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Abstract

The method of controlling dynamical systems based
on alteration of the oscillation energy is applied to
multistable systems, attractors of which are qual-
itatively similar to their counterparts in the cor-
tex. The attraction basins of “basal” and “epilep-
tic” states are associated with their own energy lev-
els. Changing the system energy causes switching
from the pathological attractor to the physiological
one.

The approach utilizes simple feedback depending
solely on the output signal and, hence, is especially
useful when the system parameters are inaccessi-
ble or are costly to adjust, which is characteristic
of biological systems. The technique requires nei-
ther knowledge of the system equations nor compu-
tation of the control signal, and, hence, can be use-
ful for control as well as identification of unknown
systems.

1 Introduction

The cortex is an active system producing a range
of the oscillation patterns. In a rest, the cortex
produces so-called spontaneous background activ-
ity. This is a low energy state characterized by
irregular low amplitude oscillations demonstrating
signs of chaotic behaviour. Indeed, the analysis of
electroencephalograms (EEGs) reveals their under-
lying spatiotemporal structure and predictability to
some extent, which is manifestation of deterministic
chaos [1]. Unlike, the noise or stochastic dynamics
is unstructured and unpredictable. Chaotic activity
is revealed in both single cell and electroencephalo-
graphic recordings.

Normal physiological dynamics of the cortex can
undergo abrupt transition to an alternative state
characterized by high amplitude oscillations that are
much more regular and correlated than the back-

ground ones. This is so-called seizure state corre-
sponding to some form of epilepsy.

From the dynamical system theory view, there are
two possible main scenarios of the above state tran-
sition. First one assumes that the basal state is the
only attractor of the physiological cortical dynam-
ics. Pathological changing the system parameters
leads to the birth of another alternative attracting
state, the epileptic one, whereas the basal state be-
comes the repelling one. Second scenario assumes
that such a complex system like cortex consisting
of billions of neurons can possesses multiple attrac-
tors with own basins of attraction at the given pa-
rameters. The basal state is supposed to have the
largest basin to guarantee the system robustness.
the epileptic and basal attractors are the coexisting
ones. This case, of course, more complex than the
previous one, and, itself can be divided on three pos-
sible subscenarios. In first subscenario, the cortex
parameters can remain unchanged since an excessive
pulse (say, a pulse coming from another parts of the
brain) may switch the trajectory to another basin of
attraction. Second subscenario assumes that chang-
ing the cortex parameters results in enlargement of
the pathological basins. In this case, In this case,
normal physiological pulses can switch system to
the pathological state. And finaly, the third subsce-
nario assumes that initially only physiological basal
attractor exists, and pathological changing the cor-
tex parameters can lead to appearance of coexisting
pathological attractors. In terms of Poisson stabil-
ity, chaotic attractor is a stable set, and two hy-
pothesis can be distinguished as the monostable and
multistable ones. Throughout the paper, we refer to
these hypotheses as above.

In this paper, we consider controlling the gener-
alized Chua’s circuit operating in the parameter re-
gion with coexisting chaotic and periodic attractors.
We consider single Chua’s cell as well as diffusively
coupled ring of the these cells. For these systems,
the signals measured are claimed to be qualitatively
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similar to some EEG measurements in biology [2].

At first sight, the simplest approach to control
multistable system is to apply a large enough pulse
to move the trajectory out of the undesired region.
However, it is naive to think so. Indeed, complex
system can have many basins of attractions which,
in turn, can have very complicated shapes. The
strength of the pulse should, thus, be carefully cal-
culated in advance.

Recently, the technique for controlling multista-
bility was developed that is based on applying slowly
varying perturbation added to the system param-
eter [4]. For coexisting periodic attractors of the
Hénon map and the laser rate equations, the elimi-
nation of the higher period attractors was shown.
Under perturbation, the higher period state be-
comes chaotic via the period doubling route and
the chaotic state undergoes boundary crisis. The
system, thus, becomes monostable. The results are
verified in experiments with the cavity loss modu-
lated CO2 laser. In relation to dynamical diseases,
such as epilepsy or Parkinsonian tremor, one need,
in opposite, to eliminate near-period-1 state and
preserve the state with infinite period, the chaotic
one. Further research is necessary to investigate the
applicability of the technique to different types of
coexisting attractors and to different systems.

In this paper, we applied another recently devel-
oped method for controlling dynamical systems. It
is based on alteration of the system oscillation en-
ergy [5]. The main idea is that every attractor is
associated to own energy. When the system energy
matches the definite level, the trajectory follows the
attractor associated to this level of the energy. By
changing the energy, one can, thus, control the sys-
tem behaviour. For example, one can stabilize the
repellors by altering the system energy. For multi-
stable systems, basin of attraction is associated with
its own energy. As shown in this paper, changing
the system energy causes switching from one basin
of attraction to another. For the cortex dynamics,
the transition from basal state to epileptic one is
always the transition from lower to higher energy
characterized by significant increase of the latter.
Our aim is, thus, to decrease the cortex energy to
restore the cortex normal mode.

In this paper, we first consider the controlling gen-
eral oscillator. Then, we apply the technique to
multistable systems, attractors of which are qual-
itatively similar to their counterparts in the cor-
tex. In these systems, we control the transition from
”undesired” attractor to ”desired” one. Finally, we
discuss controlling globally and locally coupled net-
works and possible competition of the attractors in
the latter.

2 General approach

Let us consider controlling a general type nonlinear
oscillator

ẍ + χ(x, ẋ) + ξ(x) = F (t) + g(x, ẋ) (1)

where χ(x, ẋ), ξ(x) and g(x, ẋ) are dissipative or
energy-generating component, restoring force, and
control force, respectively. These functions are non-
linear in general case. Also, χ(x, ẋ) and g(x) are
assumed not contain an additive function of x. F (t)
is an external time-dependent driving force.

At F (t) = 0 and g(x, ẋ) = 0, Eq. (1) possesses the
equilibriums defined by the equation ξ(x) = 0. In
the oscillators with nonlinear damping (say, van der
Pol and Reyleigh oscillators), the equilibrium be-
comes unstable at some parameter values, and sta-
ble self-sustained oscillations are excited. In other
types of oscillators, say Duffing oscillator, the limit
cycle arises under the action of the periodic driving
force. We assume that at some driving amplitudes,
the limit cycle becomes saddle, and a new attractor,
say a period-2 cycle, arises. In many well-known
example, this scenario leads, through sequence of
bifurcations, to the birth of chaotic attractor.

One can define an energy of oscillations as a sum
of the “potential” energy and “kinetic” energy

E(t) =
∫

ξ(x) dx +
1
2
ẋ2 (2)

and an averaged over the period T energy

〈E〉 =
1
T

∫ T

0

( ∫
ξ(x) dx +

1
2
ẋ2

)
dt . (3)

For periodic dynamics T is the oscillation period,
and for chaotic one T → ∞. Each behavior of the
oscillator is assigned to the value of the averaged en-
ergy (3). If the oscillation amplitude is sufficiently
small, the limit cycle oscillations can be approxi-
mated as x ' ρ sin ωt, which gives 〈E〉 = 1

2ρ2.
The following control strategy can be proposed.

Starting at the lower energy attractor, one stabilizes
the higher energy repellors by sequential increasing
the averaged oscillation energy. On the contrary,
decreasing this energy leads to stabilization of the
lower energy repellors.

The change of the energy (2) yields

Ė(t) = ξ(x)ẋ + ẋẍ

=
(− χ(x, ẋ) + F (t) + g(x, ẋ)

)
ẋ . (4)

The last term of (4) represents the energy change
caused solely by the control. We require that

g(x, ẋ) ẋ > 0 (< 0) (5)
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for ∀(x, ẋ). The minimal feedback satisfying (5) is
achieved at g = g(ẋ). Indeed, a simple linear (rela-
tive to the velocity) control g(ẋ) ∼ ẋ suffices. How-
ever, this type of control as well as nonlinear con-
trols of higher power, say g(ẋ) ∼ ẋ3 can lead to
undesirable instabilities in the system. Therefore,
the controller dynamics should be described by the
bounded functions. In this paper, we consider

g(ẋ) = k h(ẋ) (6)

where

h(ẋ)





> 0 (→ a), if ẋ > 0 (→ ∞)
= 0, if ẋ = 0
< 0 (→ −a), if ẋ < 0 (→ −∞)

(7)

with a > 0 and finite. The h(ẋ) = −h(−ẋ), i.e.
it is assumed to be odd. Throughout, we consider
g(ẋ) = k tanh(βẋ) with 0 < β 6 ∞ determining the
function slope.

The perturbation (6-7) is specially tuned to con-
trol the equilibriums — their positions are not
changed by the control as it vanishes at ẋ = 0.
Ė = 0 at the equilibriums respectively. The above
control does not vanish at the dynamic attractors.
Our aim, however, is not stabilization of the UPOs
of the unperturbed system existing at given param-
eter values, but rather shift the system into the re-
gion of the desired behavior (say, stable or unsta-
ble region if one requires to stabilize or destabilizes
the system, respectively). The energy (3) will be
changed so as to much the energy of the desired
stable orbit or chaotic attractor, respectively.

The control (6-7) does not depend on type of the
function χ(x, ẋ), ξ(x), and F (t), and, hence, can be
applied to linear and nonlinear oscillators, to regular
and chaotic dynamics.

The approach can be generalized to the case of
coupled oscillator networks. Generally, the oscilla-
tors and their connections are assumed to be non-
identical. In this case, the motion equations yield

ẍi + χi(xi, ẋi) + ξi(xi) + Qi[xi]
= Fi(t) + gi(xi, ẋi) (8)

where i = 1, .., n and Qi is the coupling operator
acting on i-th oscillator. The coupling can be local(
say, via diffusion when Qi = αi(xi−1−2xi +xi+1),

where αi is the coupling strength of i-th oscillator
)
,

global
(
say, via mean field when Qi = αiQ =

αi
1
n

∑n
i=1 xi

)
, or intermediate-range one (say, via

modified mean field that includes the interaction
range). Also, some combinations of the above exist
(say, via randomly adding a fraction of connections
in the originally nearest-neighbor coupled network
forming, thus, small-world coupled network). The

expression for energy of i-th oscillator

Ei(t) =
∫ (

ξi(xi) + Qi[xi]
)
dxi +

1
2
ẋi

2 (9)

results in the energy change

Ėi =
(
ξi(xi) + Qi[xi]

)
ẋi + ẋiẍi

=
(− χi(xi, ẋi) + Fi(t) + gi(xi, ẋi)

)
ẋi (10)

that is equivalent to (4). Thus, the controlling strat-
egy developed for a single oscillator is applicable to
the oscillator networks.

Application of the approach to 3-D autonomous
dynamical systems presented in oscillatory form is
considered below.

3 Controlling Chua’s cells

3.1 Single cell dynamics

Let the qualitative dynamics of the cortex transi-
tions to be modelled by the generalized Chua’s cir-
cuit equations [2]:

ẋ = a(y − f(x))
ẏ = x− y + z (11)
ż = −by

where

f(x) = m3x+
1
2

3∑

j=1

(
(mj−1−mj)(|x+cj |−|x−cj |)

)
,

a, b, mp, cs, (p = 0, 1, 2, 3; s = 1, 2, 3) are the system
parameters.

Substituting y = −ż/b to the second equation of
(11), obtain

z̈ + ż + bz = −bx

ẋ + af(x) = −a

b
ż (12)

To apply the above approach, one need to add
the feedback g(ż) to the first equation of system
(12). For the above oscillator, the change of the en-
ergy (2) caused by this control yields żg(ż). If g(ż)
takes the form (6-7), the latter term always provides
the increase (decrease) of the oscillation energy for
positive (negative) perturbation magnitudes. We,
thus, consider g(ż) = k tanh(βż). Taking the in-
verse change of the variables ż = −by, obtain the
control feedback to be applied to second equation of
the system (11):

g(y) = −k tanh(β̃y) , (13)

where β̃ = βb.
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Let take a = 9, b = 14.3, m0 = −0.14, m1 = 0.28,
m2 = −0.21, m3 = 0.1, c1 = 1, c2 = 3, and
c3 = 5. For these parameters, the unperturbed
cell possesses coexisting chaotic and periodic at-
tractors. The periodic regime is characterized by
high-amplitude oscillations, while the chaotic oscil-
lations are low-amplitude ones. We associate the
former and the later with abnormal or pathological
behaviour (such as epileptic seizure or Parkinsonian
tremor) and normal one (i.e. system’s basal state),
respectively.

Let the initial conditions to be chosen so as the
trajectory attracted to the periodic orbit. The sys-
tem dynamics is, thus, pathological one. Our aim
is to switch the dynamics back to its normal basal
state. Application of the perturbation (13) with
positive k to the system results in decreasing its
oscillation energy. The system is forced, thus, to
regimes of lower oscillation energy, i.e. low ampli-
tude chaos in our case. Indeed, at sufficient magni-
tude of k, switching from high amplitude periodic
attractor to low amplitude chaotic one occurs (Fig.
1(a), 50 6 t 6 250).

Every attractor (the periodic and chaotic one)
possesses own basin of attraction in system’s state
space. Turning the perturbation off does not switch
the attractors - the system remains in the basin of
chaotic attractor - but increases the dimension of
chaotic attractor (see Fig. 1(a) at t > 250). That
is, the oscillations becomes even less regular with
the amplitudes changing in a broader range. The
latter attractor is the invariant set of the system
(11), i.e. it is its natural (physiological) attractor,
whereas the former one is a feature of the perturbed
system. Projection of these attractors to space (x,
y) clearly shows the difference - the chaotic attractor
induced by control belongs to the Rössler attractor
class whereas the attractor of unperturbed system
is Chua’s double-scroll attractor.

The perturbation (13) is specially tuned to con-
trol of the system (11) fixed points. Indeed, at ev-
ery fixed point of the system (11) (i.e. at (1.5, 0,
-1.5), (0, 0, 0), or (-1.5, 0, 1.5)), the perturbation
is vanishing. The latter means that stabilized fixed
points are invariants of the unperturbed system, i.e.
its intrinsic features. Further increasing k leads to
decreasing the oscillation amplitude and, eventually,
to suppression of the oscillations and stabilization of
the fixed point (1.5; 0; -1.5). This fixed poind cor-
responds to the controlled locus of the double scroll
(the Rössler type attractor in Fig. 1). Let us fix
k but increase β̃) instead. At sufficient slope value,
the above fixed point is stabilized (Fig. 1(b)).

For a brain dynamics, however, fixed points cor-
respond to undesirable behaviour, since they are as-
sociated with the deep anesthesia state.
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Figure 1: Dynamics of the state variable y of the system
(11)-(13) at (a): β̃ = 1, k = 0 (250 6 t < 50); k = 0.135
(t > 100), and (b): β̃ = 10, k = 0 (250 6 t < 50);
k = 0.135 (t > 100). Dashed lines at t = 50 and t =
250 indicate the times of turning the control on and off,
respectively.

3.2 Coupled cell dynamics

Let us consider 1-D ring of diffusively coupled
Chua’s cells:

ẋi = a(yi − f(xi)) + D(xi−1 − 2xi + xi+1)
ẏi = xi − yi + zi (14)
żi = −byi

where
f(xi) =

m3xi +
1
2

3∑

j=1

(
(mj−1 −mj)(|xi + cj | − |xi − cj |)

)
,

i = 1, 2, ..n;x0 ≡ x25, and x26 ≡ x1. The values of
parameters a, b, m0, m1, m2, m3, c1, c2, and c3 are
kept the same as in §3.1.
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Substituting y = −ż/b to the second equation of
(14), obtain

z̈i + żi + bzi = −bxi

ẋi + af(xi) = D(xi−1 − 2xi + xi+1)− a

b
żi (15)

Again, to apply the above approach, one need to
add the feedback g(ż) to the first equation of system
(15). Performing similar substitutions as in §3.1,
obtain the control feedback to be applied to second
equation of the system (14):

g(yi) = −ki tanh(β̃yi) . (16)

Because of all cells are identical and the diffusion is
homogeneous, take ki ≡ k, i = 1, 2, .., n.

Consider the ring of 25 cells. Again, choose the
initial conditions in the basin of the pathological
state. Unlike previous case of the single cell, high
amplitude oscillations of the cell ring are modulated
by a lower frequency. Comparing systems (12) and
(15), conclude that this modulation is caused by
coupling of the oscillator (15) through its dynamical
feedback (the variable xi). Applying the same strat-
egy as in §3.1, switch the trajectory to the attraction
basin of the basal state (Fig. 2, 100 6 t 6 175). In
this case, the low amplitude period-1 cycle is stabi-
lized, which is the induced attractor for the unper-
turbed system. Turning the perturbation off, keep
the trajectory in the basin of physiological attractor
and, at the same time, converts the induced (by the
perturbation) attractor to the natural one (see Fig.
2 at t > 175).

As in the single cell case, further increasing k
leads to stabilization of fixed point corresponding
to the deep anesthesia state.

4 Discussion and conclusions

The approach utilizes simple feedback depending
solely on the output signal and, hence, is especially
useful when the system parameters are inaccessible
or are costly to adjust. This case is characteristic of
biological systems (see, for example, [6] where the
occasional proportional feedback utilizing the acces-
sible variable instead of the parameter is proposed
for controlling the heart dynamics). The particular
type of the perturbation is rather relative - most
important, it should comply with the condition (5).

In this paper, we simply increase the feedback
strength to adjust the oscillation energy to differ-
ent levels. The above strategy does not require any
computation of the control signal and, hence, is ap-
plicable for control as well as identification of un-
known systems.

For the network dynamics, reducing the number
of control inputs is an important issue. For global
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Figure 2: Dynamics of the state variable y of the system
(14)-(16) at β̃ = 1, and k = 0 (175 6 t < 100); k = 0.4
(t > 100). Dashed lines at t = 100 and t = 175 indicate
the times of turning the control on and off, respectively.

coupling, when any oscillator affects directly every
other oscillator in the networks, controlling only a
single oscillator is shown to suffice [5]. Similar re-
sults can be expected in locally connected networks
at strong coupling. Unlike, at weak coupling, locally
connected networks can be separated on clusters of
different (say, chaotic and periodic) dynamics. At
intermediate coupling, the cluster competition and
transitional waves from one region to another can
be expected. For the cortex dynamics, the later will
mean competition of physiological and pathological
regimes.

The considered models can qualitatively repre-
sent phenomena of another dynamical disease, the
Parkinsonian tremor [7]. Indeed, the low amplitude
chaotic attractor can account for the physiological
tremor, whereas the high amplitude periodic states
can be assigned to the pathological regimes.
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