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Abstract—Signals from extracellular electrodes in neural sys-
tems record voltages resulting from activity in many neurons.
Detecting action potentials (spikes) in a small number of specific
(target) neurons is difficult because many neurons, both near
and more distant, contribute to the signal at the electrode. We
consider some nearby neurons as target neurons (providing a
signal), and all the other contributions to the signal as noise.
A new algorithm for spike detection has been developed: this
applies a Cepstrum of Bispectrum (CoB) estimated inverse filter
to provide blind equalization. This technique is based on higher
order statistics and seeks to find a sequence of event times, or
delta sequence. We show that the CoB based technique can
achieve a 98% hit rate on an extracellular signal containing
three spike trains at up to 0dB SNR. Threshold setting for
this technique is discussed, and we show the application of
the technique to some real signals. We compare performance
with four established techniques and report that the CoB based
algorithm performs best.

Index Terms—Extracellular recording, Spike detection, Action
potential, Cepstrum of Bispectrum, Higher Order Statistics,
Inverse filtering.

I. INTRODUCTION

The identification of spikes (action potentials) in an extra-
cellular recording is a difficult problem as a large number of
neural signals contribute to the recorded signal. Automated
spike detection, the subject of this paper, is normally followed
by spike sorting so that spike detection is critically important
if spike sorting is to work properly. Since it is often not
possible to precisely place extracellular electrodes to isolate a
single neuron, the micro-electrode tip is surrounded by many
neurons and so detects many neurons’ electrical activities. The
closest neurons result in the highest electrical activity at the tip,
but surrounding neurons superimpose activity changes on the
amplitude and shape of the signal. In addition, signal transfer
from neuron to electrode may be resistive and/or capacitative,
resulting in weak signals whose shape and amplitude differ
from intracellular spikes because of the transfer path char-
acteristics [1], [2]. Perhaps most importantly, the activity of
distant neurons may appear as noise which is highly correlated
with the target signal [3]. Other difficulties with extracellular
recording are that the shapes and amplitudes of the signal of
interest are influenced by many factors: most notably the cell
geometry, the distribution and density of ion channels and the
position of the recording electrode with respect to electrically
active membranes [4]. Altogether extracellular spike record-
ings are inevitably corrupted by noise from varied sources:
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the recording hardware, the ambient recording environment
and the spatially averaged activity of distant cells [5]. All these
issues make the problem of spike detection challenging.

The simplest and most widely used technique for spike
detection is amplitude thresholding which relies on the signal
amplitude without any preprocessing beyond high pass filter-
ing [6]. This technique searches for an event that crosses user-
specified amplitude thresholds [7] which can be set manually
from visual inspection or automatically, (e.g, as the mean or
median plus or minus a multiple of the estimated standard
deviation of the signal [3]). Although it is easy to implement
in hardware [8] and is attractive for real-time implementation
because of its computational simplicity, the performance of
these techniques deteriorate rapidly at low signal-to-noise ratio
(SNR) [9]. For consideration of different shaped spikes from
different neurons, a windowed discriminator technique has
been proposed by [10]. This technique first uses a positive-
going crossing of a threshold to find the start of the time-
window. The duration of the window is preset (0.9 ms in
[10]: we found performance to be better using 3 ms for real
signals). A spike event is detected only if the low pass filtered
signal crosses a negative threshold level within this time-
window. The main drawback of either threshold method is
that overlapping neural spikes are normally considered as a
single spike. This results in a reduction of the efficacy of
the thresholding technique [11]. To overcome this, [12], [3]
proposed the use of artificial neural networks to discriminate
overlapping spikes.

The instantaneous energy of an extracellular signal has been
used to highlight the spike peak by computing the energy
difference between the signal’s current power and the power
in adjacent time intervals [13]. A related approach computes
a nonlinear energy operator (NEO) by utilizing the product of
the instantaneous amplitude and frequency of the extracellular
signal which enhances the spike event [14], [15]. Both methods
use signal amplitude in their energy computation without
employing any noise management technique and, therefore,
do not perform well on noisy signals. Other spike detection
methods largely ignoring the presence of noise in the signal
utilize the first derivative of the signal [16], [17], or the signal’s
structure for designing morphological filters [18].

A different technique is template matching, originating
from image processing [19]. In this approach templates that
represent a typical waveform are used as a standard. The first
stage of this technique is to pick as template a waveform
that represents a typical spike shape. Secondly, the algorithm
locates possible events in the signal that “closely resemble” the
template; and, finally, there is a thresholding stage. Early tech-
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niques often started with the experimenter identifying some
good spikes, and using them to train a filter [20]. However,
this is impractical where there are large numbers of electrodes:
this paper therefore deals with automated spike detection. For
automatic template selection, the method requires amplitude
or duration bootstrapping to generate approximations of actual
spikes [21]. There are many available methods for determining
similarity of sections of a signal, such as sum-of-squared
differences [22], convolution [23], cross-correlation [24], and
maximum likelihood [25]. The template matching algorithm
often distinguishes spike events better than simple threshold
algorithms. But this improved performance relies on a priori
knowledge of the spike shape to form the template. The
performance again decreases in low SNR since the automatic
selection of a template in a noisy signal is very difficult. In
addition, overlapping spikes produce a novel shape of spike
which may worsen the performance of this technique.

Transformation and decomposition of signals are very com-
mon procedures in signal processing. Spike features may be
observed in the Haar-transformed domain [26] which is a form
of wavelet transform. The wavelet transform carries out a
correlation function with the mother wavelet and, therefore,
given a good choice of mother wavelet, the spike properties
are enhanced in the coefficients of the continuous wavelet
transform [27], [4] and also in the discrete wavelet transform
[28], [29]. The major attraction of wavelets is their ability
to separate signals from noise by thresholding the wavelet
coefficients and, hence, this technique performs well even in
poor SNR [9]. The main drawback of this technique is the
assumption of a single spike shape resulting in wavelet choice
that is suboptimal for other spikes.

In this paper, we propose a new spike detection algorithm
only that utilizes the Cepstrum of Bispectrum (CoB) [30] as
part of an inverse filtering technique. This technique was orig-
inally published in [31], but this paper considerably extends
these initial results. Since the CoB is a higher order statistic
(HOS) and because of the inherent properties of higher order
statistics, any estimates from it are free from the effect of
Gaussian background noise, although may still be subject to
noise resulting from the variance due to data truncation. In
addition, as the CoB has a firm foundation in the theory
of system estimation, our approach can estimate spikes even
from overlapping signals. The algorithm is fully automatic and
does not require any prior information about spike shape or
maximum or minimum spike rate.

Section II describes the algorithm in detail. We assessed our
approach on two types of data: synthetic signals (as proposed
by [1]), reported in section III, and real data from Buzsaki’s lab
[32], reported in section V. Our technique proves useful when
there are multiple spike trains in a single extracellular signal.
We compare our algorithm with some established algorithms
utilizing plain thresholding, energy, morphology and wavelet
techniques.

II. THE NEW SPIKE DETECTION ALGORITHM

The new algorithm was originally developed for a simple
neurophysiological signal model in which there is one target

neuron. Partly because of the adaptiveness of this algorithm,
and partly because it works in the frequency domain it works
well also on multiple neuron extracellular signals. The key
steps of the new spike detection algorithm are: (a) estimate
an appropriate inverse filter from the original signal; (b)
perform deconvolution using the estimated inverse filter; and
(c) suppress the noise and then threshold the deconvolved
signal. To describe the spike detection algorithm in detail, we
start from a simple neurophysiological model.

A. The Simple Neurophysiological Model

A single channel neurophysiological signal can be modeled
as the output of a filtered point process. The signal also
contains some other filtered point process data which is noise.
Mathematically, an observed single channel neurophysiologi-
cal signal x(t) is assumed to be the output of a linear time
invariant (LTI) system that can be expressed as

x(t) = e(t)⊗ s(t) + w(t) (1)

where t is the time index, e(t) is the input point process,
s(t) is the filter of the process (also known as the transfer
function) and w(t) is the noise which may contain both corre-
lated signals with different amplitudes as well as uncorrelated
signals. It is strictly assumed that the input process e(t) is
a Poisson process which is non-Gaussian in nature over a
long period. From a neurophysiological viewpoint, s(t) is the
filter built up from the intracellular spike shape and the spike
transfer characteristic, integrated over the spiking surface of
the neuron and e(t) is the sequence of events (considered as
a delta impulse sequence).

B. The Design of Spike Detection Algorithm

Blind deconvolution theory describes many techniques for
recovering the system filter (s(t)) from an unknown LTI
system output signal (x(t)). Inverse filtering is one solution
for estimating the input signal from the filter’s output signal.

Suppose, we have a filter (called an inverse filter) s−1(t)
which is an inverse of s(t). i.e., s−1(t)⊗s(t) = δ(t) or in the
frequency domain S−1(n)S(n) = 1 (where n is the frequency
index). Now if we apply this filter s−1(t) to x(t) (from Eq.
(1)), we get an output z(t):

z(t) = x(t)⊗ s−1(t)
= [e(t)⊗ s(t) + w(t)]⊗ s−1(t)
= e(t)⊗ s(t)⊗ s−1(t) + w(t)⊗ s−1(t)
= e(t) + ew(t) (2)

where ew(t) is a noise component generated by the effect of
the inverse filter on the noise. The inverse filter’s output z(t)
should be similar to an input delta sequence e(t), if ew(t) is
cut-off or attenuated by applying some extra processing (e.g.
denoising, or noise thresholding) to z(t).

In the following sections, we describe a technique to esti-
mate the inverse filter (s−1(t)) blindly from only the consid-
ered signal x(t), and a procedure to suppress and threshold
noise acquired from the inverse filter output signal z(t).
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1) Inverse Filter Estimation: The time domain inverse filter
s−1(t) of any invertible linear process can be estimated from
its frequency domain function S−1(n). Alternatively, using the
equation (S−1(n)S(n) = 1), the inverse filter can be computed
from frequency domain transfer function S(n) as below

s−1(t) = F−1[S−1(n)]

= F−1[
1

S(n)
] and S(n) 6= 0 (3)

where F−1
1 [•] denotes the inverse Fourier transform. Now,

we use the CoB based blind filter estimation technique to
estimate the system transfer function (S(n)) from the signal
x(t). The CoB of the output of any LTI system can be
computed by applying the 1D inverse Fourier transform to the
log-Bispectrum [33]. The Bispectrum is defined as the two-
dimensional Fourier transform of the third order moment ([34],
page 488) or alternatively as the cumulant contribution of three
Fourier components [35]. The CoB is generally computed from
the signal’s frequency domain representation by using Eq. (4).

cBx
(n, t) = F−1

1 [log{Bx(n, l)}]l
= F−1

1 [log{X(n)X(l)X∗(n+ l)}]l (4)

where cBx
[•] is the CoB of the signal, X[•] is the frequency

domain representation of x(t), n and l are the frequency
indices, F−1

1 [•]l denotes the one dimensional inverse Fourier
transform to be applied to the frequency axis l and Bx(n, l)
is the bispectrum of x(t). The CoB value is an expression in
terms of cepstral time (t) and the frequency (n) plane. In [30],
the CoB was expressed in terms of the filter’s transfer function
(as seen in Eq. (5)) and so by setting the cepstral time index
to 0, the log of the system filter can be recovered.

cBx
(n, t) = F−1

1 [log{γeS(n)S(l)S∗(n+ l)}]l
= log{γe}δ(t) + log{S(n)}δ(t) + cs(t)

+e−j2πkm/Ncs(−t) (5)
cBx

(n, 0) = log{S(n)}+ log{γe}+ cs(0)
+e−j2πkm/Ncs(0)

= log{S(n)}+ κ (6)

where κ is independent of n, cs(t) is the cepstrum of the
filter s(t) and γe is the skewness of the input process e(t).
The skewness is the 3rd-order moment of the process (i.e.
analogous to the mean (1st order) and variance (2nd order)).
The above expression shows that the CoB is a complex
measurement which carries both the filter’s Fourier magnitude
and phase information. The main properties of this statistic are
that it carries the logarithmic value of the frequency domain
system transfer function. As the CoB suppresses any Gaussian
noise effects due to the properties of HOS, it is possible to
reconstruct filter information blindly from any output signal
even at a low SNR [30]. The frequency domain filter S(n)
of our model neurophysiological signal x(t) is computed with
the relation stated at Eq. (12) of [30] as given below

S(n) = exp[cBx
(n, 0)− cBx

(0, 0)] (7)

We also use the phase unwrapping procedure in bispectrum
computation which is described in the same paper. The fast
Fourier transform (FFT) algorithm is used throughout to
change the data domain between time and frequency. The
resolution (number of points) in the FFT must be chosen so
that the frequency spectrum of the signal of interest (here,
neurophysiological spikes) is well represented.

2) Noise Suppression and Thresholding: The noise in neu-
rophysiological recordings is a mixture of correlated and
uncorrelated neural signals whose amplitude is assumed to
be lower than the signal amplitude. (In addition, there may
be Gaussian noise from the instrumentation as well.) Con-
sequently, the amplitude of the noise term at the output of
the inverse filter (ew(t) of Eq. (2)) should be lower than the
amplitude of the associated delta sequence (point process) of
interest, (e(t)). In addition, the characteristics of this noise
term (ew(t)) are different from those of a point process (e(t)):
one major difference is that the point process must be a delta
sequence which is rarely the case for the noise term because it
is the combination of many sources which interfere with each
other constructively and destructively.

If the neurophysiological recordings have a high SNR, then
the point process can be found by using simple amplitude
thresholding on Eq. (2). For lower SNR, amplitude threshold-
ing alone may not work well and additional processing applied
to z(t) is necessary in order to enhance the delta sequence as
well as to suppress the noise term. We therefore denoise the
inverse filtered output signal z(t) [Eq. (2)] using the discrete
stationary wavelet transformation employing the first coiflet
wavelet (coif1) for its decomposition and reconstruction. This
was chosen because the shape of each delta element in a noise
free z(t) is very similar to the shape of the first coiflet wavelet.
Note that the delta sequence found in Eq. (2) is independent
of the shape of the extracellular spike or additive noise.

We follow the standard denoising procedure described in
the Matlab user’s guide [36]. The denoising procedure is
implemented in two steps: the inverse filtered signal z(t)
is, firstly, decomposed to provide the first three detail and
approximation coefficients from the coiflet wavelet transform;
and secondly, three denoised signals are reconstructed using
only one level of detail coefficient with zero approximation.
We choose the most highly skewed signal from the original
(inverse filtered) and denoised signals. This signal, referred
to as the denoised inverse filtered signal, dz(t), shows an
enhanced delta sequence with a low value for the noise term
ew(t).

The amplitude of the estimated delta sequence has a theoret-
ical maximum of 1 due to the use of subtraction in Eq. (7). But
in practice it depends on (i) how accurately the inverse filter is
estimated and (ii) how corrupted the recorded spike is. Since
the extracellular signal has multiple spike trains, the algorithm
estimates an average inverse filter so that the amplitude of
the delta sequence may not achieve its maximum value.
Similarly, greater corruption of the extracellular signal impairs
the estimate of an accurate average inverse filter. Regardless
of the amplitude of the delta sequence, the amplitude of the
noise term of the denoised inverse filtered signal (ew(t) of
Eq. (2)) should be below that of the delta sequence, if the
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extracellular signal has SNR better than 0dB. The overall effect
of increasing noise is two-fold: the amplitude of the delta
sequence falls, and the amplitude of the noise term rises.

We therefore use amplitude thresholding based on the peak
signal level to cut the noise term from the denoised signal. The
selection of the amplitude threshold level is very sensitive: a
low threshold level can increase false detection (false positive)
while a higher threshold level can increase the number of
missing spikes (false negative). Equation 8 is applied to cut
out the noise term from the denoised inverse filtered signal
y(t) (where y(t) = dz(t); dz(t) is z(t) denoised using the
coiflet wavelet)

θy = k ∗ ym(t) (8)

where k is a constant (0 < k ≤ 1) and ym(t) is the maximum
amplitude of the signal y(t). The signal above threshold value
[i.e. ê(t) = max(0, y(t) − θy)] may now be used to estimate
spike times. We use the the time of occurrence of the peaks
of ê(t) to estimate these times.

A block diagram of the new algorithm is illustrated in Fig.
1.
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Fig. 1. Block diagram of the new spike detection algorithm. See text of
section II for a detailed description.

C. Effectiveness of the algorithm

The extracellular electrophysiological signal is assumed to
be a linear mixture of many neural spike trains, arriving
through different transfer functions at the sensor and thus with
different amplitudes and possibly shapes. Each spike train may
be considered as a filtered Poisson process. However in an
extracellular recording, only a very small number of spike
trains can be detected as spiking events because the rest of the
spike trains have a lower amplitude, and thus are considered as
neural noise. The spiking events come from neurons very close

to the electrode: these we call the dominant spike trains. The
(noise) spike trains originate from neurons further away from
the detector (electrode), and as a result have a lower amplitude
at the detector: further since the number of neurons at distance
r from the electrode increases as r2, the number of neurons
contributing to the noise is much larger. Since this neural noise
is a sum of a large number of Poisson processes, the linear
mixture of these processes resembles white noise (Gaussian or
non-Gaussian). Some neighboring (but not dominant) neurons
fire in a way correlated with the dominant neurons. These
can produce relatively large signals on occasion due to a
number of these neurons firing near-simultaneously. However,
such signals occur infrequently, and do not resemble spike
trains, and are thus classified as noise. Higher order statistics
(HOS: in this case the bispectrum) suppress the effect of any
Gaussian or symmetrically distributed non-Gaussian noise, and
as a result, the technique works well at suppressing noise in
these neurophysiological signals.

The key task of the technique is to estimate an appropriate
inverse filter from the signal for deconvolution. To compute
the inverse filter, the technique estimates the frequency domain
filter from the signal. Since the extracellular signal contains
a number of dominant spikes, the technique estimates an
average filter (in frequency domain). In the calculation of
this average filter, the frequency components of all spikes
(whether originating from dominant or other neurons) are
included. However the technique simply ignores the frequency
components from those spikes which are subsumed into the
white noise.

The time domain (average) inverse filter is calculated from
the average frequency domain filter. Since the filter estimation
is based on HOS (here cepstrum of bispectrum), the estimated
inverse filter is free from the effects of the neural noise. Thus
deconvolution using the average inverse filter reconstructs the
delta function of the process. The estimated delta functions
produced have different amplitudes depending on the spectral
components of the filter of the Poisson process. That is to say,
different neurons produce different sizes of estimated delta
functions because the transfer function from the (putative)
delta signal to the electrode is different for different neurons.

On a PC with a dual-core 2.66 GHz processor and 3.25
Gbytes RAM, the algorithm (coded in MATLAB) takes be-
tween 6 and 8 seconds to process a 30 second long single
extracellular signal sampled at 20KHz. Highly noisy signals
(poorer than 0dB SNR) can require more processing, and
therefore take longer, but always less than half of the signal
duration using the above equipment.

III. RESULTS AND ANALYSIS FROM SYNTHESIZED DATA

The new spike detection algorithm is based on statistical
methods and therefore the performance is subject to errors.
The best way to validate the performance of this algorithm
is to test it using Monte Carlo trials. To ensure consistent
results, the number of trials needs to be sufficiently high, and
the trials must be independent of each other. Ground truth
information is necessary for error measurement and this is
very difficult to obtain in real extracellular recordings (but see
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section V). Here, we synthesize the neurophysiological signal
so that we have information on the spike train. Further, we
can manipulate the number of spike trains, the spike timings,
the spike shape and the noise level.

A. Model of Synthesized Neurophysiological Signal

We use the algorithm and code from [1] for generation of
independent synthesized signals. This models the extracellular
signal as a linear mixture of three types of signal: spike train,
neural correlated noise and uncorrelated noise. An example of
this technique is shown in Fig. 2. It shows the generation of a
synthesized extracellular signal (Fig. 2D) which is the sum of
four dominant spike trains (Fig. 2C). Each spike train consists
of three types of signal: spike train (s), correlated noise (c) and
uncorrelated noise (u), as shown in Fig. 2A. Fig. 2B shows
the individual sum of all s, c and u signals from Fig. 2A, and
their linear mixture results in the final synthesized extracellular
signal (Fig. 2D). The signals participating in the synthesized
extracellular signal are:

1) spike train (signal S in Fig. 2B): a linear mixture of
multiple target neural spike trains where each spike train
is randomly distributed (using a Poisson process but with
minimum 1ms inter-spike time interval). The signal is
generated by convolving a spike shape with the spike
train (a different shape is used for each target neuron).
The shape of the spike is a realistic extracellular spike
signal generated from an intracellular signal [1]. As
shown in the example (Fig. 2), the spike events in each
train (Fig. 2A) are randomly distributed. The spike shape
is different for each spike train.

2) correlated neural noise (signal C in Fig. 2B): a linear
mixture of a number of neural spike trains generated by
neighboring neurons. The noise spike events are highly
correlated with the target neural spikes (each spike is
generated with a noisy-neuron dependent probability
within a short time interval of each spike from the
neuron with which it is correlated: the probabilities vary
from 0.3 to 0.8, and the time intervals vary from ±8
ms to ±12ms): see Fig. 2A where the spike-like neural
signal c with relatively low amplitude appears at about
the same time as the target neural spike. This signal
arises from neighboring neurons and is very confusing
in spike detection. Actual signals are generated in the
same way as the original spike train.

3) uncorrelated noise (signal U in Fig. 2B): a set of
uncorrelated randomly distributed spike signals. These
signals are generated from spikes created by a number of
Poisson processes (one per uncorrelated neuron). Actual
signals are generated in the same way as the original
spike train.

B. Signal to Noise Ratio (SNR)

The instantaneous (power) SNR is the ratio of signal power
to background noise power at that instant. There are a range of
techniques for SNR estimation. It can be computed from the
ratio of the amplitude of the signal to the standard deviation
of (zero-mean) background noise. Alternatively, it can be

computed from the RMS value of the signal and the noise.
These techniques are most appropriate where the signal is of
near-constant amplitude. But in neurophysiology the signal
(spike) is highly dynamic. In this case different techniques
may be used as discussed by [4], [37] and [1].

Following [1], we computed the SNR as the ratio of the
maximum peak to peak amplitudes of the spike signal and the
background noise. (We note that using the ratio of peak spike
amplitude to RMS noise would give a higher SNR.) For the
signal generated by multiple neurons, different peak to peak
amplitudes may be observed from different neural spike trains
and, therefore, average peak to peak amplitude is used instead
of single maximum peak to peak amplitude. In our experiment
with synthesized signals, we compute an average peak to peak
spike amplitude (S̄pp) from all contributing spike trains (signal
s in Fig 2A). The background noise (Npp) is the maximum
peak to peak amplitude of the neural and other noise signals
(signal c plus u in Fig 2A). The equation for SNR in decibels
we use is

SNR = 20 log10

[
S̄pp
Npp

]
(9)

To observe the performance of an algorithm at different SNRs,
we simply manipulate the amplitude of noise to provide
different SNRs (as for an example, the relative amplitude ratio
of s(t), u(t) and c(t) is 1 : 0.56 : 0.56 for 5dB, 1 : 1 : 1 for
0dB and 1 : 1.77 : 1.77 for -5dB SNR)

C. Performance Quantification
The spike detection ability of the new algorithm can be

determined by applying it to a number of different types of
test signals whose ground truth is known. We compare the
ground truth with the algorithm detected spike events and
produce a confusion matrix for each test signal. On each event
comparison we allow a tolerance of ±0.5ms. In addition, since
the amplitude threshold used in the new algorithm (discussed
in section II-B2) is highly dependent on SNR value, we tune
the threshold in each test signal so that it minimizes the sum
of type I (false positive) and type II errors (false negative). The
formulas below have been used to quantify the performance
of the algorithm [38]:

Hit rate =
Ncds
Ntrs

×100 Precision =
Ncds
Nds

× 100

False positive rate =
Nfds
Ntrns

× 100 (10)

where Ncds is the number of correctly detected spike events
(true positive), Ntrs is the total number of true spike events in
the test signal (true positive and false negative), Nfds is the
number of falsely detected spike events (false positive), Ntrns
is the number of true non-spike events (true negative plus false
positive) and Nds is the number of spike events detected by
the method (true positive plus false positive). Note that we
assume a minimum inter-spike interval of 1ms, limiting Ntrns
to a maximum of 1000 per second.

The aim of a spike detection method is to minimise Nfds
and maximize Ncds. This implies maximizing the hit rate and
precision at the same time, and minimizing the false positive
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4 Spike trains with associated noise

Synthesized extracellular signal
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         noise accumulated  from 4 spike trains                           
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E.

Fig. 2. Synthesized extracellular signal generation (using the algorithm from [1]). It is assumed here that the extracellular signal reflects noisy signals from
four spiking neurons. (A): The contributing signal from the 4 neurons. Each neuron provides one spike train (s) and there is neural noise from neighboring
neurons some of which are correlated (c) and some uncorrelated (u). (B): The type-wise linear sum of the contributing signals, i.e., the signal S, C and U are
the sum of all s, all c and all u respectively. (C): The neuron-wise extracellular signal which is the linear sum of respective contributing signals s, c and u. (D):
The synthesized extracellular signal which is linear sum of all contributing neuron signals. (E): A synthesized extracellular test signal at SNR = 5dB. This
signal contains spike trains from four target neurons plus 7 correlated and 15 uncorrelated neural signal as shown above. The duration of this test illustrated
signal is 1 second and the spike rate of each target neuron is 10 Hz i.e., 40 number of spikes with different amplitude are present in the illustrated test signal.

rate. Since we are concerned with the detection of spike events,
we use hit rate and precision to observe the performance of
the algorithm.

D. The Performance of the Algorithm on Different Test Signals

A number of test signals have been used to evaluate the new
algorithm. These test signals can be categorized in different
ways: (a) number of dominant spike trains with different spike
shapes in the signal; (b) spike rate(s) in the signal; and (c)
level of additive neural noise (correlated plus uncorrelated,
i.e., signal to noise ratio (SNR)). In addition, we consider one
or more sets of synthetic neurophysiological signals from each
category: where one set of signals consists of 50 synthetic test
signals each 5 seconds long, and sampled at 24kHz. Our test
signal synthesizer uses the model described in section III-A.

The Matlab code for this model is available at http://www.cs.
stir.ac.uk/∼lss/noisyspikes/index.html.

The first experiment uses a spike shape (spike #1 of Table I)
which could be an extracellular signal recorded by placing an
electrode very close to a single target neuron (one dominant
spike is present with some neural noise). We synthesized a
set of neurophysiological signals which contains this type of
dominant spike with 7 other correlated plus 15 uncorrelated
neural noise signals. We observe the performance of the
new algorithm for this set of signals at 8 different SNR
levels, 15dB, 10dB, 5dB, 0dB, -5dB, -10dB and -15dB. The
number of spikes in each test signal is around 50 (i.e. 10
spikes/second).

We apply the new algorithm to each test signal adjusting the
threshold level as discussed in section III-C and determined
the average hit rate and precision for each noise level. Table
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TABLE I
FOUR SPIKES USED TO GENERATE DIFFERENT SYNTHESIZED SIGNAL FOR

ALGORITHM PERFORMANCE EVALUATION. THESE SPIKES DIFFER IN
MANY WAYS, E.G, AMPLITUDE, PHASE APPEARANCE AND DURATION.

Spike
Shape

Spike #1 Spike #2 Spike #3 Spike #4

0 1 2

0

0 1 2 3

0

0 1 2 3

0

0 1 2 3

0

ti ( i )

Max
Ampl

0.2011 0.2156 0.3356 0.1686

Min
Ampl

-0.1083 -0.1966 -0.5704 -0.1997

Dur. 2.6ms 3.4ms 3.6ms 3.2ms

II shows the statistics of the hit rate and precision in each
category. Analysis of this experiment shows that the new
algorithm can detect spikes with very high accuracy from the
single spike train signal if the SNR is -5dB or better. Note that
the statistics of both hit rate and precision at SNR 0dB and
above are 100% with 0 standard deviation indicating perfect
performance.

Since extracellular signals often contain more than one dom-
inant spike train we study the performance of this algorithm
with more realistic synthesized neurophysiological signals. We
generate three sets of signals which differ in the number of
dominant spike trains. Each test signal contains spike trains
of (a) Spike #1 and Spike #2; (b) Spike #1, Spike #2 and
Spike #3; or (c) all 4 spike shapes (see Table I). The firing
rate of each spike train is approximately 10Hz (±1Hz), giving
altogether (in a 5 second test signal) 50× n± 5 spikes where
n is the number of dominant spike trains. The noise in each
test signal is generated from 7 correlated and 15 uncorrelated
neural signals. As in the previous experiment, we adjust the
amplitude of neural noise in each test signal to generate 7
new test signals at SNR levels: 15dB, 10dB, 5dB, 0dB, -5dB,
-10dB and -15dB.

The performance (hit rate and precision) of the new algo-
rithm on these signals has been observed by applying the
algorithm to each test signal separately. We adjusted the
threshold level as discussed in section III-C. The hit rate and
precision are determined for each test signal by comparing
with the respective signal’s ground truth. The statistics were
calculated as for the single dominant spike train above and
are shown in Table II. The results show that the mean hit rate
and the precision of the new algorithm is above 98% with a
low standard deviation (less than 2.5%) when the SNR of the
test signal is 0dB or better: this indicates that the algorithm
detects more than 98% of true spikes from a 0dB signal and
with around 2.5% false positives. Further, we can trust this
result as the average precision is above 95%.

In Fig. 3 we show two graphs to illustrate the overall
performance of the algorithm: Fig. 3A shows the hit rate,
and Fig 3B shows the precision of the algorithm at different
SNRs while varying the number of dominant spike trains.
From these graphs we conclude that the new algorithm can
find spikes at 0dB SNR when there are either single or multiple

dominant spike trains. At least 95% of spikes can be correctly
detected (with minimal false positives) by the new algorithm
if the test signal has SNR 0dB or better. This result can be
achieved from the signal generated with up to 4 dominant
spike trains. The technique may show similar performance for
more than 4 dominant spike trains provided that the shapes of
all the dominant spikes (in the frequency domain) are not too
dissimilar. In the case of dissimilar spike shapes the technique
may overlook one or more spike trains. In such cases we
suggest re-application of the technique to the same signal with
detected spikes replaced by a constant value.

Neurons emit spikes at different rates. We therefore assess
the new algorithm with synthetic extracellular signals which
differ in spike rate. We ran an experiment with 5 sets of synthe-
sized signals at varying overall spike rates: 15Hz, 30Hz, 45Hz,
60Hz and 75Hz (±1Hz). Each test signal has 3 dominant spike
trains (with shapes #1 to #3 from Table I) plus 7 correlated and
15 uncorrelated neural noise signals at SNR of 5dB and 0dB.
As in the previous experiment we apply the new algorithm to
each test signal and adjust the threshold level (as described in
Section III-C). We determine hit rate and precision from the
(known) ground truth. Statistics of both hit rate and precision
have been computed and are shown in Table III. We note that
the performance of the algorithm decreases at high spike rates.
The mean hit rate at higher spike rates is 1% to 3% below
the hit rate at lower spike rates. Consequently, the standard
deviation becomes higher at high spike rates (above 2% - 4%).
A high spike rate at low SNR (about 0dB) results in a greater
chance of corrupting the spike shape and its resultant spectra.
This is further discussed in Section VI.

E. CoB Technique with overlapping spiking signals

The extracellular signal at any instant is the sum of all
contributing spike trains. As a result overlapping spikes may
occur frequently. When a dominant spike overlaps another
more distant neuron’s low amplitude spikes (here considered
as noise), a portion of the spike near the baseline may become
more corrupted (in % terms) than the peak portion of the spike.
A simple threshold technique applied after bandpass filtering is
enough to detect spike events from this type of signal. On the
other hand, the detection of a dominant spike event becomes
difficult when the dominant spikes themselves overlap, or
when a correlated spike overlaps a dominant spike. These
overlapping spikes often change both the dominant spike’s
amplitude and shape, sometimes producing novel shapes.

To observe the performance of cob with overlapping spikes,
we consider a test signal containing two dominant spike trains
each firing at around 25 Hz. The spike trains contain spike#1
and spike#2 spike shapes (see Table I). The added neural noise
is generated from 7 correlated and 15 uncorrelated neurons.
The SNR (see section III-B) of this test signal is 5dB. A
segment of test signal is shown in the top picture of Fig 4.
To demonstrate and analyze the performance of cob we chose
two subsegments (shaded areas marked by ‘A’ and ‘B’ in the
figure). The zoom-in presentation of these subsegment signals
is shown in the bottom pictures of Fig 4. To show the form
of the overlapping signal, we also display the dominant spike
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TABLE II
PERFORMANCE OF THE ALGORITHM APPLIED TO SYNTHESIZED NEUROPHYSIOLOGICAL SIGNALS WITH 1, 2, AND 3 DOMINANT SPIKE TRAINS. EACH
EXPERIMENT IS CONDUCTED ON 1 SET OF SIGNALS (50 TEST SIGNALS EACH WITH DURATION OF 5S) AT 7 DIFFERENT SNR VALUES. HIT RATE AND

PRECISION ARE COMPUTED USING EQ. (10)

Hit Rate Precision
mean±std min max mean±std min max

Single
spike
trains

15dB 100 ± 0 100.00 100.00 100 ± 0 100.00 100.00
10dB 100 ± 0 100.00 100.00 100 ± 0 100.00 100.00

5dB 100 ± 0 100.00 100.00 100 ± 0 100.00 100.00
0dB 100 ± 0 100.00 100.00 100 ± 0 100.00 100.00

-5dB 99.8 ± 0.6 97.87 100.00 99.3 ± 1.6 91.52 100.00
-10dB 87.9 ± 21.9 3.63 100.00 79.3 ± 13.1 51.76 100.00
-15dB 9.9 ± 22.7 0.00 90.19 40.6 ± 38.2 0.00 100.00

Two
spike
trains

15dB 99.9 ± 0.2 98.96 100.00 99.96 ± 0.19 98.96 100.00
10dB 99.9 ± 0.2 98.96 100.00 99.9 ± 0.2 98.95 100.00

5dB 99.9 ± 0.2 98.95 100.00 99.9 ± 0.3 98.95 100.00
0dB 99.7 ± 0.8 95.87 100.00 99.4 ± 1.3 93.00 100.00

-5dB 92.7 ± 13.4 47.05 100.00 89.9 ± 9.6 66.18 100.00
-10dB 48.1 ± 32.9 0.00 100.00 72.2 ± 24.5 0.00 100.00
-15dB 7.0 ± 20.2 0.00 97.91 25.9 ± 35.2 0.00 100.00

Three
spike
trains

15dB 99.9 ± 0.3 98.70 100.00 99.8 ± 0.4 98.05 100.00
10dB 99.8 ± 0.4 98.01 100.00 99.6 ± 0.6 96.73 100.00

5dB 99.9 ± 0.3 99.31 100.00 99.7 ± 0.6 97.45 100.00
0dB 98.2 ± 2.3 87.91 100.00 95.7 ± 5.9 76.83 100.00

-5dB 69.8 ± 27.3 27.39 100.00 79.7 ± 12.1 57.04 98.11
-10dB 14.5± 19.5 0.00 66.20 39.9 ± 37.3 0.00 100.00
-15dB 0.9± 4.4 0.00 31.03 15.9 ± 29.7 0.00 100.00
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Fig. 3. An overview of the algorithm’s performance on synthesized neurophysiological signals. The graphs show (A) the mean hit rate and (B) the mean
precision (right) for different sets of signals (each set contains 50 five second long test signals) with different numbers of dominant spikes and different SNRs.
The spike rate from each dominant spike train in any test signal is 10 spikes per second.

trains (marked as ‘a’) and the sum of the dominant spike trains
(marked as ‘b’) for that particular period of raw signal (marked
as ‘c’). We apply cob to the raw signal. The detected spike
events (marked as ‘d’) for the respective subsegment signals
are shown in the same figure.

As can be seen in the lower figures, spikes from the two
dominant spike trains collide (overlap) at ‘x’ and ‘y’. Due
to the addition of correlated spikes (plus uncorrelated noise)
the shape of these single dominant spikes has been changed.
Sometimes the correlated spike amplitude is higher than the
related single dominant spike. However, the cob technique

does not detect these as spike. It detects only the dominant
spike event.

When two dominant spikes are superimposed the resultant
spike shape changes: in the bottom right figure, the resultant
spike appears as a double headed single spike (inset); and
in the bottom left figure, the resultant spike is a new spike
with a higher amplitude and a longer duration of each phase.
In addition, the additive correlated and uncorrelated noise
changes the shape of the overlapped resultant spike. Event
detection results produced by the cob technique show the
presence of two spikes resulting from the superimposed spikes.
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TABLE III
PERFORMANCE STATISTICS OF THE ALGORITHM ON 5 SETS (EACH SET CONTAINS 50 FIVE SECOND LONG TEST SIGNALS) OF SYNTHESIZED

NEUROPHYSIOLOGICAL SIGNALS DIFFERING IN SPIKE RATE. TOTAL SPIKE RATES OF 15HZ, 30HZ, 45HZ, 60HZ AND 75HZ WERE USED. EACH TEST
SIGNAL HAS THREE DOMINANT SPIKE TRAINS WITH SPIKE RATES OF 5, 10, 15, 20 AND 25 SPIKES PER SECOND. THE SNRS ARE 5DB AND 0DB. THE

STATISTICS OF HIT RATE AND PRECISION ARE COMPUTED FROM 50 SIMILAR EXAMPLES OF TEST SIGNALS.

Spike Hit Rate Precision
SNR Rate mean±std min max mean±std min max

5dB

15 99.8± 0.5 98.59 100 99.6±1.6 89.53 100.00
30 99.8±0.3 98.63 100 99.8±0.6 96.64 100.00
45 99.6±1.1 92.76 100 99.1±1.8 88.36 100.00
60 99.5±1.2 93.37 100 99.0±2.2 89.27 100.00
75 98.9±1.9 90.13 100 98.4±1.9 92.07 100.00

0dB

15 99.1±1.9 91.78 100 98.7±2.4 91.02 100.00
30 98.7±1.6 92.20 100 95.4±6.8 76.71 100.00
45 97.7±2.6 86.78 100 95.7±5.1 72.69 100.00
60 96.7±4.7 68.45 100 93.4±5.5 76.58 100.00
75 96.4±5.9 69.27 100 93.7±5.3 79.56 99.73

d

c

b

a

A
x

d

c

b

a

B
y

Fig. 4. Performance of (cob to the overlapping spike signal. Top shows original signal, with parts ’A’ and ’B’ shown magnified at waveform ’c’ in the two
lower panels. ’a’ and ’b’ in the lower panels show the original spike signals and their sum, and ’d’ shows the detected spike events. The parts of the signals
a marked ’x’ and ’y’ show overlapping spike events.

The time duration between the two peak values of these spikes
is 0.25ms for the overlap signal at ‘x’ and 0.75ms for the
overlap signal at ‘y’.

F. Comparison with other techniques

We compare the new algorithm (cob) with five established
spike detection methods. These are a wavelet based tech-
nique (wav) [4], a simple double sided amplitude thresholding
technique (dtl), a time-windowed doubled sided amplitude
threshold (pln) [10], a morphological filtering based technique
(mor) [18], and a non-linear energy operator based technique

(neo) [14]. We programmed the algorithms for the above
except for wav, since its software was provided by Z. Nenadic,
author of [4]. We tune the key parameters of each algorithm
in order to achieve the best possible result. This occurs when
the sum of type I (false positive) and type II error (false
negative) is at a minimum. The parameters we tune are shown
in Table IV. Since our test spike train contains spike whose
duration (counting all phases) varies from 2ms to 3.5ms, we
chose a fixed time window of 3ms for the technique pln and a
minimum inter spike interval (ISI) for all techniques of 3ms.
Spike time estimation is considered correct when the estimate
is within 1.5ms (0.5 × minimum ISI) of the actual time.
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Fig. 5. Comparison of six spike detection techniques: five established techniques and the new technique. The left graph displays the mean hit rate and the
right graph displays the mean precision observed. All techniques have been applied to 50 synthesized test signals at 7 SNR values: 15dB, 10dB, 5dB, 0dB,
-5dB, -10dB and -15dB. Each test signals is 5s long, has three dominant spike trains, and the spike rate is approximately 50 spikes per second.

TABLE IV
PARAMETERS TUNED TO ACHIEVE FOR BEST SPIKE DETECTION FOR EACH

ALGORITHM cob, wav, dtl, pln, mor AND neo.

Parameter 1 Parameter 2
cob Threshold amplitude - -
mor Structure element size Threshold Amplitude
wav Wavelet coeff’t no Wavelet Type
dtl +ve threshold amplitude -ve threshold amplitude
pln +ve threshold amplitude -ve threshold amplitude
neo Threshold amplitude - -

For this experiment, we synthesized a set of signals contain-
ing three dominant spike trains each firing at 10 ± 1Hz (i.e.
a total of about 150 spikes in each 5 second test signal). The
noise in each test signal is generated from 7 correlated and 15
uncorrelated signals. To observe the algorithms’ performance
at different noise levels, we adjust the noise level to provide
7 SNR levels: 15dB, 10dB, 5dB, 0dB, -5dB, -10dB and -
15dB. We apply all algorithms to all 350 (1 set of 50 test
signals at 7 SNR levels) test signals. The best performance
(with appropriate setting of tuning parameters in Table IV) of
each algorithm was recorded. We computed the hit rate and
precision by comparing detected spike events with the ground
truth of each signal. Fig. 5 shows two graphs comparing hit
rate and precision at different noise levels for each technique.

The best hit rate is found by cob and is more than 99% at
SNR 0dB and better. With the exception of mor and pln all
other techniques work well when the SNR is 10dB or higher:
we found a hit rate of more than 97% for wav, neo, dtl and
cob. The neo technique detects around 97% of spike events
from the signal at 10dB SNR but its precision is not as good
(78%). The hit rate for all techniques except cob falls gradually
with decreasing SNR: at 5dB SNR the hit rate is 95%, 89%
and 88% and at 0dB 73% 51% and 69% for dtl, wav and
neo respectively. Similarly, the precision falls with decreasing
SNR: at 0dB the precision is 72% to 75%. cob outperforms all
other techniques: its hit rate is 99% and 75% at 0dB and -5dB
SNR while the precision values are 97% and 82% respectively.
Notice that almost the same performance is observed from cob

even if the inter spike interval is reduced to 0.5ms whereas this
is not the case for all the other techniques: their performance
deteriorates rapidly as inter spike interval is reduced.

IV. IMPACT OF THRESHOLDING ON THE COB TECHNIQUE

As can be seen from Fig. 3, the new technique (cob)
detects 95% of spikes with around 5% of type I errors (false
positives) where the test neurophysiological signal has up
to 4 dominant spikes and the SNR is 0dB. The detection
performance increases when the signal has SNR above 0dB.
But this accuracy is highly dependent on the setting of the
threshold θy i.e., the value of k used in Eq. (8).
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Fig. 6. (a) ROC Curve: The performance of the algorithm on the synthesized
extracellular signal at 3 different SNRs: 5dB, 0dB and -5dB. The test signal
has 4 dominant spike trains each with a spike rate of about 10Hz. Each ROC
curve consists of 200 points, one for each value of k (Eq. (8), where k varies
linearly from 0.0025 to 0.9975). Each point plots the hit rate against the false
positive rate for one value of k for each SNR. (b) Hit rate distribution over the
threshold factor k (Eq. (8)). The same three sets of synthesized extracellular
signals are used in both figures. The value of k is less critical at 5dB SNR.

To demonstrate the effect of the parameter k, we organize
another experiment with 1 set (= 50 test signals) of synthesized
signals at 3 different SNR levels. Each test signal is 5 seconds
long and has 4 dominant spike trains. The spike details are
again as in Table I. Each spike train has a spike rate of 10
Hz so that the overall spike rate is approximately 40Hz. As in
previous experiments, we adjust the level of noise to provide
three SNRs: 5dB, 0dB and -5dB. On each test signal we
apply cob at 200 linearly spaced threshold levels by varying
k in Eq. (8) in linear steps from 0.0025 to 0.9975 (since at
zero threshold level cob detects spikes at all points, and at
1 no spikes are detected). The result from each threshold is
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compared with the ground truth for the respective test signal
and the hit rate and false positive rate are computed using Eq
(10). We determine the mean value of hit rate and the false
positive rate for each SNR and illustrate the performance of the
algorithm using a receiving operating characteristics (ROC)
graph (see Fig. 6a).

The ROC curve describes the relationship between the rate
of detection of true spike events and the false positive rate as
k is varied (see Eq. (8) for k). Clearly, the ROC curve for the
signal at 5dB SNR shows the best detection performance (see
zoom-in view of Fig. 6a). Figure 6b shows the hit rate as the
threshold k is varied. The data behind the ROC curve for the
5dB SNR signal shows that it is possible to detect 99% of true
spike events at 0.14% false positive rate: i.e., cob detects 14
false (extra) events per 10 thousand spike detections).

Very similar performance is observed when the test signal
has 0dB SNR. The data for the ROC curve for 0dB SNR signal
shows that cob can detect a maximum of 99% of true spike
events with 2.8% false positive rate (i.e., 280 false (extra)
events per 10 thousand spike event detections). Some other
data points are: 95% and 90% hit rate at 0.68% and 0.39%
false positive rate respectively.

The ROC curve for -5dB SNR signal is different than the
other two. 99% of true spikes can be detected from this signal
with a minimum false positive rate of 20%. Allowing 12%
and 8% false positive rate, it is possible to detect respectively
95% and 90% true spike events.

Clearly, setting the threshold level is a critical task in spike
detection using cob. Fig 6b illustrates that the hit rate is 1
(i.e., 100% spike detection) when the threshold level is 0 to
0.3 or slightly more. The hit rate falls gradually after that
with decreasing threshold level. Therefore, it is difficult to set
an appropriate threshold level. A choice of a higher threshold
value leads to a low hit rate and low false positive rate whereas
a choice of lower threshold results in a high hit rate but, at
the same time, a high false positive rate (detecting a large
number of false spike events) causing problems at the spike
sorting stage. We have seen that the cob technique can detect
a higher number of true spike events at a lower false positive
rate for an SNR of 0dB or better, and is thus an improvement
over the other techniques. From Fig 6b, the best threshold
(value for k) was about 0.3 to 0.35 for SNR of 5dB and 0dB,
but 0.2 to 0.3 for SNR of -5dB (for the four dominant spike
signal). A suitable spike sorting technique must be applied if
a lower threshold level is selected because of the increase in
false positives. The precise threshold value chosen will also
depend on the relative importance of missed spikes and false
positives.

V. SPIKES IN A REAL SIGNAL: APPLYING THE COB
TECHNIQUE

Real biomedical signals always differ from synthetic sig-
nals. We therefore test our technique on real signals. We ob-
serve the performance of the algorithm applied to real signals
on two problems: detecting spikes from dendritic recordings,
and assessing techniques on data for which simultaneous
intracellular and extracellular recordings were available.

We worked with neurophysiological signals recorded from
the hippocampus by the Buzsaki Lab (http://osiris.rutgers.
edu/) who have made their data available at http://crcns.org/
data-sets/hc. We chose this dataset because (i) it was publicly
available and (ii) it contains simultaneously recorded intracel-
lular and extracellular data. We first consider an intracellular
signal recorded from dendrites. This contains the neuron’s
internal spike trains plus some other secondary subthreshold
intracellular signals. As a result the intracellular signal appears
to have a high noise level. We apply the new cob technique
to this signal and show the pre-threshold output of cob in
Fig. 7. We high pass (cut-off frequency=300Hz) the intra-
cellular signal before processing (and before the illustration).
Theoretically the cob technique without the threshold stage
extracts the Dirac delta sequence (from the spikes) plus a
lower amplitude noise term (see Eq. 2) and we observe this in
Fig. 7. Clearly, the algorithm suppresses the noise and other
uncorrelated signals and at the same time it highlights the
impulse train. Setting the threshold level for this output signal
is now relatively easy, as there is a distinguishable amplitude
range between the noise term and the Dirac sequence. Hence, it
is possible to detect spike events from this type of noisy signal
with very few errors (either false positive or false negative).

To observe the performance of cob with a real extracellular
signal, we consider three simultaneously recorded (channels)
signals from one target neuron: 1 intracellularly and 2 extracel-
lularly recorded signals. Our aim is to observe the intracellular
spikes in an extracellular signal, and to use this to assess
and compare different spike detection techniques. Obviously,
the extracellular signal may record more than one spike train
so that we observe spikes from other neurons as well. Fig.
8a, b and e illustrate the intracellular and the companion
extracellular signals after high pass filtering with a cut-off
frequency of 300Hz. The extracellular signal of Fig. 8b has
less noise (we compute the SNR to be around 10dB) so the
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Time (in Sec.)
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Fig. 7. Application of cob technique to a real signal. (a)Intracellular signal
recorded from hippocampus neuron at dendritic location (Buzsaki group:
Animal: 145, Cell: 14921, data file: d14921.001.dat, channel: 5, Segment:
10 to 40 seconds: the inset shows an expanded version of the circled section
showing details of two spikes marked x and y.). (b) cob processed output
signal (prior to thresholding). Simple amplitude thresholding can distinguish
spike events from subthreshold intracellular noise.
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spikes are clear but the other extracellular signal (Fig. 8e) has
more noise (we compute the SNR to be around 3dB) and also
a larger number of different spike shapes from other neurons.
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Fig. 8. Application of cob technique to a real signal. (a): Intracellular
signal recorded from hippocampus neuron (Animal: 166 Cell: 16613 data file:
d16613.001.dat, channel: 13, Segment: 10 to 40 seconds). (b): extracellular
signal (channel: 2 recorded simultaneously with intracellular signal at (a))
with electrode placed very close to the target neuron. We calculate the SNR
of this signal to be 10.1dB (c): cob processed and pre-thresholding output
signal. (d): previous signal with threshold subtracted (threshold factor k=0.25)
and negative values set to 0. (e) extracellular signal (channel: 11 recorded
simultaneously with intracellular signal at (a)). We calculate the SNR to be
3.05dB and (f) cob processed and thresholded (threshold factor k=0.25) output
signal.

The spikes in the intracellular signal are clear from visual
inspection, and we use simple thresholding to identify the
spike events in this signal. These spike events are considered
as the ground truth for the extracellular signals. The spikes in
the extracellular signal ‘b’ are easily identifiable by eye. At
least two types of spike are visible in this extracellular signal,
and one type matches the intracellular spike train. We apply
cob to this extracellular signal and show the output before
applying a threshold in Fig. 8c, and after a suitably chosen
threshold (threshold factor k = 0.25 (Eq. 8)) in Fig. 8d. All
visible spikes in the extracellular signal are detected by the
cob technique. In a similar way, we apply cob to the other
extracellular signal (Fig. 8e) and apply a threshold to the cob
processed signal. The thresholded output is illustrated in Fig.
8f.

Threshold selection is difficult because cob detects all spikes
regardless of the shape of the spike, or refractory period
of spike, that is, the cob technique can detect spikes when
the real signal has multiple spike trains. In the signal at
‘c’ threshold setting is relatively easy. On the other hand,
selecting the threshold level for the cob processed ‘e’ signal
was comparatively hard since the signal has many spike trains
and poor SNR. We chose the threshold factor k = 0.25 which
gives us around 98% hit rate.

To compare the techniques used in section III-F on this
extracellular signal, we adjust the tuning parameters (noted
in Table IV) of the respective techniques so that the maxi-
mum number of (correctly detected) intracellular spikes (true
positive) are matched to minimum number of relative false
positives (false only relative to the ground truth provided by

TABLE V
RESULT OF APPLYING ALL SIX TECHNIQUES TO THE EXTRACELLULAR

DATA, USING THE INTRACELLULAR EVENTS AS GROUND TRUTH. ∆t
SHOWS THE MAXIMUM PERMITTED INTERVAL BETWEEN A DETECTED

SPIKE AND A SPIKE IN THE GROUND TRUTH. TP = TRUE POSITIVE,
FN=FALSE NEGATIVE, AND RFP = RELATIVE FALSE POSITIVE

∆t ms cob wav mor dtl pln neo

Ch
2
Sig
’b’

0.5
TP 30 16 29 30 29 30
FN 0 14 1 0 1 0
RFP 15 29 16 16 1 139

1.0
TP 30 30 30 30 30 30
FN 0 0 0 0 0 0
RFP 14 14 14 15 0 112

Ch
11
Sig
’e’

0.5
TP 30 26 9 27 17 30
FN 0 4 21 3 13 0
RFP 106 123 71 113 24 4099

1.0
TP 30 28 27 30 30 30
FN 0 2 3 0 0 0
RFP 106 33 91 58 18 178

the intracellular spike train). The results in Table V were
generated by first setting the threshold to the lowest possible
value, and noting the number of true positives. The threshold
was then gradually increased until just before the point at
which the number of true positives started to drop. The
results were then recorded. Table V shows results from all
six techniques. Since the extracellular signal has spikes from
multiple neurons and all our observations were relative to the
intracellular spike train, the spikes from other neurons are
termed here relative false positives. The accuracy with which a
spike needs to be found (∆t in Table V) makes a considerable
difference to the results (note that ∆t is also the minimum
inter-spike interval findable using any of the techniques).

For signal ‘b’ at ∆t = 0.5ms, cob, dtl and neo find all
the intracellular spikes. pln and mor miss 1 spike, but wav
misses many of them. However, all the techniques find all
the intracellular spikes (i.e., 0 false negative (or missing))
when ∆t = 1ms. On the other hand, when the extracellular
signal has a lower SNR and a higher number of spikes (signal
‘e’), the techniques cob and neo work best at ∆t = 0.5ms
followed by wav and dtl. neo is capable of detecting all true
positives, but at the cost of large numbers of relative false
positives: if we permit it to miss some spikes, the number of
relative false positives falls rapidly. Though pln detects 50%
of intercellular spikes when ∆t = 0.5ms, the mor almost fails
to detect intracellular spike events. At ∆t = 1ms, cob, neo, dtl
and pln successfully detect all intracellular spike events from
signal ‘e’, and the others only miss a small number.

It is observed that at lower ∆t, dtl and pln sometimes detect
a multipolar spike as a number of nearby neurons’ spikes.
But when ∆t is increased, detected spikes which are closer
together are no longer classified as different spikes. In addition,
pln includes an allowance for the refractory period, reducing
the number of relative false positives found. This is useful
when there is known to be a single dominant spike train,
but could result in missed spikes when there is more than
one dominant spike train. The reason for wav misclassifying
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many of the intracellular spikes when ∆t = 0.5ms is that
the time of the spike is inaccurately estimated: hence when
∆t = 1ms, wav performs much better. Overall, we conclude
that cob produces more accurately timed estimates, and does
not get confused by multipolar extracellular signals, refractory
periods or minimum inter spike intervals.

VI. DISCUSSION AND CONCLUSION

The key idea of this new technique is signal deconvolution
using an adaptive inverse filter. Estimation of the inverse filter
is based on the cepstrum of bispectrum and this needs a
sufficiently large volume of data. Thus, for example, in table
III, when the spike rate is 5Hz, it sometimes fails to find one
spike type. The amount of data to be processed at a time can be
extended (or reduced) depending on the signal of interest and
the frequency of its occurrence: e.g., to observe spikes from
within the Delta band of an EEG signal, a considerably longer
duration would need to be processed. Note that a very long
data set may violate the stationarity and linearity conditions
for bispectrum estimation [39].

The new technique is essentially independent of sampling
frequency. The number of points used in FFT estimation
(converting the signal from the time domain to frequency
domain) should be equivalent to at least double the duration
of a spike shape: here we have used 256 samples throughout,
equivalent to 12.8ms.

The critical step in this technique is the estimation of the
inverse filter. From previous work [30] CoB can reconstruct
any filter (minimum, non-minimum or maximum phase sys-
tem) information with very low variance from any Poisson
triggered (non-Gaussian) (LTI) filtered process. Further, CoB
can reconstruct the filter from the signal at very low SNR.
Hence, we apply the CoB based reconstructed filter to the
signal for inverse filtering so that we can find the trigger
sequence. We observe in all experiments with synthetic signals
that the trigger sequence has been estimated from the signal
at 0dB SNR or below and it has been possible due to the
properties of CoB. In the experiments on real data, we used
high-pass (300 Hz) filtered data for testing all the techniques.
Clearly, high-pass filtering is critical for pln and dtl: however,
cob will in fact work on raw data primarily because it works
in the frequency domain.

Unlike any fixed wavelet based signal processing, cob
uses an adaptive inverse filter to perform the deconvolution.
If an inverse filter is estimated accurately, cob can detect
nearly 100% of spike events. This inverse filter information
is estimated from the signal in which the spike is detected.
Therefore, theoretically there must have been spikes in the
signal. Again, if there is one dominant spike train in the signal,
it is observed that cob can estimate the inverse filter from the
signal at low spike firing rate (<5Hz). But if the signal has
more than one dominant spike train, an average inverse filter
is estimated. The averaging is dependent on the spike trains in
the signal, i.e, the rate of spikes in each spike train, frequency
components of the spike, etc. We observed that sometimes cob
fails to detect one spike train in an extracellular signal which
contains multiple dominant spike trains. This happens when

one spike train has a much lower spike rate than the other
spike trains. This is, in fact, a failure of accurate inverse filter
estimation. We suggest considering a longer signal, or a lower
resolution of the frequency domain components. We are also
considering iterative application of the cob technique, ignoring
spikes already found in the next application. In addition,
choosing the threshold level may be difficult if the signal has
many completely superimposed spike events: this can impair
detecting other spike events.

One clear advantage of this algorithm is higher precision
compared to other techniques. With the appropriate threshold,
cob has few or no false positives. We found that the established
techniques almost fail to detect spikes (low hit rate) when
the test signal’s SNR is 0dB or even better, whereas the new
algorithm detects almost all (hit rate is very high). The method
pln detects events without pre-processing and as a result, it
is subject to false positive and/or false negative errors. The
technique mor suppresses noise on the basis of the shape of
the spike signal and noise. However it can fail to detect spike
events if a spike signal is corrupted by noise and changes its
shape. Some noise shapes can be interpreted as false spikes.
The technique wav uses a wavelet transformation and its
coefficients. The choice of mother wavelet is crucial because
the spike shapes may differ considerably and because spikes
are corrupted in different ways by noise. Thus wav fails to
detect some spike signals and can give errors even at high
SNR (Fig. 5). The technique neo provides the instantaneous
non-linear energy without checking the spike shape and,
therefore, tends to false positive errors. The method cob uses
a more sophisticated preprocessing technique which inverts
the original convolution caused by the geometry of the target
neuron and the electrode. This makes it much more immune to
additive noise. This matters because many electrophysiological
signals have poor SNR. We note that it assumes a single
convolution for all the target neurons, which is not likely
to be the case. However, the time domain statistics of the
different convolutions are likely to be similar if only because
the original intracellular signals are similar.

Detecting spike events in an extracellular neurophysiologi-
cal signal is a challenge in two particular cases: where there
is no prior information about the number of spike trains or
the number of spikes per second and where the noise level is
high. It is always possible that some spikes appear with low
amplitude due to interaction with additive noise. As a result,
as seen in section V, different spike detection methods applied
to a real signal do not always locate the same events. Reducing
the threshold level for all methods may locate more possible
events but at the expense of increasing the number of inserted
events. When cob is applied to a synthesized signal it generates
relatively few errors caused by false positives (even in poor
SNR), suggesting that we can rely on its detected events more
than with other techniques.

Finally, the Matlab code and some simulated data used in
this paper are available at web page: http://www.cs.stir.ac.uk/
∼ssh/spikedetection.
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