethod *)

(* Method *)
(* method IconMoveRequest *)
PROCESS IconMoveRequest[Messages] (xPos: Int,yPos: Int, iconPic: Int) :NOEXIT :=
Messages!Receive?clientObj :ObjNamesSort! Tens?msgDescr:MessageDescriptorSort!IconMoveRequest?a: Int?b: Int
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 IN
(* MethodFinish *)

(

([msgDescr eq Ask]->
Messages!Send!Tens!clientObj!Wait! IconMoveRequest;
Tens[Messages](xPos,yPos, iconPic)

)

a

([msgDescr eq Tell]->
Tens[Messages](xPos,yPos, iconPic)

)

)
(* EnduMethodFinish *)
)
ENDPROC

(* EndMethod *)

(* Method *)
(* method Inc *)
PROCESS Inc[Messages] (xPos: Int,yPos:Int,iconPic:Int) :NOEXIT :=

Messages!Receive?clientObj:Obj ort! Tens?msgDescr: DescriptorSort!Inc
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:zInt = 0 1IN
(G
(
(* Then *)
([iconPic eq Succ(Succ(0))]->
EXIT(iconPic,yPos,xPos)

63

)
O
(* Else *)
([Not(iconPic eq Succ(Succ(0)))]->
(* Assignment *)
(LET iconPic:Int = iconPic + Succ(0) IN
(* TellCall *)
Messages!Send!Tens! Interface!Tel l!Setlcon!xPos!yPos!iconPic;
(* EndTellCall *)
EXIT(iconPic,yPos,xPos)

)

O

(* dummy EXIT list *)

([True eq False]->
EXIT(iconPic,yPos,xPos)

)

(* EndIf *)

>> ACCEPT iconPic:Int,yPos:Int,xPos:Int IN
(* MethodFinish *)

(

([msgDescr eq Ask]->
Messages!Send!Tens!clientObj!Wait!Inc;
Tens[Messages](xPos,yPos, iconPic)

)

1]

([msgDescr eq Tell]->
Tens[Messages](xPos,yPos, iconPic)

)

)
(* EndMethodFinish *)
)
ENDPROC

(* EndMethod *)

(* Method *)
(* method Dec *)
PROCESS Dec[Messages](xPos: Int,yPos: Int,iconPic:Int) :NOEXIT :=
Messages!Receive?clientObj :ObjNamesSort! Tens?msgDescr :MessageDescriptorSort!Dec
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 1IN
¢ F)
(
(* Then *)
([iconPic eq 0]->
EXIT(iconPic,yPos,xPos)
)
O
(* Else *)
([Not(iconPic eq 0)]->
(* Assignment *)
(LET iconPic:Int = iconPic - Succ(0) IN
(* Tellcall *)
Messages!Send!Tens! Interface!Tel 1!Setlcon!xPos!yPos!iconPic;
(* EndTellCall *)
EXIT(iconPic,yPos,xPos)

)

u]

(* dummy EXIT list *)

([True eq False]->
EXIT(iconPic,yPos,xPos)

64

(* EndIf *)
>> ACCEPT iconPic:Int,yPos: Int,xPos:Int IN
(* MethodFinish *)

(

([msgDescr eq Ask]->
Messages!Send!Tens!clientObj!Wait!Dec;
Tens[Messages](xPos,yPos, iconPic)

)

a

([msgDescr eq Tell]->
Tens[Messages](xPos,yPos, iconPic)

)

)
(* EndMethodFinish *)
)
ENDPROC

(* Endvethod *)

(* Method *)
(* method QueryvValue *)

PROCESS QueryValue[Messages](xPos: Int,yPos:Int,iconPic:Int) :NOEXIT :
Messages!Receive?clientObj :ObjNamesSort! Tens?msgDescr:MessageDescriptorSort!QueryValue
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 IN
(* MethodFinish *)

(

([msgDescr eq Ask]->
Messages!Send!Tens!clientObj!Wait!QueryVvalue!iconPic;
Tens[Messages](xPos,yPos, iconPic)

)

u]

([msgDescr eq Tell]->
Tens[Messages](xPos,yPos, iconPic)

)

)
(* EndMethodFinish *)
)
ENDPROC
(* EndMethod *)
ENDPROC

(* EndObject *)

(* Object *)
(* object Units *)
PROCESS initUnits[Messages](xPos: Int,yPos:Int, iconPic:Int) :NOEXIT :=

ize[Messages](xPos,yPos, iconPic)

PROCESS Units[Messages](xPos: Int,yPos:Int,iconPic:Int) :NOEXIT :=
IconClicked[Messages] (xPos,yPos, iconPic)
u]
IconMoveRequest[Messages] (xPos, yPos, iconPic)
O
Inc[Messages](xPos,yPos, iconPic)
0
Dec[Messages](xPos,yPos, iconPic)
ENDPROC

(* Method *)

(* method Initialize *)

PROCESS Initialize[Messages](xPos:Int,yPos:Int,iconPic:Int) :NOEXIT :=
(let dummyPlaceHolder:Int = 0 IN

65

(* Assignment *)
(LET xPos:Int = Succ(Succ(0)) IN
(* Assignment *)
(LET yPos:Int = Succ(0) IN
(* Assignment *)
(LET iconPic:Int = IN
(* Tellcall *)
Messages!Send!Units!Interface!Tell!Setlcon!xPos!yPos!iconPic;
(* EndTellCall *)
(* MethodFinish *)
Units[Messages] (xPos,yPos, iconPic)
(* EndMethodFinish *)

)
ENDPROC
(* EndMethod *)

(* Method *)

(* method IconClicked *)

PROCESS IconClicked[Messages](xPos: Int,yPos: Int, iconPic: Int) :NOEXIT :=
Messages!Receive?clientObj:0Obj ort!Units?msgDescr: descriptorSort! IconClicked

[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 IN
(* MethodFinish *)

(

([msgDescr eq Ask]->
Messages!Send!Units!clientObj !Wait!IconClicked;
Units[Messages] (xPos, yPos, iconPic)

)

u]

([msgDescr eq Tell]->
Uni ts[Messages] (xPos, yPos, iconPic)

)

)
(* EndMethodFinish *)
)
ENDPROC

(* EndMethod *)

(* Method *)
(* method IconMoveRequest *)
PROCESS IconMoveRequest[Messages] (xPos: Int,yPos: Int, iconPic: Int) :NOEXIT :=
Messages!Receive?clientObj:ObjNamesSort!Units?msgDescr :MessageDescriptorSort! IconMoveRequest?a: Int?b: Int
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 IN
(* MethodFinish *)

(

([msgDescr eq Ask]->
Messages!Send!Units!clientObj Wait!lconMoveRequest;
Units[Messages] (xPos,yPos, iconPic)

)

O

([msgDescr eq Tell]->
Units[Messages] (xPos,yPos, iconPic)

)

)
(* EnduethodFinish *)
)
ENDPROC

(* EndMethod *)

66

(* Method *)
(* method Inc *)
PROCESS Inc[Messages](xPos: Int,yPos:Int,iconPic:Int) :NOEXIT :=
Messages!Receive?clientObj:ObjNamesSort!Units?msgDescr :MessageDescriptorSort! Inc
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0(* Vars *),hourTensValue: Int=0(* Endvars *) IN
(* AskWaitCall *)
Messages!Send!Units!Tens!Ask!Queryvalue;
Messages!Receive! Tens!Units!Wait!QueryValue?hourTensValue: Int;
(* EndAskWaitCall *)
(GELLENY]
(
(* Then *)
([(hourTensValue eq Succ(Succ(0))) And (iconPic eq Succ(Succ(Succ(Succ(0)))))]->
EXIT(hourTensValue, iconPic,yPos,xPos)
)
a
(* Else *)
([Not((hourTensValue eq Succ(Succ(0))) And (iconPic eq Succ(Succ(Succ(Succ(0))))))]1->
[GERL Y]
(
(* Then *)
([iconPic eq Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(0))))NN)INN]1->
 TellCall *)
Messages!Send!Units!Tens!Tell!Inc;
(* EndTellCall *)
(* Assignment *)
(LET iconPic:Int = digitZero IN

EX1T(hourTensValue, iconPic,yPos, xPos)

)

u]

(* Else *)

([Not(iconPic eq Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(O)IMMNNI->
(* Assignment *)
(LET iconPic:Int = iconPic + Succ(0) IN

EXIT(hourTensValue, iconPic,yPos,xPos)

)

u]

(* dummy EXIT list *)
([True eq False]->

EXIT(hourTensValue, iconPic,yPos, xPos)

)
* EndIf *)
>> ACCEPT hourTensValue:Int,iconPic: Int,yPos: Int,xPos:Int IN
(* Tellcall *)
Messages!Send!Units!Interface!Tell!Setlcon!xPos!yPos!iconPic;
(* EndTellCall *)
EX1T(hourTensValue, iconPic,yPos,xPos)

)

0

(* dummy EXIT list *)

([True eq False]->

EXIT(hourTensValue, iconPic,yPos,xPos)

)
(* EndIf *)
>> ACCEPT hourTensValue:Int,iconPic:Int,yPos:Int,xPos:Int IN
(* MethodFinish *)
(
([msgDescr eq Ask]->
Messages!Send!Units!clientObj!Wait!Inc;

Units[Messages] (xPos,yPos, iconPic)

67

O
([msgDescr eq Tell]->

Units[Messages] (xPos,yPos, iconPic)

)
)
(* EndMethodFinish *)
)
ENDPROC

(* EndMethod *)

(* Method *)
(* method Dec *)
PROCESS Dec[Messages](xPos: Int,yPos: Int,iconPic:Int) :NOEXIT :=

Messages!Receive?clientObj:0Obj rt!Units?msgDescr descriptorSort!Dec
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0(* Vars *),hourTensValue: Int=0(* Endvars *) IN
(* AskWaitCall *)
Messages!Send!Units!Tens!Ask!QueryValue;
Messages!Receive!Tens!Units!Wait!QueryValue?hourTensValue: Int;
(* EndAskwWaitCall *)
(GELLENY]
(
(* Then *)
([(hourTensvalue eq 0) And (iconPic eq 0)]->
EXIT(hourTensValue, iconPic,yPos,xPos)
)
1]
(* Else *)
([Not((hourTensValue eq 0) And (iconPic eq 0))]->
[GERL Y]
(
(* Then *)
([iconPic eq 0]->
(* Tellcall *)
Messages!Send!Units!Tens!Tell!Dec;
(* EndTellCall *)

(* Assignment *)

(LET iconPic:Int = digitNine IN

EX1T(hourTensValue, iconPic,yPos, xPos)

)
O
(* Else *)
([Not(iconPic eq 0)]->
(* Assignment *)
(LET iconPic:Int = iconPic - Succ(0) IN

EXIT(hourTensValue, iconPic,yPos,xPos)

)

O

(* dummy EXIT list *)
([True eq False]->

EXIT(hourTensValue, iconPic,yPos, xPos)

)
(* EndIf *)
>> ACCEPT hourTensValue:Int,iconPic: Int,yPos: Int,xPos:Int IN
(* Tellcall *)
Messages!Send!Units! Interface!Tel l!Setlcon!xPos!yPos!iconPic;
(* EndTellCall *)
EX1T(hourTensValue, iconPic,yPos,xPos)
)
1]
(* dummy EXIT list *)
([True eq False]->

68

EX1T(hourTensValue, iconPic,yPos,xPos)

)

(* EndIf *)

>> ACCEPT hourTensValue:Int,iconPic: Int,yPos: Int,xPos:Int IN
(* MethodFinish *)

(

([msgDescr eq Ask]->
Messages!Send!Units!clientObj Wait!Dec;
Units[Messages] (xPos,yPos, iconPic)

)

u]

([msgDescr eq Tell]->

Units[Messages] (xPos,yPos, iconPic)

)
(* EndMethodFinish *)
)
ENDPROC
(* EndMethod *)
ENDPROC
(* EndObject *)

(* Object *)

(* object Cursor *)

PROCESS initCursor[Messages](xPos:Int,yPos: Int,iconPic:Int) :NOEXIT :=
Initialize[Messages](xPos,yPos, iconPic)

WHERE

PROCESS Cursor [Messages](xPos:Int,yPos:Int,iconPic:Int) :NOEXIT :=
IconClicked[Messages] (xPos,yPos, iconPic)
1]
IconMoveRequest[Messages] (xPos, yPos, iconPic)
1]
Left[Messages] (xPos,yPos, iconPic)
O
Right[Messages](xPos,yPos, iconPic)
u]
QueryXPos[Messages] (xPos, yPos, iconPic)
ENDPROC

(* Method *)

(* method Initialize *)

PROCESS Ini ze[Messages](xPos: Int,yPos:Int,iconPic:Int) :NOEXIT :=
(let dummyPlaceHolder:Int = 0 IN

(* Assignment *)
(LET xPos:Int = Succ(Succ(0)) IN
(* Assignment *)
(LET yPos:Int = Succ(Succ(0)) IN
(* Assignment *)
(LET iconPic:Int = cursorPtr IN
* TellCall *)
Messages!Send!Cursor! Interface!Tel I!Setlcon!xPos!yPos!iconPic;
(* EndTellCall *)
(* MethodFinish *)
Cursor[Messages](xPos,yPos, iconPic)
(* EndMethodFinish *)

)
ENDPROC
(* EndMethod *)

69

(* Method *)
(* method IconClicked *)
PROCESS IconClicked[Messages](xPos: Int,yPos: Int, iconPic: Int) :NOEXIT :=
Messages!Receive?clientObj :ObjNamesSort!Cursor?msgDescr:MessageDescriptorSort!conClicked
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 IN
(* MethodFinish *)
(

([msgDescr eq Ask]->
Messages!Send!Cursor!clientObj!Wait!IconClicked;
Cursor[Messages](xPos,yPos, iconPic)

)

a

([msgDescr eq Tell]->

Cursor[Messages](xPos,yPos, iconPic)

)
)
(* EndMethodFinish *)
)
ENDPROC

(* EndMethod *)

(* Method *)
(* method IconMoveRequest *)
PROCESS IconMoveRequest[Messages] (xPos: Int,yPos: Int, iconPic: Int) :NOEXIT :=
Messages!Receive?clientObj:ObjNamesSort!Cursor?msgDescr:MessageDescriptorSort! IconMoveRequest?a: Int?b: Int
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 IN
(* MethodFinish *)

(

([msgDescr eq Ask]->
Messages!Send!Cursor!clientObj!Wait! IconMoveRequest;
Cursor[Messages](xPos,yPos, iconPic)

)

a

([msgDescr eq Tell]->
Cursor[Messages](xPos,yPos, iconPic)

)

)
(* EndMethodFinish *)
)
ENDPROC

(* EndMethod *)

(* Method *)
(* method Left *)
PROCESS Left[Messages](xPos:Int,yPos:Int,iconPic:Int) :NOEXIT :=

Messages!Receive?clientObj:Obj ort!Cursor?msgDescr: JescriptorSort!Left

[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 IN
¢
(
(* Then *)
([xPos eq Succ(0)]->
EXIT(iconPic,yPos,xPos)
)
1]
(* Else *)
([Not(xPos eq Succ(0))]->
(* Assignment *)
(LET xPos:Int = xPos - Succ(0) IN
(* Tellcall *)

70

Messages!Send!Cursor! Interface! Tel I!Setlcon!xPos!yPos!iconPic;

(* EndTellCall *)
EXIT(iconPic,yPos,xPos)

)

O

(* dummy EXIT list *)

([True eq False]->
EXIT(iconPic,yPos,xPos)

)

(* EndIf *)

>> ACCEPT iconPic:Int,yPos:Int,xPos:Int IN
(* MethodFinish *)

(

([msgDescr eq Ask]->
Messages!Send!Cursor!clientObj!Wait!Left;
Cursor[Messages](xPos,yPos, iconPic)

)

1]

([msgDescr eq Tell]->
Cursor[Messages](xPos,yPos, iconPic)

)

)
(* EndMethodFinish *)
)
ENDPROC

(* EndMethod *)

(* Method *)
(* method Right *)
PROCESS Right[Messages](xPos: Int,yPos: Int,iconPic:Int) :NOEXIT

Messages!Receive?clientObj:0bj ort!Cursor?msgDescr:

[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 IN
(GELLENY]
(
(* Then *)
([xPos eq Succ(Succ(0))]->
EXIT(iconPic,yPos,xPos)
)
a
(* Else *)
([Not(xPos eq Succ(Succ(0)))]->
(* Assignment *)
(LET xPos:Int = xPos + Succ(0) IN
(* TellCall *)

DescriptorSort!Right

Messages!Send!Cursor! Interface!Tel I!Setlcon!xPos!yPos!iconPic;

(* EndTellCall *)
EXIT(iconPic,yPos,xPos)

)

0

(* dummy EXIT list *)

([True eq False]->
EXIT(iconPic,yPos,xPos)

)
(* EndIf *)
>> ACCEPT iconPic:Int,yPos: Int,xPos:Int IN
(* MethodFinish *)
(
([msgDescr eq Ask]->
Messages!Send!Cursor!clientObj!Wait!Right;

Cursor[Messages] (xPos,yPos, iconPic)

71

)

O

([msgDescr eq Tell]->
Cursor[Messages](xPos,yPos, iconPic)

)
)
(* EndMethodFinish *)
)
ENDPROC

(* Endvethod *)

(* Method *)
(* method QueryXPos *)
PROCESS QueryXPos[Messages] (xPos: Int,yPos: Int, iconPic:Int) :NOEXIT :=
Messages!Receive?clientObj :ObjNamesSort!Cursor?msgDescr:MessageDescriptorSort!QueryXPos
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 IN
(* MethodFinish *)
(

([msgDescr eq Ask]->
Messages!Send!Cursor!clientObj!Wait!QueryXPos!xPos;
Cursor[Messages](xPos,yPos, iconPic)

)

u]
([msgDescr eq Tell]->

Cursor[Messages](xPos,yPos, iconPic)

)
(* EndMethodFinish *)
)]
ENDPROC
(* EndMethod *)
ENDPROC
(* EndObject *)

(* Object *)
(* object GolLeft *)
PROCESS initGoLeft[Messages](xPos:Int,yPos: Int,iconPic:Int) :NOEXIT :=

lize[Messages](xPos,yPos, iconPic)

PROCESS GoLeft[Messages](xPos: Int,yPos: Int,iconPic:Int) :NOEXIT :=
IconClicked[Messages] (xPos,yPos, iconPic)
u]
IconMoveRequest[Messages] (xPos, yPos, iconPic)

ENDPROC

(* Method *)
(* method Init

ze *)
PROCESS Initialize[Messages](xPos:Int,yPos:Int,iconPic:Int) :NOEXIT :=
(let dummyPlaceHolder:Int = 0 IN
(* Assignment *)
(LET xPos:Int = Succ(Succ(Succ(Succ(Succ(Succ(0)))))) IN
(* Assignment *)
(LET yPos:Int = Succ(Succ(Succ(Succ(Succ(0))))) IN
(* Assignment *)
(LET 1iconPic:Int = leftArrow IN
* TellCall *)
Messages!Send!GoLeft! Interface!Tel I!Setlcon!xPos!yPos!iconPic;
(* EndTellCall *)
(* MethodFinish *)
GoLeft[Messages](xPos,yPos, iconPic)

72

(* EndMethodFinish *)

)
ENDPROC
(* EndMethod *)

(* Method *)
(* method IconClicked *)
PROCESS IconClicked[Messages] (xPos: Int,yPos: Int, iconPic: Int) :NOEXIT :=
Messages!Receive?clientObj :ObjNamesSort!GoLeft?msgDescr:MessageDescriptorSort!conClicked
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 1IN
(* Tellcall *)
Messages!Send!GoLeft!Cursor!Tell!Left;
(* EndTellCall *)
(* MethodFinish *)
(
([msgDescr eq Ask]->
Messages!Send!GoLeft!clientObj!Wait! IconClicked;
GoLeft[Messages](xPos,yPos, iconPic)
)
u]
([msgDescr eq Tell]->

GoLeft[Messages](xPos,yPos, iconPic)

)
)
(* EndMethodFinish *)
)
ENDPROC

(* EndMethod *)

(* Method *)
(* method IconMoveRequest *)
PROCESS IconMoveRequest[Messages] (xPos: Int,yPos: Int, iconPic: Int) :NOEXIT :=
Messages!Receive?clientObj :ObjNamesSort!GoLeft?msgDescr :MessageDescriptorSort! 1conMoveRequest?a: Int?b: Int
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 IN
(* MethodFinish *)
(
([msgDescr eq Ask]->
Messages!Send!GoLeft!clientObj!Wait! IconMoveRequest;
GoLeft[Messages](xPos,yPos, iconPic)
)
u]
([msgDescr eq Tell]->

GoLeft[Messages](xPos,yPos, iconPic)

)
(* EndMethodFinish *)
)
ENDPROC
(* EndMethod *)
ENDPROC
(* EndObject *)

(* Object *)

(* object GoRight *)

PROCESS initGoRight[Messages](xPos: Int,yPos: Int, iconPic:Int) :NOEXIT :=
Initial ize[Messages](xPos,yPos, iconPic)

WHERE

73

PROCESS GoRight[Messages](xPos: Int,yPos:Int, iconPic:Int) :NOEXIT :=
IconClicked[Messages] (xPos,yPos, iconPic)
a
IconMoveRequest[Messages] (xPos, yPos, iconPic)

ENDPROC

(* Method *)
(* method Initialize *)
PROCESS Initialize[Messages](xPos:Int,yPos:Int,iconPic:Int) :NOEXIT :=
(let dummyPlaceHolder:Int = 0 IN
(* Assignment *)
(LET xPos:Int = Succ(Succ(Succ(Succ(Succ(Succ(Succ(0))))))) IN
(* Assignment *)
(LET yPos:Int = Succ(Succ(Succ(Succ(Succ(0))))) IN
(* Assignment *)
(LET iconPic:Int = rightArrow IN
(* Tellcall *)
Messages!Send!GoRight! Interface!Tell!Setlcon!xPos!yPos!iconPic;
(* EndTellCall *)
(* MethodFinish *)
GoRight[Messages] (xPos, yPos, iconPic)
(* EndMethodFinish *)

)
ENDPROC
(* EndMethod *)

(* Method *)
(* method IconClicked *)
PROCESS IconClicked[Messages](xPos: Int,yPos: Int, iconPic: Int) :NOEXIT :=
Messages!Receive?clientObj:ObjNamesSort!GoRight?msgDescr :MessageDescriptorSort! IconClicked
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 IN
(* Tellcall *)
Messages!Send!GoRight!Cursor!TellIRight;
(* EndTellCall *)
(* MethodFinish *)

(

([msgDescr eq Ask]->
Messages!Send!GoRight!clientObj !Wait!IconClicked;
GoRight[Messages] (xPos,yPos, iconPic)

)

u]

([msgDescr eq Tell]->
GoRight[Messages] (xPos, yPos, iconPic)

)

)
(* EndMethodFinish *)
)
ENDPROC

(* EndMethod *)

(* Method *)
(* method IconMoveRequest *)
PROCESS IconMoveRequest[Messages] (xPos: Int,yPos: Int, iconPic:Int) :NOEXIT :=
Messages!Receive?clientObj :ObjNamesSort!GoRight?msgDescr :MessageDescriptorSort! IconMoveRequest?a: Int?b: Int
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 IN
(* MethodFinish *)
(

74

([msgDescr eq Ask]->
Messages!Send!GoRight!clientObj !Wait!IconMoveRequest;
GoRight[Messages] (xPos, yPos, iconPic)

)

u]

([msgDescr eq Tell]->
GoRight[Messages] (xPos, yPos, iconPic)

)
(* EndMethodFinish *)
)
ENDPROC
(* EndMethod *)
ENDPROC
(* EndObject *)

(* Object *)
(* object InchNum *)
PROCESS initIncNum[Messages](xPos:Int,yPos: Int,iconPic:Int) :NOEXIT :=

e[Messages] (xPos,yPos, iconPic)

PROCESS IncNum[Messages](xPos: Int,yPos:Int,iconPic:Int) :NOEXIT :=
IconClicked[Messages] (xPos, yPos, iconPic)
1]
IconMoveRequest[Messages] (xPos, yPos, iconPic)

ENDPROC

(* Method *)
(* method Initialize *)

PROCESS In

ize[Messages](xPos: Int,yPos:Int,iconPic:Int) :NOEXIT :=
(let dummyPlaceHolder:Int = 0 1IN
(* Assignment *)
(LET xPos:Int = Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(0)))))))) IN
(* Assignment *)
(LET yPos:Int = Succ(Succ(Succ(Succ(0)))) IN
(* Assignment *)
(LET iconPic:Int = plusSign IN
(* TellCall *)
Messages!Send! IncNum! Interface!Tel I!Setlcon!xPos!yPos!iconPic;
(* EndTellCall *)
(* MethodFinish *)
IncNum[Messages](xPos,yPos, iconPic)
(* EndMethodFinish *)

)
ENDPROC
(* EndMethod *)

(* Method *)
(* method IconClicked *)
PROCESS IconClicked[Messages] (xPos: Int,yPos: Int, iconPic:Int) :NOEXIT :=

Messages!Receive?clientObj:Obj ort! IncNum?msgDescr: descriptorSort!IconClicked
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = O(* Vars *),cursorXPos:Int=0(* Endvars *) IN
(* AskWaitCall *)
Messages!Send! IncNum!Cursor !Ask!QueryXPos;
Messages!Receive!Cursor ! IncNum!Wait!QueryXPos?cursorXPos: Int;
(* EndAskWaitCall *)
(G

75

(* Then *)

([cursorXPos eq Succ(Succ(Succ(Succ(0))))]->
(* Tellcall *)
Messages!Send!IncNum!Tens!Tell!Inc;

(* EndTellCall *)
EXIT(cursorXPos, iconPic,yPos, xPos)

)

a

(* Else *)

([Not(cursorXPos eq Succ(Succ(Succ(Succ(0)))))]->
(* Tellcall *)

Messages!Send! IncNum!Units!Tell!lInc;
(* EndTellCall *)
EXIT(cursorXPos, iconPic,yPos, xPos)

)

a

(* dummy EXIT list *)

([True eq False]->

EXIT(cursorXPos, iconPic,yPos, xPos)

* EndIf *)
>> ACCEPT cursorXPos: Int, iconPic: Int,yPos: Int,xPos:Int IN
(* MethodFinish *)

([msgDescr eq Ask]->
Messages!Send! IncNum!clientObj!Wait! IconClicked;
IncNum[Messages](xPos,yPos, iconPic)

)

a

([msgDescr eq Tell]->

IncNum[Messages] (xPos,yPos, iconPic)

)
)
(* EndMethodFinish *)
)
ENDPROC

(* EndMethod *)

(* Method *)
(* method IconMoveRequest *)
PROCESS IconMoveRequest[Messages] (xPos: Int,yPos: Int, iconPic: Int) :NOEXIT :=
Messages!Receive?clientObj:ObjNamesSort! IncNum?msgDescr:MessageDescriptorSort! IconMoveRequest?a: Int?b: Int
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 IN
(* MethodFinish *)
(
([msgDescr eq Ask]->
Messages!Send! IncNum!clientObj !Wait! IconMoveRequest;
IncNum[Messages](xPos,yPos, iconPic)
)
a
([msgDescr eq Tell]->

IncNum[Messages](xPos,yPos, iconPic)

)
(* EndMethodFinish *)
)
ENDPROC
(* EndMethod *)
ENDPROC
(* EndObject *)

76

(* Object *)

(* object DecNum *)

PROCESS initDecNum[Messages](xPos:Int,yPos: Int,iconPic:Int) :NOEXIT :=
Initialize[Messages](xPos,yPos, iconPic)

WHERE

PROCESS DecNum[Messages](xPos: Int,yPos:Int,iconPic:Int) :NOEXIT :=
IconClicked[Messages] (xPos,yPos, iconPic)
a
IconMoveRequest[Messages] (xPos, yPos, iconPic)

ENDPROC

(* Method *)
(* method Initialize *)
PROCESS Initialize[Messages](xPos:Int,yPos:Int,iconPic:Int) :NOEXIT :=
(let dummyPlaceHolder:Int = 0 IN
(* Assignment *)
(LET xPos:Int = Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(0)))))))) IN
(* Assignment *)
(LET yPos:Int = Succ(Succ(Succ(Succ(Succ(0))))) IN
(* Assignment *)
(LET iconPic:Int = minusSign IN
(* Tellcall *)
Messages!Send!DecNum! Interface!Tel I1Setlcon!xPos!yPos!iconPic;
(* EndTellCall *)
(* MethodFinish *)
DecNum[Messages](xPos,yPos, iconPic)
(* EndMethodFinish *)

)
ENDPROC
(* EndMethod *)

(* Method *)
(* method IconClicked *)
PROCESS IconClicked[Messages](xPos: Int,yPos: Int, iconPic: Int) :NOEXIT :=
Messages!Receive?clientObj :ObjNamesSort!DecNum?msgDescr:MessageDescriptorSort!IconClicked
[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = O(* Vars *),cursorXPos:Int=0(* Endvars *) IN
(* AskiaitCall *)
Messages!Send!DecNum!Cursor !Ask!QueryXPos;
Messages!Receive!Cursor IDecNum!Wait!QueryXPos?cursorXPos: Int;
(* EndAskWaitCall *)
[GRLL)
(
(* Then *)
([cursorXPos eq Succ(Succ(Succ(Succ(0))))]->
(* Tellcall *)
Messages!Send!DecNum!Tens!Tel 1!Dec;
(* EndTellCall *)
EXIT(cursorXPos, iconPic,yPos, xPos)
)
a
(* Else *)
([Not(cursorXPos eq Succ(Succ(Succ(Succ(0)))))]->
 TellCall *)
Messages!Send!DecNum!Units!Tell !Dec;
(* EndTellCall *)

EXIT(cursorXPos, iconPic,yPos, xPos)

~

7

(* dummy EXIT list *)
([True eq False]->

EXIT(cursorXPos, iconPic,yPos, xPos)

)

(* EndIf *)

>> ACCEPT cursorXPos: Int, iconPic: Int,yPos: Int,xPos:Int IN
(* MethodFinish *)

(

([msgDescr eq Ask]->
Messages!Send!DecNum!clientObj!Wait! IconClicked;
DecNum[Messages](xPos,yPos, iconPic)

)

O

([msgDescr eq Tell]->
DecNum[Messages](xPos,yPos, iconPic)

)

)
(* EndMethodFinish *)
)
ENDPROC

(* EndMethod *)

(* Method *)
(* method IconMoveRequest *)
PROCESS IconMoveRequest[Messages] (xPos: Int,yPos: Int, iconPic: Int) :NOEXIT :=

Messages!Receive?clientObj:0Obj rt!DecNum?msgDescr: DescriptorSort!conMoveRequest?a: Int?b: Int

[(msgDescr eq Ask) or (msgDescr eq Tell)];
(let dummyPlaceHolder:Int = 0 IN
(* MethodFinish *)

(

([msgDescr eq Ask]->
Messages!Send!DecNum!clientObj!Wait! IconMoveRequest;
DecNum[Messages](xPos,yPos, iconPic)

)

a

([msgDescr eq Tell]->
DecNum[Messages] (xPos,yPos, iconPic)

)

)
(* EnduMethodFinish *)
)
ENDPROC
(* EndMethod *)
ENDPROC

(* EndObject *)

(* process *)
PROCESS Interface[Interface,Messages] :NOEXIT :=
(
(* method Setlcon *)
Messages!Receive?clientObj:ObjNamesSort! Interface?msgDescr :MessageDescriptorSort!Setlcon?xpos: Int?ypos: Int?pic: Int
[(msgDescr ne Wait)];
Interface!Setlcon!clientObj !xpos!ypos!pic;
(
([msgDescr eq Ask]->
Messages!Send! Interface!clientObj !Wait!Setlcon;
Interface[Interface,Messages]
)
u]
([msgDescr eq Tell]->

Interface[Interface,Messages]

78

~

O

(
(* call a IconClicked method *)
Interface! IconClicked?serverObj :ObjNamesSort;
Messages!Send! Interface!serverObj !Tel 11 IconClicked;
Interface[Interface,Messages]

)

O

(
(* call a IconMoveRequest method *)
Interface! IconMoveRequest?serverObj :ObjNamesSort?xpos: Int?ypos: Int;
Messages!Send! Interface!serverObj !Tel 1! IconMoveRequest!xpos!ypos;
Interface[Interface,Messages]

)

ENDPROC

PROCESS ObjectComms[Messages] :NOEXIT :=

(* carrier text for messages of method Interface.Setlcon *)
(* Ask or Tell message events *)

Messages!Send

t0bj :ObjNamesSort

Vinterface

?msg” descr:MessageDescriptorSort

1Setlcon

?arg0: Int

?argl:int

?arg2:Int

[(msg descr eq Ask) or (msg descr eq Tell)];

Messages!Receive

1initobj
linterface
Imsg” descr
ISetlcon
larg0
largl
larg2;
STOP
ObjectComms[Messages]
)
(* end Ask or Tell message events *)
u]
(* Wait message events *)
Messages!Send
interface
?targetObj :ObjNamesSort
?msg’ descr:MessageDescriptorSort
ISetlcon

[(msg descr eq Wait)];

(
Messages!Receive
linterface
ItargetObj
Imsg” descr
1Setlcon;
STOP
ObjectComms[Messages]
)

(* end Wait message events *)

(* end carrier text for messages of method Interface.Setlcon *)

79

a
(* carrier text for messages of method Tens.lconClicked *)
(* Ask or Tell message events *)

Messages!Send

nitObj :ObjNamesSort

?targetObj :ObjNamesSort

?msg’” descr:MessageDescriptorSort
TlconClicked

[(msg”descr eq Ask) or (msg descr eq Tell)];

(
Messages!Receive
t0bj
ItargetObj
Imsg” descr
TlconClicked
STOP
ObjectComms[Messages]
)
(* end Ask or Tell message events *)
a

(* Wait message events *)
Messages!Send
?initObj :ObjNamesSort
?targetObj :ObjNamesSort
?msg” descr :MessageDescriptorSort
TlconClicked

[(msg descr eq Wait)];

Messages!Receive

t0bj
ItargetObj
Imsg” descr
TlconClicked
STOP
ObjectComms[Messages]
)
(* end Wait message events *)
(* end carrier text for messages of method Tens.lconClicked *)
a
(* carrier text for messages of method Tens.lconMoveRequest *)
(* Ask or Tell message events *)
Messages!Send
?init0bj :ObjNamesSort
?targetObj :ObjNamesSort
?msg” descr :MessageDescriptorSort
!lconMoveRequest
?arg0: Int
?argl:int
[(msg" descr eq Ask) or (msg descr eq Tell)];

Messages!Receive
tinitobj
ItargetObj
Imsg” descr
Il conMoveRequest
targo
targl

STOP

ObjectComms[Messages]

80

)

(* end Ask or Tell message events *)
a

(* Wait message events *)

Messages!Send

nitObj :ObjNamesSort

?targetObj :ObjNamesSort

?msg’” descr:MessageDescriptorSort
!lconMoveRequest

[(msg descr eq Wait)];

(
Messages!Receive
t0bj
ItargetObj
Imsg” descr
!lconMoveRequest
STOP
ObjectComms[Messages]
)

(* end Wait message events *)
(* end carrier text for messages of method Tens.lconMoveRequest *)
a
(* carrier text for messages of method Tens.Inc *)
(* Ask or Tell message events *)
Messages!Send
?init0Obj :ObjNamesSort
?targetObj :ObjNamesSort
?msg’ descr :MessageDescriptorSort
finc

[(msg descr eq Ask) or (msg descr eq Tell)];

(
Messages!Receive
vinitobj
ItargetObj
Imsg” descr
TIinc
STOP
ObjectComms[Messages]
)
(* end Ask or Tell message events *)
a

(* Wait message events *)
Messages!Send
?init0bj :ObjNamesSort
?targetObj :ObjNamesSort
?msg” descr:MessageDescriptorSort
TInc

[(msg” descr eq Wait)];

(
Messages!Receive
TinitObj
ItargetObj
Imsg” descr
TInc
STOP
ObjectComms[Messages]
)

(* end Wait message events *)

(* end carrier text for messages of method Tens.Inc *)

n]

81

(* carrier text for messages of method Tens.Dec *)
(* Ask or Tell message events *)
Messages!Send
?initObj :ObjNamesSort
?targetObj :ObjNamesSort
?msg” descr:MessageDescriptorSort
1Dec

[(msg descr eq Ask) or (msg descr eq Tell)];

(
Messages!Receive
1initobj
ItargetObj
Imsg” descr
1Dec
STOP
ObjectComms[Messages]
)
(* end Ask or Tell message events *)
1]

(* Wait message events *)
Messages!Send
?initObj :ObjNamesSort
?targetObj :ObjNamesSort
?msg” descr:MessageDescriptorSort
1Dec

[(msg” descr eq Wait)];

(
Messages!Receive
linitobj
ItargetObj
Imsg” descr
1Dec
STOP
ObjectComms[Messages]
)

(* end Wait message events *)
(* end carrier text for messages of method Tens.Dec *)
1]
(* carrier text for messages of method Tens.QueryvValue *)
(* Ask or Tell message events *)
Messages!Send

?initObj :ObjNamesSort

?targetObj :ObjNamesSort

?msg’ descr :MessageDescriptorSort
1Queryvalue

[(msg” descr eq Ask) or (msg descr eq Tell)];

(
Messages!Receive
t0bj
ItargetObj
Imsg” descr
1Queryvalue
STOP
ObjectComms[Messages]
)
(* end Ask or Tell message events *)
u]

(* Wait message events *)

Messages!Send

?initObj :ObjNamesSort

82

?targetObj :ObjNamesSort

?msg’” descr:MessageDescriptorSort
1Queryvalue

?arg0: Int

[(msg descr eq Wait)];

(
Messages!Receive
t0bj
ItargetObj
Imsg” descr
1Queryvalue
Targo
STOP
ObjectComms[Messages]
)

(* end Wait message events *)
(* end carrier text for messages of method Tens.QueryValue *)
1]
(* carrier text for messages of method Units.Inc *)
(* Ask or Tell message events *)
Messages!Send
?initObj :ObjNamesSort
?targetObj :ObjNamesSort
?msg” descr:MessageDescriptorSort
TInc

[(msg” descr eq Ask) or (msg descr eq Tell)];

(
Messages!Receive
1initobj
ItargetObj
Imsg” descr
TInc
STOP
ObjectComms[Messages]
)
(* end Ask or Tell message events *)
1]

(* Wait message events *)
Messages!Send
?initObj :ObjNamesSort
?targetObj :ObjNamesSort
?msg” descr:MessageDescriptorSort
TInc

[(msg” descr eq Wait)];

(
Messages!Receive
t0bj
ItargetObj
Imsg” descr
TInc
STOP
ObjectComms[Messages]
)

(* end Wait message events *)
(* end carrier text for messages of method Units.Inc *)
]
(* carrier text for messages of method Units.Dec *)

(* Ask or Tell message events *)

Messages!Send
2

itObj :ObjNamesSort

83

?targetObj :ObjNamesSort
?msg’” descr:MessageDescriptorSort
1Dec

[(msg”descr eq Ask) or (msg descr eq Tell)];

Messages!Receive

)

t0bj
ItargetObj
Imsg” descr
1Dec

STOP

ObjectComms[Messages]

(* end Ask or Tell message events *)

a

(* Wait message events *)

Messages!Send

nitObj :ObjNamesSort

?targetObj :ObjNamesSort

?msg’” descr:MessageDescriptorSort
1Dec

[(msg descr eq Wait)];

Messages!Receive

STOP

)

t0bj
ItargetObj
Imsg” descr
1Dec

ObjectComms[Messages]

(* end Wait message events *)

(* end carrier text for messages of method Units.Dec *)

n]

(* carrier text for messages of method Cursor.Left *)

(* Ask or Tell message events *)

Messages!Send

?init0bj :ObjNamesSort

?targetObj :ObjNamesSort

?msg’ descr:MessageDescriptorSort

ILeft

[(msg descr eq Ask) or (msg descr eq Tell)];

Messages!Receive

)

STOP

t0bj
ItargetObj
Imsg” descr

ILeft

ObjectComms[Messages]

(* end Ask or Tell message events *)

a

(* Wait message events *)

Messages!Send

?initObj :ObjNamesSort

?targetObj :ObjNamesSort

?msg” descr :MessageDescriptorSort
ILeft

[(msg” descr eq Wait)];

84

Messages!Receive

tO0bj
ItargetObj
Imsg” descr
ILeft
STOP
ObjectComms[Messages]

)

(* end Wait message events *)
(* end carrier text for messages of method Cursor.Left *)
u]
(* carrier text for messages of method Cursor.Right *)

(* Ask or Tell message events *)

Messages!Send

?initObj :ObjNamesSort
?targetObj :ObjNamesSort

?msg” descr:MessageDescriptorSort

IRight
[(nsg descr eq Ask) or (msg descr eq Tell)];
(
Messages!Receive
1initobj
ItargetObj
Imsg” descr
IRight
STOP
ObjectComms[Messages]
)
(* end Ask or Tell message events *)
1]

(* Wait message events *)
Messages!Send
2

itObj :ObjNamesSort
?targetObj :ObjNamesSort

?msg” descr:MessageDescriptorSort
IRight

[(msg” descr eq Wait)];

(
Messages!Receive
t0bj
ItargetObj
Imsg” descr
IRight
STOP
ObjectComms[Messages]
)

(* end Wait message events *)
(* end carrier text for messages of method Cursor.Right *)
1]
(* carrier text for messages of method Cursor.QueryXPos *)
(* Ask or Tell message events *)
Messages!Send
?initObj :ObjNamesSort
?targetObj :ObjNamesSort
?msg” descr :MessageDescriptorSort
1QueryXPos
[(msg” descr eq Ask) or (msg descr eq Tell)];

Messages!Receive

85

t0bj

ItargetObj
Imsg” descr
1QueryXPos
STOP
ObjectComms[Messages]
)
(* end Ask or Tell message events *)
a

(* Wait message events *)

Messages!Send

?init0Obj :ObjNamesSort
?targetObj :ObjNamesSort

?msg’” descr:MessageDescriptorSort
1QueryXPos

?arg0: Int

[(msg descr eq Wait)];

Messages!Receive
1initobj
ItargetObj
Imsg” descr
1QueryXPos
targo
STOP
ObjectComms[Messages]
)
(* end Wait message events *)
(* end carrier text for messages of method Cursor.QueryXPos *)
ENDPROC
(* EndObjInstDefns *)

ENDSPEC
(* EndSystem *)

86

