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Abstract

The batch version of soft topology-preserving map
producing retinotopy and ocular dominance in vi-
sual cortex is proven to be reduced to the elastic net.
This verifies numerous results of numerical simula-
tions described in the literature demonstrating sim-
ilarities of neural patterns produced by lateral and
elastic synaptic interactions.

1 Introduction

Neural receptive fields of visual systems are or-
dered. The projections from retina to optic tectum
(in lower vertebrates), and from retina to lateral
geniculate nucleus, then to primary visual cortex
(in mammals) are topographic. The latter means
that neighbouring point in the retina are mapped to
neighbouring points in the cortex (tectum). The de-
velopment of such continuous topographic mapping
is called retinotopy. This order guarantees improve-
ment of the recognition abilities and, hence, facil-
itates the species survival. Indeed, without order-
ing slight external or internal (neural) noise can re-
sults in absolutely unpredictable (and possibly com-
pletely wrong) outcome, whereas the ordered recep-
tive field guarantees the recognition of a prototype
that is, perhaps, not exactly the same, but very sim-
ilar to the stimulus.1 The development of neural
receptive fields in a way that they mimic stimulus
distribution and become ordered is, thus, biologi-
cally meaningful.

Together with retinotopy, ocular dominance and
orientation preference are developed.

Mammalian primary visual cortex is naturally
binocularly innervated. During development of
many, though not all, mammalian species, each part

1I thanks Dr. Yin who pointed my attention to this issue.

of the visual cortex becomes more densely inner-
vated by one eye and less densely innervated by
the other. Eventually, so-called ocular dominance
stripes, that are reminiscent of the zebra stripe pat-
tern, are developed. Moreover, exact details of the
stripes (their shape, spacing of the pattern, etc) are
determined dynamically during development rather
than by genetics.

During development the visual cortex cells be-
come largely respond to some preferred orientations.
Like ocular dominance, orientation selectivity forms
its own pattern: cells with the same orientation pref-
erence group to the same domain.

There is strong biological evidence that the same
mechanisms underline the formation of both retino-
topy, ocular dominance, and orientation selectivity
in the visual systems. Different models account for
the above phenomena (see reviews [1–3]). However,
the only models so far that successfully describe the
simultaneous formation of all above processes are
based on either the Kohonen approach [4] or the
elastic net [5].

Kohonen’s self-organizing map utilize lateral in-
teractions to perform a mapping from the stimulus
space to the response space with preserving neigh-
bourhood relations. It has been successfully ap-
plied to describe the complete development of visual
cortex, i.e. simultaneous formation of retinotopy,
ocular dominance, and eye and orientation prefer-
ence [6].

It is known that elastic synaptic interactions can
forge a topology as well. The elastic net was first ap-
plied to solve the travelling salesman problem (TSP)
[5]. This algorithm works like an elastic rubber ring:
it gradually drags points on the ring towards the
cities and an elastic force keeps neighbouring points
close to one another. Another application of elastic
synaptic interactions is the preservation of topology
in cortical mappings [7–12].
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Researchers have paid attention to similarities of
the neural patterns produced by lateral and elastic
synaptic interactions [3, 15–18], but still there is no
rigorous justification of such relationships.

We already demonstrated the benefits of using
both lateral and elastic interactions for controlling
the receptive field patterns [8–13]. In [14], we con-
sidered the model utilizing only lateral interactions,
which, unlike the elastic ones, are biologically jus-
tifiable, and applied it to the problems previously
solved only with elastic interactions. Our current
aim consists in the proof of equivalence of both types
of interactions. For this purpose, we consider de-
velopment of retinotopy and ocular dominance by
the two models. The first model, the batch version
of soft topology-preserving map, is based on weak
nearest-neighbour lateral interactions. Considering
the weight vector of a cortical neuron as a “particle”
moving in space-time of the retina and decomposing
this particle trajectory over the retinal patterns, we
derive the elastic net. The latter model is based on
elastic, diffusion-type, interactions. Numerical sim-
ulations justify the theoretical results: both models
produce similar ocular dominance patterns.

2 Ocular dominance formation

The idea of cortex as a dimension-reducing map
from high-dimensional stimulus space to its two-
dimensional surface has proved to be fruitful [3, 7].
Performing a cortical mapping induces two conflict-
ing tendencies: (1) the cortical surface should pass
through the representative points in stimulus space;
(2) the area of the sheet should be kept a mini-
mum. This ensures the formation of smooth recep-
tive fields and, hence, the minimal “wiring” inter-
connecting the cortical cells, which, in turn, ensures
the closeness of the cortical cells representing similar
stimuli.

The above mapping can generate ocular domi-
nance with the visual cortex cells varying in their
responsiveness to each eye. The order imposed re-
veals itself in the in the formation of stripe pattern
with neigbouring cells sharing a preference to one of
the eyes.

Below, two models based on lateral and elastic
interactions, respectively, and the relationship be-
tween them are analyzed.

2.1 Batch mode of soft topology-
preserving map

We consider a one-dimensional net of n stochastic
neurons trained by N patterns. The energy of this

net, for a given stimulus, is

Ei(µ) =
1
2

n∑

j=1

hij |xµ −wj |2, (1)

where xµ is a given sample pattern, wj are the
weight vectors, and h(i, j) is the neighbourhood
function.

Throughout, we consider nearest-neighbour lat-
eral interactions

hij =





1, i = j;
γ, |i− j| = 1;
0, |i− j| > 2,

(2)

where 0 < γ 6 1.
Instead of the “hard” assignment of Kohonen

original algorithm with an unique winner, we as-
sume a “soft” assignment where every i-th neuron
is assigned to a given µ-th pattern with a probability
pi(µ);

∑
i pi(µ) = 1 [8–14,19,20].

The assignment probabilities minimizing free en-
ergy of the system (that is a composite of the aver-
aged energy and thermal noise energy) are found to
be

pi(µ) =
e−βEi

∑n
k=1 e−βEk

, (3)

which gives the minimal free energy [8–14,19,20]

F (µ) = − 1
β

ln
( n∑

i=1

e−βEi

)
. (4)

Incremental learning strategies are derived
through a steepest descent minimization of function
(4). The dynamics follows of the free energy gradi-
ent, which result in soft topology-preserving map-
ping [8–14]. Soft mapping is based on soft competi-
tion which allows all neurons to adjust their weights
with probabilities proportional to their topographic
distortion. This makes the weights move more grad-
ually to the presented patterns. The strength of the
competition is adjusted by a temperature. The un-
derlying mechanism, deterministic annealing, is de-
rived from statistical physics: it mimics an ordering
process during a system’s cooling. At high tem-
peratures, the competition is weak and the original
energy landscape is smoothed by noise, which helps
to eliminate local minima at the beginning of the
ordering phase. On reducing the temperature, the
competition becomes stronger, the smoothing effect
gradually disappears, and the free energy landscape
resembles the original one.

In this paper, we consider the batch learning
mode when the updating rule is averaged over the
set of training patterns before changing the weights.
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This gives the following free energy:

F = − 1
βN

N∑
µ=1

ln
( n∑

i=1

e−βEi

)
. (5)

Minimization of energy (5) results in the batch
version of soft topology-preserving map:

∆wj = −η
∂F

∂wj

=
η

N

N∑
µ=1

n∑

i=1

pi(µ)hij(xµ −wj), (6)

where η is the learning rate.
At low temperatures (β →∞), (6) reduces to the

batch mode of the Kohonen map. Goodhill applied
the latter model with the special lateral interaction
function to modelling the formation of topography
and ocular dominance in the visual cortex [1]. The
elastic net was found to slightly outperform the Ko-
honen map [1]. Unlike Kohonen’s map, the elastic
net algorithm is based on soft competition, with the
temperature effectively incorporated into the sys-
tem [8–13, 21]. Soft competition, as a rule, leads to
the development of more precise topography, which
can be a reason for better performance of the elastic
net. Another limitation of the Kohonen map is the
use of a shrinking lateral interaction function, which
is not biologically justified [23].

Here, we apply the mapping (6) to modelling the
the formation of retinotopy and ocular dominance.
Throughout, the training is cyclic with a fixed se-
quence, i.e. before learning starts a particular or-
der of pattern presentation is fixed. We applied the
mapping (6) to model this phenomenon. The sim-
ulations are performed for 32 cortical neurons with
initial uniform random distribution of the weight
vectors within [−0.0667, 0.0667] × [−1, 1] rectangu-
lar (Fig. 1(a)). The stimuli are placed regularly
within the two columns of 16 units each at the left
and right boundary of the rectangular, which repre-
sent left and right “eyes” respectively. The ratio of
the separation units between retinae to the separa-
tion of neighbouring units within a retina defines the
correlation of retinal units, which is ≈ 1. The lat-
eral interactions are weak (γ = 0.03). The learning
rate (with η0 = 1) linearly decreases. Let us look at
evolution of the weight vector distribution when the
inverse temperature increases from βs = 4 to differ-
ent values of βe in steps of 0.01. For βe exceeding
some threshold but remaining relatively small, the
weight vectors become distributed on a line exactly
between the left and right eyes (Fig. 1(b)). For in-
termediate values of βe, the clusters consisting two
weight vectors are formed on this line (Fig. 1(c)).
Increasing βe leads to breaking of the spatial sym-
metry when the clusters move to either left or right

eyes. The latter means the simultaneous formation
of retinotopy and ocular dominance (Fig. 1(d)).

2.2 Elastic net

The elastic net is based on elastic, diffusion-type, in-
teractions [5]. Applied to the cortex, elastic synap-
tic interactions showed their efficiency to preserve
the topology [7]. In one approach, the cortex is
modelled as a dimension-reducing map from a high-
dimensional stimulus space to its two-dimensional
surface. Utilizing soft competition mechanism and
synaptic interactions, this mapping pulls the corti-
cal sheet towards the stimuli but, at the same time,
keeps the cortical area as minimal as possible. An-
other approach uses elastic nets to model the for-
mation of ocular dominance stripes [24,25].

Earlier, Simic showed the relationship between
the Hopfied network and the elastic net: it de-
rived the latter from Hopfield’s objective function
for the TSP [21,22]. Let us show how to derive the
elastic net from the batch version of soft topology-
preserving map.

Taking the Taylor series expansion (in power of
γ) results in

F =− 1
βN

N∑
µ=1

ln
n∑

i=1

exp
(− β

2
|xµ −wi|2

)

+
γ

2N

n∑

i=1

N∑
µ=1

pi(µ)
(|xµ −wi−1|2

+ |xµ −wi+1|2
)

. (7)

Following Simic’s approach, consider the weight
vector as a “particle” moving in space-time x and
decompose this particle trajectory:

wj = 〈x(j)〉 =
N∑

ν=1

pj(ν)xν , (8)

where x(j) and 〈x(j)〉 are the position and the ex-
pected position of the particle at time j respectively.

Applying decomposition (8) to free energy (7) and
taking the low temperature limit yield

F =− 1
βN

N∑
µ=1

ln
n∑

i=1

exp
(− β

2
|xµ −wi|2

)

+
γ

N

n∑

i=1

|wi+1 −wi|2 . (9)

Minimization of free energy function (9) results
in the elastic net algorithm:

∆wj =− η
∂F

∂wj
=

η

N

( N∑
µ=1

p̃j(µ)(xµ −wj)

+ 2γ(wj+1 − 2wj + wj−1)
)

, (10)

BICS 2004 Aug 29 - Sept 1 2004

BIS8.6 3 of 6



−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

r
1

r 2

(a)

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

r
1

r 2

(b)

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

r
1

r 2

(c)

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

r
1

r 2

(d)

Figure 1: Weight vector distribution of the cortical chain: (a) initial, (b) – (d) after applying the mapping (6)
with γ = 0.03 and (b) βe = 150, (c) βe = 250, and (d) βe = 1000 (see details in the text). Stimuli and weight
vectors are marked by open and filled circles, respectively.
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Figure 2: Weight vector distribution of the cortical chain: (a) initial, (b) after applying the mapping (10) with
γ = 0.03 and βe = 1000 (see details in the text). Stimuli and weight vectors are marked by open and filled circles,
respectively.
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where

p̃j(µ) =
exp(−β

2 |xµ −wj |2)∑n
k=1 exp(−β

2 |xµ −wk|2)
(11)

is a reduction of pj(µ) to the case of no lateral inter-
actions. Defining β ≡ 1

σ2 with the Gaussian distri-
bution width σ, energy (9) takes the exact form of
the Durbin-Willshow elastic net energy [5]. Shrink-
ing the distribution width is, thus, equivalent to re-
ducing the system temperature.

For elastic net (10), we performed the same
numerical simulations that were done for soft
topology-preserving map (6). Our theoretical find-
ings are verified by numerical results confirming the
similarity of both modules. Comparison of patterns
in Figs. 1(d) and 2(b) are clearly demonstrates the
latter.

3 Conclusions

Utilizing soft competition instead of a hard one
gives an opportunity (i) to derive the system en-
ergy function, and (ii) to describe the learning pro-
cess in terms of deformation of the energy landscape
keeping the lateral interaction range fixed. Such a
deformation of the landscape may be caused by a
compound action of interactions of the retinocor-
tical system cells, diffusion of free molecules, and
neuronal noise. This gives an alternative to widely
used but not justified learning based on shrinking
the lateral interaction range. In such a way, by uti-
lizing fixed nearest-neighbour lateral interactions,
soft competition, and deterministic annealing, the
topology is forged in the system.

Remarkably, the elastic net can be derived
from the batch version of soft topology-preserving
map. The nearest-neighbour lateral interactions
are transformed to the elastic ones, which proves
their similarity for forging the cortex topology. In
turn, the Gaussian variance of elastic net appears to
be the temperature of the soft topology-preserving
map. The latter elucidates indirect incorporation of
soft competition and deterministic annealing into
the elastic nets.

The one-dimensional topology-preserving map
can be generalized to high-dimensional one and
reduced to high-dimensional elastic net respec-
tively. Unlike the original one-dimensional elas-
tic net aimed to pass through the localized rep-
resentative points (“cities” on a plane), its high-
dimensional version can cope with the distributed
objects in the stimulus space.
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