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Abstract- This paper presents a simulation model based on parti- impossible. Simulation models are powerful in dealing with
tioned parallel processing approach to predict Multi-Million Neuron ~ such complex and massive systems.

Interconnections in the various brain regions involving soma, axon, This paper presents a partitioned parallel processing
dendrites and synapse. This is an attempt to develop a methodology [dj99] approach to predicM ulti-Million Interconnected

for predicting such massive neural inter-connectivity to analyze the Neuronsnvolving theDendrites Axon, Soma andSynapse
spatio-temporal information processing and synaptic based learning (MMINI-DASS Interconnectivity).

in its lowest level. The paper presents the importance of such massive

prediction and opens up avenues for developing fault simulation tech- 1.1 Importance of MMINi-DASS Interconnectivity

niques for modeling various brain diseases and disorders. The predic- . . . . .
Once the MMINI-DASS interconnectivty is obtained a great

deal of investigation can be performed with regard to simu-
lation of the learning process, simulation of the information
processing and the fault simulation of various brain regions.

With the help of the MMINi-DASS Interconnectivity ei-
ther temporal or spatial or spatio-temporal information pro-
cessing can be analyzed.

A deeper look at synaptic connectivity and the associ-
ated learning process is extremely feasible. The MMINi-
DASS Interconnectivity prediction would be a powerful tool
in evolving a simulation mechanism for the learning pro-
cess [ejt95]. This MMINI-DASS interconnectivity would
biological neural networks, inter-neural connectivity or neuron intercongive the learning matrices that corresponds to the strength
nections, algorithms, simulated annealing algorithm, supercomputer, fa&?{ each pre- and post-synaptic contact.
simulation, computational and memory complexities The predicted MMINi-DASS interconnectivity can be
adopted straight away for fault simulating the correspond-
ing brain region of interest. This fault simulation could be
for electrical misbehaviour, physical damages or abnormal

Connectivity among neurons in the brain via their Somaghemicql activities_ and disequilibrium. Simulqtion of faults
axon, dendrites, telodendria and synapses is the crux tif&ncerning dendrites, soma, axon, telodendria and synapse
governs the functionality of various brain regions [rr2003[M@y be performed and the results can be analyzed.
[shep98]. The inter-neural connectivity is the major factor FOr instance, in a given MMINI-DASS interconnectiv-
that influences temporal, spatial and spatio-temporal infolty either millions of synaptic connectivity could be totally
mation processing and the learning by the brain. In thig¢moved or ionic imbalances may be introduced in these
regard, the knowledge of multi-million neuron interconnecSYynaptic contact affecting the neurotransmission. The im-
tivity involving complex dendritic arborescence, axons, bilPact of this on the'm.formanon processing 'capab|l|t|es can
lions of synapse and millions of soma is highly imperative then be studied. Similarly, faults like snapping off the axon
The existing population models [wgwk2002] cannot pro®' introduction of a graceful d_egradatlon_ to myelin sheath of
vide connectivity details with regard to the dendritic art€ axon can be introduced in the predicted MMINI-DASS
borescence, millions of soma, axons and billions of synapt|gterconnectivity and its impact can be analyzed. In real-
contacts. To develop an analytical (mathematical) model #§ Such an axonal fault occurring in scores of axons will
deal with such massiveness to track the complex, intricafé€atly affect the information processing of million of neu-
and finer neural connectivity will be highly intractable and©ns- Further the learning process can also get badly af-

tion of multi-million neuron interconnectivity involves awesome com-
putations. To tackle this massive computational complexity a parti-
tioned parallel approach employing the randomized algorithm namely
the simulated annealing is evolved. The computational complexity is
derived and is shown to be in hundreds of petaflop years. Heuristics
are presented to drastically reduce this complexity. However, the high
computational complexity necessitates the evolution of a novel super-
supercomputer. This paper strongly suggests the need for evolving a
DNA based computing paradigm for brain modeling in its total reality.

Index terms

1 Introduction
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fected due to such faults. Fault simulation on a predicte o .
MMINI-DASS interconnectivity can help study the various T =il temperaure To: i et = B3
brain diseases to discover new medicines. \\'hi‘le(slopping criterion is not satisfied) do
However, there is neither experimental techniques ne be%\]']}:i]e(nmvelinequilibrimmdo it (scopping
theoretical approaches available currently that would dete begin i . ot Satitied) No
mine the MMINi-DASS Interconnectivity. i Cqu:e_rggt;m neighbouring solution of S;
Currently imaging techniques are widely used for diag e
nostic purposes. Structural Imaging Techniques like Mag Pr?Pr;]gyﬂ&)‘j)<bpl.0’t‘)mst.z ]
netic Resonance Imaging (MRI) and Computer Aided To e, B nesebonring sia of 5 A

mography (CAT) give details regarding the physical ani ~ éeT

chemical composition of various brain regions and are helj oijl“ﬁgg e
ful in medical diagnosis of tumors etc. Functional Imag: "
ing techniques like Functional Magnetic Resonance Imay
ing (fMRI) gives details regarding the location of various
brain centers and the corresponding Blood Oxygen Lev
Dependent (BOLD) response. Electroencephalograph,
other functional imaging technique gives the temporal ele«
trical activity of brain surface regions.

Massive edge detection can be employed using image
processing teChniqueS to the brain images obtained ffOFigure 1: (a) shows the Generic Simulated Annealing Algorithm, (b) is the cor-
MRI. There is a sea of difference between the Capabilitie{@sponding flowchart for the Generic Simulated Annealing Algorithm
of the simulation model to predict the MMINi-DASS Inter-
connectivity and even the enhanced images obtained from . . ]

MRI. Moreover, the quality of MRI images are yet to react? Application of Simulated Annealing to

a mark so that powerful image processing techniques couldMMINi-DASS Interconnectivity Prediction

be efficiently applied for detecting the edges (soma, axon, o ) ) ]
dendrites, synapse) in the image. Even then the analydi§€ generic simulated annealing (SA) algorithm [kigv83]
that can be performed using these images can in no wig/given in flgure 1(a). The_ co_rrespondlng flowchart is dis-
match the capabilities of the predicted MMINi-DASS In-cussed in figure 1(b). Application of the Simulated Anneal-
terconnectivity using the proposed methodology. The sinild (SA) algorithm to a system (here in our case it is the
ulation model based on partitioned parallel processing prMINi-DASS Interconnectivity) for optimizing its system
sented in the paper could be implemented as a research tBg[@Meters to obtain the near optimal solution (the desired
for deep brain analysis concerning spatio-temporal informa4MINi-DASS interconnectivity) mvolves identification of .
tion processing, individual synaptic connectivity and assdh® System parameters both variables and constants. It in-
ciated learning, fault simulations concering soma, axoiCIVes establishing a correspondence between the parame-
dendrites and synapse. ters of the SA algorithm namely the Stgtg of the system

It is further discussed in detail in this paper, the limita-]emperaturd’, the energy differenca, Initial statesS, and
tions of the silicon supercomputer in handling the simulath® Initial temperatureg) to that of the parameters of the
tion model of the MMINi-DASS Interconnectivity predic- MMINi-DASS interconnectivity (refer table 3). The system

tion. A DNA computing paradigm needs to be evolved foParameters correspond to the temperature parameters in the
the proposed prediction methodology. Generic Simulated Annealing algorithm, excluding the sys-

Section 2 explores the application of the Simulated Anlém parameters that are constant. The SA algorithm can
nealing (SA) algorithm [Kigv83] to predict MMINi-DASS glso involve multiple temperature parameters correspond-
interconnectivity. The generation of biologically realisticind t0 several system parameters. In that case the parame-
random MMINi-DASS interconnect structure as a initialte"s Of the SA algorithm would be the State of the system

state for the prediction algorithm (section 4.2) is discussedy 1emperature seftset) {71, T5..., T,,}, the Energy dif-

in section 3. The proposed partitioned parallel processirfi%tenceA' Initial state Sy and the Initial temperature set
approach is given in section 4. The summary of the overall* 01, Toz; - TOn_}- . ) ]
MMINi-DASS interconnectivity prediction approach is pre- _ The near-optimal solution from the SA algorithm is the
sented in table 3 in the form of a flowchart. The complexity>tateS of the system which corresponds to a minimum en-

of the proposed MMINi-DASS interconnectivity methodol-€79Y configuration. In our case the minimum energy state
ogy is discussed in section 5. (near optimal solution) corresponds to the MMINi-DASS

interconnectivity whose calculated temporal electrical ac-

Is
random (0
.1)<prob

(a)

(b)
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tivity has maximum correlation with the experimental tem2.2 {T' — set} Scheduling Heuristics for MMINi-DASS
poral activity of the desired brain region. The energy dif- Interconnectivity Prediction

ference,A is the difference in energy of the current StateAs discussed earlier, SA can involve multiple temperature
and that of the previous state\ (= C(5') - C(S)). TheT- oo oo Currently as mentioned in section 2.1.1, 24

set is heuristically scheduled in such a way that this energ%J : i .
Y Y : meerature parameters have been identified that constitute

difference is minimized over subsequent iterations. The ”}he so-calledset. To attain near optimal state one needs

termed|ate statey() is accepted or rejected dy'r N9 the It_to schedule these temperature parameters listed in table 2
erations based on whether calculated probability isr < "

: L . ._efficiently. In our case, th@-set (refer table 2) of the
random(0,1) (refer algorithm in figure 1(a)). This contin- MINI-DASS interconnectivity has to be so scheduled that
ues until we land up with the desired or the near optim% e enerav diff b : ) s
solution. gy difference etween t_h_e m_termedlate and the cur

rent MMINI-DASS interconnectivity is reduced over sub-
. sequent iterations to obtain the interconnect structure with
2.1 MMINi-DASS System Parameters, the{$ — set} minimum energy. Th&'-set heuristics will decide the time
MMINi-DASS system parameters (th8-set) character- to convergence which means how fRsbb (refer algorithm
ize the electrical, chemical, physical and geometricdh figure 1(a)) tends to 1 (oA tends to O) i.e. how fast
properties of the MMINi-DASS Interconnectivity. Cur- we obtain the state with minimum energy. These heuristics
rently, 35 MMINi-DASS system parameters (tiseset = (I'-set heuristics) correspond to the so called Temperature
{81, Sa, ..., S35) are thought-out for the proposed predic-Scheduling mechanism of the SA algorithm.
tion methodology. These parameters are characterized un-In the current phase of this prediction methodology, a
der dendrites, soma, axon, telodendria and synapse. A#rt of the WARE project, The Deep Brairt, the following
the system parameters thought-out with respect to dendritggstem parameters (that includes some temperature param-
(electrical parameters, arborescence,...), soma (cell boelters as well) have not been includeds, Sa1 = T1s5, So2
shape, electrical parameters,...), axon (length, number ®fT16, S26 = T20, S27 = 121 (refer table 2). However the
nodes of ranvier,...), telodendria (electrical parameters, aglectrical parameters associated with soma are taken into ac-
borescence,...) and synapse (contact sites, strength, nuaunt. These electrical parameters are definitely influenced
ber,...) are discussed in detail in table 1. by the shape or geometry of the sotsig( The orientation
System parameters like threshold voltage and other elegf the dendrites and the telodendria neither influence the in-
trical parameters of the soma of the MMINi-DASS Inter-terconnectivity nor the spatio-temporal activities. However
connectivity are treated as constants and are assumed tdigy influence the overall volume occupied by the MMINi-
available to predict the interconnectivity. The remainind?ASS interconnectivity.
system parameters are variables and are associated with theOn heuristically deciding the scheduling of the temper-
temperature parameters, theset. ature parameters (refer table 2), either one or more to be
scheduled, fixing up a suitable functional variations for
2.1.1 Identification of {T'— set} with MMINi-DASS Sys- these temperature(s) through some mathematical functions
tem Parameters is called the temperature updating. One can work out sev-

) ) eral subsets from th€-set,{T}, T»..., T;,} for the schedul-
The variable and constant MMINI-DASS system parameg process. All temperatures in each of the subsets of the

ters (5-set) are listed in table 2. These variable system pg-_get can be scheduled by maintaining other temperatures
rameters are identified with the temperature parameter ${nstant. Table 4 lists all the possible temperature schedul-
(T-set) as shown in table 2. Currently 24 such parametefgy subsets (of -set). The total number of possible subsets
are .taken into account intHE" — set } of the proposed pre- f the T-set adds up to 16777215%%-1). Corresponding
diction methodology i.e{T" — set} = {T1, Ty, ..., Taa}. to each of these temperature scheduling subsets, billions of
computations are associated. This computational complex-
2.1.2 Correspondence between SA algorithm and the jty depends on the complexity of the mathematical models
MMINi-DASS Interconnectivity System of the soma-axon, dendrites, telodendria and the synapse,

The correspondence between generic SA algorithm and tAdmber of soma-axon, number of dendrites and branches,
MMINi-DASS Interconnectivity system is established in ta.-"umber of telodendria and branches and number of pre- and
ble 3. This correspondence shown in table 3 establishB§St-Synaptic contacts. In all the computations is of the or-
the link between SA algorithm parameters and that of th@€" OfO(N_k) with N varying in multi-millions and k being
MMINi-DASS interconnect structure. a few multiples of ten.

1WAran Research Foundation, Chennai, INDIA
2http:/iww.warfindia.org
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2.2.1 Heuristics to Reduce the Massive Computational Another important factor to be considered in obtaining
Complexity the near optimal solution is the selection of models for den-

The computational complexity can be very drastically reglntes,_soma-axon an_d_t_h € synapse. .
As in the SA, the initial state of the system (in our case

duced if the following well-thought out heuristics are apsy, ., uia| MMINI-DASS interconnectivity) affects the near-

plied. One is by considering certain temperature parame; timality (in our case the predicted MMINi-DASS inter-
ters as constants. In fact the temperature parameters assobi- g . . )

. . . cannectivity) of the solution to be obtained. To arrive at the

ated with the dendrites and telodendria namely the numbgr, L X . :

L mter-neural connectivity of the given brain region, we have

of branches and length of individual branches need not l%(e) begin with an arbitrary and realistic MMINi-DASS in-

_sc_heduled foreach |ter_at|on n t_he SA al_g_orlthm. Instead t.'}eezrconnectivity which is the initial state. So another major

initial random generation of this dendritic and telodendrlarla

tree can be so formed such that the number of branches aqgtor of this approach 1S _to develpp an efﬁment meth_od—
o . . ology to generate a realistic MMINiI-DASS interconnectiv-
the branch length fall within a minimum and a maximum

. . L o ity. Obviously one has to resort to random generation of
range that are biologically realistic. These heuristics arg. . ; S
T . this MMINi-DASS interconnectivity with the extent of ran-
justified due to the fact that the dendrite and the telodendrlcfl bei icted by th istical . f
trees and neuron interconnectivity may differ very widely, Omness being restrl_cte yF € statistical properties (refer
- . . table 5) of the MMINI-DASS interconnect structure to be
across millions of people for every brain region. Hence . .
: o . redicted, like the average number of pre- and post- synap-
the random generation of dendritic and neuron mterconneE- . o
L . .tic contacts in each neuron and the average dendritic tree
tivity can be resorted to. However this random generation_ .. . L . .
. : o : onfiguration etc. More statistical properties of a MMINi-
should be biologically realistic. More on the generation o ASS Interconnectivity is listed in table 5
the initial MMINi-DASS interconnectivity and their biolog- '
ically realistic random generation is discussed in section 3 . o .
What is of great importance is the pre- and post-synapt%g’ MMINi-DASS Interconnectivity Simulation Model
connectivity and the associated learning process [ejt95)} simulation model is made up of several algorithmic se-
The synaptic connectivity in general could be similar acrosguences comprised of generation of initial MMINi-DASS
people. On the other hand the strength of each synaptic cdnterconnectivity, MMINi-DASS partitioning, application
tact will differ widely based on specialized learning that af SA algorithm for prediction which also includes the tem-
person would receive. Hence the variations associated wigerature scheduling is developed. This simulation model is
pre- and post-synaptic contacts i.e. their corresponding temliscussed over the subsequent sections.
perature parameters and hence their scheduling are of im-
portance. However, if on scheduling the change in energy

of the system is not appreciable then the temperature param-

eters associated with the dendrites and telodendria is algoPhase | - Biologically Realistic Generation

considered for scheduling during that iteration. i, . .
Another heuristics considered to reduce computational for an Initial MMINi-DASS Interconnectiv-

complexity is that only thos€'-set subsets having more ity (Initial State)

than 10 elements (or temperatures) are considered .ers discussed under section 2 forming the initial state for the

sch_e(_jullng. This is justified since only on a change "MINi-DASS interconnectivity prediction is of paramount
sufﬂmgnt temperature pare}meters would the energy.of tr|1|(*?1portance due to its complexity and impact on conver-
g/lnl\]/lollljlrl]-tDASS interconnectivity change by an appreuablegence to a near-optimal solution. The generation of a re-

Also, by applying SA algorithm [kigv83] to these tem alistic initial state for MMINi-DASS Interconnectivity Pre-

. 'diation demands a randomized approach to mimic the nat-
perature themselves, computations can be reduced an : . L :
ural formation of the neural interconnectivity in the brain.

convergence can be speeded up. (SAis applied amorﬁﬁ%% randomness of initial state is constrained by the statis-

:‘rﬁzﬁ;?epig?%z;g?gﬂ;é?;&;fj&ggggﬁ;?ﬁg?ea::rzl?%r properties (refer table 5) of the neural interconnections
. . . . nending on the brain region whose interconnectivity is to
atures in that subset is updated. SA is applied to choose P g 9 y

near-ontimal temperature subset to be scheduled. alon gpredicted. The statistical properties are listed in table 5.
earop per S . ' 9 'fis random structure is used as the initial state for the sim-
similar line as explained in this section 2).

- . .ulated annealing based prediction algorithm (refer section
These heuristics reduce the computational complean 2) 9 P 9 (
drastically. The O“Eer of the computational complexity The generation of a random and biologically realistic

Zcr)mr;ﬁsvsr()\i,\lgn tacsoéj;fevg r\::’l'}::l Tevﬁrféﬂgahndgiglgm”'ons MMINI-DASS interconnectivity requires a model of rep-
ying P =T= resentation for the interconnect structure. A matrix based

BIS7.4 4 of 11



BICS 2004 Aug 29 - Sept 1 2004

Sn System ParametefsS — set} of the Terminologies in Generic Corresponding Parameters in MMINi-DASS
MMINI-DASS interconnect structure Prediction Simulated Annealing Algorithm
S1 number of neurons, N State MMINI-DASS Interconnectivity configuration
Sa threshold V% ;) of the neuron Initial Solution Arbitrary MMINI-DASS interconnectivity
Ss neuron cell body shape (soma shape)or geometry So
Sa relative cell body (soma) coordinates as (X,Y,z) Initial Temperature The values of all the system parameters
Ss nature of the neuron - inhibitory or excitatory To mentioned in table.1
Se neuron level association i.e. which neurons are presynaptic to neuron Stopping Degree of accuracy of the MMINi-DASS
n; and which neurons are post-synaptic to neusgn Criteria Interconectivity produced to that of the
S+ length of axon of each neuron; actual MMINi-DASS structure sought
Ss conductance of axon of each neunon Current StateS Current MMINI-DASS interconnectivity
So number and location of nodes of ranvier in each neutgn Intermediate Staté’ Updated MMINI-DASS interconnectivity
S1o0 length and thickness of each myelin sheath on axon of each neyron obtained due to the scheduling mechanism
S11 number and location of recurrent collateral of neurgn Equilibrium The updated MMINi-DASS configuration
Si2 with w_hich neurons is the rect_]rr_ent (_:oll_at_eral from nv_eumn's Condition (S/) is better than the previous
assoaat_ed and type of association (|nh|b|t9ry or excitatory) MMINi-DASS configuration ) in
S13 | the location of the recurrent collateral terminal of neurgn terms of accuracy with respect to the
on the incident neurons,; i actual MMINi-DASS configuration
S1a | number of pre-synaptic and post-synaptic contact to each newjron Energy degree of correlation of the temporal activity
S1s | which pre-synaptic contacts of neurom; are provided by its of a MMINI-DASS interconnectivity
presynaptic neurom ; _ i with that of the experimental temporal
S16 | which post-synaptic contacts of neuror, are provided by its activity of the MMINi-DASS interconnectivity
post-synaptic neurom, ; Energy DifferenceA the difference between degree of correlation
S17 | nature of synaptic contact - inhibitory or excitatory of the temporal activity of the updated
Sis dendritic tree setl; associated with each neuran interconnectivity with the experimental
S19 number of dendritic branches in each denddteassociated with eacH temporal activity of the interconnectivity
neuronn; and their branching structure and temporal of the previous
Ss0 length of each dendritic braneh in each of the dendritic tree, interconnectivity with the
d; associated with each neuran experimental temporal activity of the
Sa1 dendritic tree orientation in 3-D or 2-D space of each neutpn interconnectivity to be predicted
Sao dendritic tree tapering coefficient of each neuron TemperatureT) {T — set} listed in table 1
Sao3 | telodendria tree set associated with each neuran Update Temperaturd() Some pre-determined mathematical function|
Sa24 number of telodendria branches in each telodengrassociated to update temperature §fl" — set} values
with neuronn; and their branching structure Near-optimal Solution (or) The MMINI-DASS Interconnect structure
Sa5 | length of each telodendria branchin each of the telodendria, Best Solution with least Energy
t; associated with each neuran
S26 telodendr!a orlenFatlon In 3D or 2-D space of each neurpn Table 3:The table illustrates what parameters of the generic simulated annealing
Sar telodendria tapering coefficient of each neuron i ] ) ) o
Sos location of pre-synaptic sites corresponding to each pre-synaptic algorithm is mapped onto the parameters in the MMINi-DASS Interconnectivity
neuronn; on the dendritic treej; associated with each neurom, Number of Subsets of Possible Temperature Scheduling Schemes
Sao location of post-synaptic sites corresponding to each Tempera‘tures and the Number of possible scheduling subsets
post-synaptic neurom, ; on the telodendria; associated Involved in the | (All the Temperatures of one Subset are
with each neuromnp ; Scheduling simultaneously updated during one scheduling
S3o0 | the strength or the learning weight associated with each synaptic cycle)
contact on the dendritic spine of each dendiifeassociated with One {1}, {T2}, .. {T24}.
each neurom; Number of Possible Temperature Schedulingsl€',
Ss31 resistance of the membrane in the dendritic trees =24.
S32 | resistance of the membrane in the soma-axon portion in the cable Two {T1, T2}, {T1, T3} etc. ‘
theory model Number of Possible Temperature Schedulingst€',
Ss3 capacitance of the membrane in the dendritic trees =276.
Ssa capacitance of the membrane in the soma-axon portion in the cable Three {T1,T>,T5}, {.Tl , T2, Ty}, etc ‘
theory model Number of Possible Temperature Schedulingst€'s
S35 EEG or fMRI of the MMINI-DASS structure to be predicted =2024.
Four {T1,T2,T3, T4}, {T1,T2,T3,T5}, etc
. ) . ) Number of Possible Temperature Schedulingst€'y
Table 1: System Parameters of the MMINi-DASS interconnect structure predict =10626.
tion corresponding to that in the SA algorithrs,{). Out of all these system pa- | Five {T1,T2,Ts, T4, T5}, {T1, T2, T3, Ta, Ts } etc
. . . Number of Possible Temperature Schedulingst€'s
rameters in the MMINi-DASS interconnect structure, some are taken as the systerm’s = 42504.
temperature parameters (refer table.(2)) while others are assumed to be a constafitX {T1.T2,15, T4, T5, T6 }, {T1, T2, T3, Ta, T5, T },
etc
being the statistical property of the MMINi-DASS structure to be predicted Number of Possible Temperature Schedulingsi€'
System ParametefsS — set} of System ParametefsS — set} = 134596.
MMINl-DASS_ that areconstants of the MMI‘Nl-DASS Seven {T1, 12, 15,14, 15, T, I7 1,
for the MMINI-DASS Interconnect that arevariables and are {T1,T>,Ts, Ty, Ts, Ts, Ts }, etc
Structure Prediction considered as the Temperaturg Number of Possible Temperature Schedulingst€';
Parameter§T — set} for the = 346104.
MMINI-DASS Interconnect
Structure Prediction, - -
{11, T2, Ty, ... Tog, Toa } Twenty Four {T1,T2,T3,T4,T5,Ts,T7,Ts,To, Tho,
glrsévs3ss4asgl3141531vs32 gsysgys7és9v§10,§11, Ti1,Ti2, T3, Tia, Tis, Tie, Tir, Ths, Tio,
33,034, 9035 512'5131815’516,317‘ T20, To1, Taz, Taz, Toa}
18,219, 0205 D21, 922, Number of Possible Temperature Schedulingst€'>4 = 1.

Sa23, 524, S25, S26, S27,
S28,529, S30

Table 4: The table shows all the possible temperature scheduling subsets. The

Table 2: characterization of each System Parameter as a Constant or a Tetgmperature parametef§’, Tz, T, ....., T23, T24} are shown in table (2). The
perature Parameters. The table shows that out of the 35 system parameters, 24tet@ number of scheduling subsets @&1-1=) 16777215. Thus there are 16777215

temperature parameters and 11 are constant parameters.
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possible temperature scheduling mechanisms for the MMINi-DASS interconnect
structure prediction. In each cycle the best possible scheduling subset is chosen
through a probabilistic process that is inherent in the Generic Simulated Annealing

Algorithm. Note: zC, = ﬁ
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model has been evolved which would represent the coreach dendrite for each neuram, in the MMINi-DASS in-
plete connectivity details of a neural interconnectivity interconnectivity. It is a incidence matrix [nar74] whose ele-
volving soma, axon, dendrites and synapse. The connectiwments are branch lengths.
ity model has been so evolved that it would address all the Telodendria Structure (TS) Matrikhis matrix portrays
intricate neural interconnectivity details. the structural arborescence of the telodendria including its
Moreover an algorithm for generation of random and biindividual branch lengths. There would be a TS matrix for
ologically realistic MMINI-DASS interconnectivity for any each telodendria of each neuron, in the MMINi-DASS
brain region given its statistical properties (refer table 5) haaterconnectivity. It is a incidence matrix [nar74] whose
been evolved and is presented in section 3.1.2. elements are branch lengths.
The general connectivity model for a MMINIi-DASS in-  Dendrite pre-Synapse Association (DpSA) Mairihis
terconnectivity is presented in the subsequent section.  matrix depicts the connectivity of the pre-synapses of the
neuron,n; on its dendritic tree. It gives details regarding
3.1 Connectivity Representation for MMINi-DASS the point of pre-synaptic contact on the dendritic tree. There
) would be a DpSA matrix for each dendrite of each neuron,
3.1.1 The 2-D and 3-D Representation n; in the MMINI-DASS interconnectivity. Itis an incidence
Neuron-Neuron Connectivity Matrix (NNC) Matrikhis ~matrix [nar74] whose elements are the point of contact of
matrix depicts the neuron level connectivity in the MMINi-the synapse on the dendritic branch.
DASS i.e. which neurons are pre-synaptic to neurons,  Telodendria post-Synapse Association (TpoSA) Matrix
and which neurons are post-synaptic to neurens, It is This matrix depicts the connectivity of the post-synapses of
an adjacency matrix [nar74] whebé corresponds to a pre- the neuronp; on its telodendria. It gives details regarding
synaptic neuron antil corresponds to a post-synaptic neuthe point of pre-synaptic contact on the telodendria. There
ron while0 represents no association. would be a TpoSA matrix for telodendria of each neuron,
Neuron Excitatory or Inhibitory (NEI) Matridhis ma- 7 in the MMINI-DASS interconnectivity. It is an incidence
trix depicts which neurons are excitatory and which are inmatrix [nar74] whose elements are the point of contact of
hibitory neurons. It a column matrix. It is matrix whee the synapse on the telodendria branch.
corresponds to excitatory neuron andenotes a inhibitory =~ Axon Length (Ax) Matrixhe axon length matrix con-
neuron. tains the length of axon of each neurer), There would
Neuron Coordinate (NC) MatriXhis matrix contains the be single Ax matrix for the MMINI-DASS interconnectiv-
(x,y) or (x,y,z) coordinates of the neurons. This the only maity. It is a column matrix that contains the axon length of all
trix where there is difference between a 2-D MMINi-DASSneurons.
interconnectivity or a 3-D MMINi-DASS interconnectivity. ~ Recurrent Collateral Point (RCP) MatriXhe recurrent
All the other matrices would be of the same for both 2-Cxollateral point matrix contains the location of the recurrent
and 3-D MMINi-DASS interconnectivity. collateral on the axon of each neuraer, There would be a
Neuron pre-Synapse Association (NpSA) Matffixis RCP matrix for each neuron, in the MMINi-DASS inter-
matrix depicts the association of each of the pre-synaptﬂpnnectiVity. Itis a column matrix that contains the point of
contact of neurony, with the pre-synaptic neurons of the recurrent collateral in the axon.
neurony;. There would be a NpSA matrix for each neuron, Recurrent Collateral Association (RCA) Matrbhe re-
n; in the MMINi-DASS interconnectivity. It is an incidence current collateral association matrix contains association of
matrix [nar74] wheredl and 11 represents excitatory and the recurrent collateral of each neuran, with other neu-
inhibitory pre-synapse association with the correspondin@ns. There would be a RCA matrix for each neurepnin
pre-synaptic neuron. Arepresents no association. the MMINI-DASS interconnectivity. It is a column matrix
Neuron post-Synapse Association (NpoSA) Maftiis  that contains the neuron each collateral is associated with
matrix depicts the association of each of the post-synaptd the type of association (inhibitory or excitatory).
contact of neurong; with the post-synaptic neurons of the ~ The above connectivity representation can be extended
neuron,n;. There would be a NpoSA matrix for each neuto 3-D as well by changing the NC matrix alone as discussed
ron, n; in the MMINi-DASS interconnectivity. It is an in- under the NC matrix representation.
cidence matrix [nar74] wherel and11 represents excita-
tory and inhibitory post-synapse association with the corre- An Example A couple of sample matrices (DpSA ma-
sponding post-synaptic neuron. (Arepresents no associa- trix of neuron 2,N,, DS matrix of neuron 2)N;) depicting
tion. the connectivity is given in figure 2.
Dendrite Structure (DS) MatriXhis matrix portrays the It is cumbersome to access the elements of different ma-
structural arborescence of the dendritic tree including its irtrices which are large in order and number. Particularly the
dividual branch lengths. There would be a DS matrix fonumber of access required to these matrices is huge. It is
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The value of the following variables : NC, PrS, PoS, B, Pr, Po, , /%, are
\\pre-requisites for the Matrix Generation Algorithms
N_NEU = Number of neurons;
NC1 = Average number of neurons pre-synaptic to each neuron;
NC2 = Average number of neurons post-synaptic to each neuron;
PrS = Average number of pre-synaptic contacts for each neuron;
PoS = Average number of post-synaptic contacts for each neuron;
B = Average number of branches in each dendritic tree;
Pr = Out of PrS average pre-synaptic contacts for each neuron, on an average
many are associated with each pre-synaptic neuron of that neuron;

many are associated with each post-synaptic neuron of that neuron;

PS, = Average number of pre-synaptic contact on each dendritic branch;

PS; = Average number of post-synaptic contact associated with each branch of tl
telodendria;

PEREI = Percentage of Neurons in the MMINi-DASS Interconnectivity that are ex
citatory;

Table 5: statistical Properties of the MMINi-DASS, the Pre-requisite values re-

quired for the generating the random structure

NNC Matrix Generation algorithm
Declare a NNEUx N_NEU square matrix, NNC(i,j);
Fill NNC matrix with zeros;

\\ pre-synaptic neuron connection;
ROW=random(1,NNEU);

while (connection not complete)
begin

CHECK current ROW of NNC matrix for filled positions corresponding to pre-
synaptic connections;

STORE filled positions in the current ROW of NNC matrix in FILLED array,
FILLED(i) such that 6<i<F where F = number of filled positions in current ROW of
NNC matrix;

A array, Aj) = (NC1 - F) random numbers such that RQW(j) <10° for
1<j<(NC1 - F) and for each A(j) £ <(NC1 - F), A(j)#FILLED(i) for 1<i<F;

flag=1;

while (flag<total number of entries in A array)

begin

TEMP=A(flag);

if (row number TEMP of NNC matrix has less than NC1 pre-synaptic entries
then

NNC(ROW, A(flag)) = 01;

NNC(A(flag), ROW) = 01;

flag=flag+1;

end

ROW=random(1,NNEU);
end
\\ post-synaptic neuron connection;

ROW=random(1,ANEU);
while (connection not complete)
begin

CHECK current ROW of NNC matrix for filled positions corresponding to post-
synaptic connections;

STORE filled positions in the current ROW of NNC matrix (including pre-synaptic
and post-synaptic connection entries) in FILLED array, FILLED(i) such tk@t<OF
where F = number of filled positions in current ROW of NNC matrix;

A array, A(j) = (NC2 - F) random numbers such that RQW(j) <10° for
1<j<(NC2 - F) and for each A(j) £ <(NC2 - F), A(j)#FILLED(i) for 1<i<F;

flag=1;

while (flag<total number of entries in A array)

begin

TEMP=A(flag);

if (row number TEMP of NNC matrix has less than NC2 post-synaptic entries
then

NNC(ROW, A(flag)) = 11;

NNC(A(flag), ROW) = 11;

flag=flag+1;

end

ROW=random(1,NNEU);
end
\\NEI Matrix generation
begin
Declare a NNEU column matrix, NEI;

Store Zeros in the matrix;

Fill ones in the matrix randomly so that PEREI (refer table 5) is satisfied,;

end

\\NC Matrix generation

begin

Declare a NNEU column matrix, NC;

Store Zeros in the matrix;

Calculate total area or volume that would occupied bi}EU neurons using DENS;
Obtain the Boundary coordinates;

Generate random coordinates such that they fall within boundary coordinates;
end

Table 6:NNC, NEI, NC Matrix Generation algorithms

e

Po = Out of PoS average post-synaptic contacts for each neuron, on an average hov\?TORE F
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NpSA Matrix Generation algorithm
Declare a NCX PrS matrix, NpSA(i,j);
Fill NpSA matrix with zeros;
ROW=random(1,NC1);
while (connection not complete)
begin
CHECK current ROW of NpSA matrix for filled positions;
STORE filled positions in the all rows of NpSA matrix in FILLED array,
LED(i) for 1 <i<TOTAL, where TOTAL = total number of filled positions;
= number of filled positions in current ROW of NpSA matrix;
A array, A(j) = (P - F) random numbers such that for each A)j £ (P - F), A(j)
+# FILLED(i) for 1<i<TOTAL;
he flag=1;
while (flag<total number of entries in A array)
begin
NpSA(ROW, A(flag)) = 1;
flag=flag+1,;
end
ROW=random(1,NC1);
Replace 1's in the matrix by 01 or 11 to denote inhibitory or excitatory synapse con-
nectivity randomly satisfying PERSEI (refer table 5);
end

Table 7:NpSA Matrix Generation algorithm

DS Matrix Generation algorithm
Generate a random number |, the number of terminals to the dendritic tree;
Generate Partition matrix [nrrsm2004] for a | input dendritic tree;
while (generated partition matrix is not acceptable)
begin

Generate another Partition matrix [nrrsm2004] for a | input dendritic tree;
end
Convert the partition matrix into the corresponding incidence matrix [nar74], IM ;
T_ROWS = total number of rows in the incidence matrix IM;

ROW =1;
while (ROW<T_ROWS)
begin

In row number ROW of the incidence matrix, IM replace all non-zero entries by
random(min, max);

)\ \min; = average minimum length of a dendritic branch;

\\max = average maximum length of a dendritic branch;

end
Partition Matrix Generation for a T input terminal dendritic tree

COL=1;
while (1 # 1)
begin

Generate a unrestricted partition sequence for I;
N_par = Number of unrestricted partition into which | has been broken into;
\\all ones partition must be excluded
STORE this sequence column number COL of the partition matrix;
| =N_par;
COL =COL +1;
end

Table 8:Ds Matrix Generation algorithm

DpSA Matrix Generation algorithm
Declare a B<PrS matrix, DpSA(i,j);
Fill DpSA matrix with zeros;
ROW-=random(1,B);
while (connection not complete)
begin

CHECK current ROW of DpSA matrix for filled positions;
) STORE filled positions in the all rows of NpSA matrix in FILLED array,
FILLED(j) for 1 <i<TOTAL, where TOTAL = total number of filled positions;

STORE F = number of filled positions in current ROW of DpSA matrix;

A array, A(j) = (PS - F) random numbers such that for each AQJK(PS; - F),
A() # FILLED(i) for 1<i<TOTAL;

flag=1;

while (flag<total number of entries in A array)

begin

DpSA(ROW, A(flag)) = random(0,length of corresponding branch from DS Ma-
trix);
flag=flag+1;

end

ROW=random(1,B);
end

Table 9:DpsA Matrix Generation algorithm
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Neuron 2 N, n, "2 of subgraphs. Each of these subgraphs represents a smaller
. b,| 0 0.23 . . . -
b,| 0,11 o neural interconnect structure in the bigger MMINi-DASS
o b,|0.22 o interconnect structure to be predicted.
b, | 0.07 0.07
bs o 0.09 S\ N\ Start
(a) DS Matrix of \ pmc\z ~— =»
Dondrite of N, | MO \ ot v
N, PS, PS, \ ) A w\PNIC 1,3 ’ A interconnectivity to be predicted
b, 0.10 o M = /. < 3 | - Generate Biologically Realistic
b, o 0.04 [pNic3 \PNICE | [ ; MMINDASS In ctivity
Neuronl b, o o ( . ( t ‘PNIC 2,4“ ::;;::‘:i::m e ﬂly_n‘:ll):llulll;;
o ) [ ) ‘ v
b, o o \ [~ \ ( ,,\/“ Apply MMINi-DASS Partitioning algorithm (section
b o o [N \ “‘\J,L;/ $ 4 1[.1) llo p:uul(m:\! l};e l\u\nNn—DlAss in(el'\‘ollme((
() (b) DpSA Matrix for | eNes | mcs | : e |
Dendrite1 of N, N ) Lo Obtain Temporal electrical activities of
. / \ these K. interconnectivities
N/ Ry L7
. N\ T\ Predict the nguml interconnectivity of the K,
Figure 2: Figure on the left2 Neuron Interconnect Structure. Key : s1 =pre-  ~— N Predie e A s 2
synapse for neuron 1, s2 = pre-synapse for neuron 2, b1 = branch 1 of dendrite 1, b2| | \ Pm&}m
. . . \ \ PNIC1 21’2’4 )\ Using the graph theoretic approach described
= branch 2 of dendrite 1 etc, n 1 = node 1 of dendrite 1, n 2 = node 2 of dendrite 1, \ ,,. A\ l;s?_?wn.t) rlombl:l’ ‘,:“’“*”i;;:;‘g
) PR T artitions to have k = k/x subgraphs
length b1=0.23, length of b2=0.11, length of b3=0.22, length of b4=0.07, length of | ; ‘;(_ ¥
b5=0.09 Figure on the right: DS and DpSA Matrix of Dendrite 1 of Neuron2/, [ PNIC13245 ¢ \ i “
\ J \ ) )
y ‘ y
\ \ ‘\\\‘/\.}/«\( MMINi-DASS
. . . . . \ | \ PNICS5 Interconnectivity
easier to integrate all the above matrices into a single ma- | [ [ Bas been obtained
. . . . N J N
trix in which the elements become a vector. The given vec- Y (b)

tor element of this integrated matrix corresponds to the ele-
me?'Fs of ta” Otherlmamf_es' :O\,I\:jever this mttr(]agratlon O{_a”:igure 3:(a) shows the snapshot of the Graph theoretic approach, (b) shows the
matrices to a single m_a_rlx S O,U, preserve the cqnnec IVl%wchartfor the simulation model for the MMINi-DASS interconnectivity prediction
represented by the original individual sets of matrices.
) N ) The MMINI-DASS Interconnectivity partitioning algo-
3.1.2 Algorithms for Initial MMINi-DASS Interconnec-  ithm is given in the next section.
tivity Matrices Generation

The algorithms for generation of the MMINi-DASS Inter-4-1.1 MMINi-DASS Interconnectivity Partitioning Al-
connectivity Matrices has been presented in tables 6, 7,8,9.  gorithm

The algorithm for the generation of other matrices are very,o design of the MMINI-DASS Interconnectivity Parti-
similar to the matrices whose algorithms are presented. ,ing Algorithm first requires the enumeration of a set of

N well thought-out rules to partition the MMINi-DASS Inter-
4 Phase Il : The Proposed Partitioned Parallel connectivity. These rules are :

Processing Approach for Predicting the Bi-
ologically Realistic MMINi-DASS Intercon-
nectivity

e the MMINI-DASS interconnectivity must be parti-
tioned (or severed) only along its dendritic trees

. _ _ e the pre-synaptic contact or the post-synaptic contact
To tackle the computational complexity and to achieve very of the dendrite or telodendria along which partition-

high performance, parallel processing [dj99] approachis es-  ing is to be done must be grouped to be on the same
sential. High degree of parallelism is achieved by proper of the partition

partitioning of the MMINI-DASS Interconnectivity matri- _ N
ces. With this individual partitions can be executed simul-  the number of neuron in each partition must be such

taneous|y ona para||e| machine [\/aan32003] [spk96] that their temporal electrical activity in the form of
EEG or fMRI is obtainable or measurable. Also, the
4.1 Application of Graph theory for Partitioning number of neurons in each partition must be similar

The paper evolves a methodology for MMINi-DASS In- The algorithm for partitioning the MMINi-DASS inter-
terconnectivity Prediction using a graph theoretic approadiPnnectivity is given in table 10.

(refer fig.3). The MMINi-DASS interconnectivity is mod-

eled as a graph. The graph [nar74] is divided into a number
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4.2 The Prediction AIgorithm MMINi-DASS partitioning algorithm for 2 partitions;
Identify the Boundary Neurons in a such a way that the number of neurons is large

f i : . . nough and also number of neurons in all the partitions is the same;
Using the Initial State discussed in section 3, the teMPErgi er of boundary nurons < nboun:
ture parameters discussed in section 2.1.1 and the tempedertify all the neurons in each partition;
. P . : : rm the Connectivity representation of each partition by retaining all the matrices
ture scheduling heuristics discussed in section 2.2, the p_r’géociated with interior neurons:
diction algorithm given in table 11 is applied to each partii \The matrices associated with the boundary neurons are formed as follows
. .. . . . . . i=1;
tion. The prediction algorithm is applied iteratively as petanmon:l;
the graph theoretic approach. Currently the temporal eleghile (partitionj=2)
. .o . . . . _begin
trical activity of the EEG is being made use of in the predic=" e (;=nboun)
tion methodology. begin
: . . . Assemble all the DpSA matrices and DS matrices of the neuron i in partition j;

The Slm_u!atlon mOde_l Useq to predlc_t MMINI-DASS In- Identify the node in the each of the dendritic tree of neuron i in partition j such
terconnectivity of a brain region applying the graph theothat there is no synapses after that node;

: f : P : Update the DpSA and DS matrices as it would be when the partition is made at
retic approach is given in figure 3 in the form of a flowcharty, . 1o4e in each of the dendritic trees:

Update the connectivity matrices of partition j;

: . d
4.2.1 Dendrites, Telodendria, Synapse and Soma-Axon gy

models

Table 10:MMINi-DASS Interconnectivity Partitioning Algorithm
The models used for dendrites, soma-axon, telodendriggn . . . . N
and synapse has a great deal of influence on the predic%gl\ll)%n;)l:g(rjgggyrons|nvolved in the population of neurons whose interconnectivity
MINIi-DASS Interconnectivity. The Hodgkin-Huxley model v = Experimental Temporal electrical activity of the N neuron population;
_ In_Struct = Generated Biologically Realistic Random Neural Interconnectivity of N
[tupkwell88] for Som_a axon, cable theory models fo_r denneurons satisfying the statistical properties of the population of neurons to be pre-
drites and telodendria [tuckwell88] [nrrsm2004], Spike resicted as discussed in section.3.1.2; _ o
sponse model [jl’99] model for the synapse are being ma#gifgartaalbilri.:r(f:grnzc;rcrtei\_;:i;:;ndence of simulated annealing terminologies with that of
use for the prediction methodology. S := Initial solutionS := In_Struct = Biologically Realistic Random neural intercon-
: ; ) ctivity of N neurons generated using algorithms discussed in section.3.1.2;
These models a_re mtegrated Wlth_ the ?tate SandS (r%i—set := Initial temperature set := Initial value of the temperature parameters gen-
fer table 3 elaboration) during each iteration of the predicerated for the Biologically Realistic Random N neuron interconnectivity i.e. Initial
i - i i ~value of all temperature parameters inStruct;
t!on algorlthm, to Obtal!’] the complt_atg VOItage depolanza while(temporal electrical activity of state S is acceptably close to that of the
tion across the neural interconnectivity represented by theperimentally determined temporal electrical activity (V) of the neural population
states S and S’ during that iteration. From these depoIa"i"—“’stfe;‘nemo””ec“v"y Is 1o be predicted) do
ization voltage, EEG is calculated and correlated with the  while(the correlation of the temporal electrical activity of the intermediate

experimental EEG of the neural interconnectivity. z:g:z gv\\/’\:&hy ilsegvczsg)tggn the correlation of the temporal electrical activity of the

begin
. .. .. S’ := Some random neighbouring solution of S;
5 MMINI-DASS Interconnectivity Prediction A = corr(S\V) - corr(S,V);
__A __A __A
Challenges the Supercomputers JProb = mint, e R, e BT, e BT
] ] ] . ) e Ep{T1,T27 - e Fkp{T1,T2,137) s e Fp{T1,T2,T3,T47F s
Application of parallel processing for solving highly com- - 7m0y PR % € Vs e e py v

plex problems has acquired great importance in recent
. A . X R
times. _Thls is due tp two major factors_, one is the Deep_kb{TlTTQ.,T3.,T4.,...,T10,...,T15 _____ Too T,
Sub-Micron (DSM) [|tr52002] teChnOIOg|Cal advancemenf\refertablg.l and table.2 for details regarding the temperature parameters;
leading to multi-billion device fabrication and the other is if random(0,1)< Prob then S := S’}
. . . . . end;
emerging need for challenging applications like weather  Erob =~ FT ) then Undatdr« i (Prob e~ F5 ) then Undatar
. . . . = br1 . = ‘br2 N
modeling, ocean modeling, n-body simulation, molecular " " =¢ ) then Updatel’; if (Prob =e ) then Updatel;
dynamics, seismological predictions and many more appli- (Prob:efwﬁ)then Update(Ty, T }:
cations. - N
The following excerpt from [Ikqs93] gives the extent of  if(Prob=¢ #{71-72.T5} ) then Update{ Ty, T%, T3 };
computational complexity of galaxy structure prediction. _ A
) ) if  (Prob = e kp{T1,72,73, T4, T10})  then Update
If we want to determine the structure of a cluster of galaxies, how large mus{tTh Ty, T3, T4, ..., Tio};

A
kp{T1,T2,T3,T4,.--,T10,--:T15,--,T20}

the survey volume be?..... The Sloan Digital Sky Survey will produce fluxes and sky

_ N
positions for 5x 107 galaxies with redshifts for the brightes0°. Our ambitious if (Prob=e  kpiT1.72.73.Ta, . T10,--T15.--. T20.-- T24} ) then Update
) ) {11, T2, T3, Tay...; T10, -.os T15, -oos T20, -0y T2a};

observational colleagues have cut steel and ground glass to survey a “fair volume” that™ o -
we must simulate, bue we need N2 to do this. Direct summation of the gravita- OU(;DUI best neural interconnectivity of N neurons;

end;
. . . . 0 | N
tional forces using fixed timesteps would ta@'® Teraflop-years {IKQS93] \\Currently temporal electrical activity being made use for the prediction is the

IBM is involved in designing supercomputer named Blue \EEG;

Table 11:prediction algorithm based on the SA algorithm
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Gene to be applied for the protein folding problem. This ~ = zﬁzl(zz;lw%ﬁ;w),

proposed supercomputer would contain a million nodes and i1 - .

would have a computational capability ofia'5 computa- 0 =%, PoﬂX(tto?Zli—Pm,)! (Bt (Poi — j)+(Bli —
tions per second (Petaflop) [blueg]. The following excerpt) X704, (Poi —j) + .. + 1l +1 =141 =2+ .. +1)))
from “Blue Gene : A vision for protein science petaflop 9 = O(N™)where n varies from n varies from 1 to 3
supercomputer” [protfold] is an indication of the computadepending on the accuracy required

tions required to identify a protein structure involving min-  The notations used in the computational complexity ex-

imurp number ofI a#oms. ] . o pression is the same as that used for memory complexity.
“The computational effort required to study protein folding is enormous. Usin _ _ _
crude workload estimates for a petaflop/second capacity machine leads to an estirﬂﬁ'[@wever't()tli = PrN; xPo; andtot2; = PoN; xPr;, s; =

of three years to simulate 100 microseconds. subset size for scheduling.
Physical Time for Simulation 10 ~* seconds

Typical time step size 10— 1° seconds The computatmngl pomplexny for a Million Neuron In-
Number ofMDtiTe stepsw;1 | 52000 terconnectivity prediction is of the order 6f( N*) where
Atoms in a typical protein and water simulation : [P ATH : i ;

Approximate number of interactions in force calculation®? Nis in MI||IOI"]S while k is a few mgltlplgs of 10. ThUS
Machine instructions per force calculation : 1000 the computations required for multi-million neuron inter-
Total number of machine instructiong 022", [protfold] connectivity prediction is about)??°. By applying certain

However, initiatives on application of Supercomputerseuristics (refer section 2.2.1) the order of computations is
for modeling the complex brain regions has not been muckeduced tcO(N%f) where 3x<3.5 depending on the num-
Some initiatives has been taken by IBM to develop fastesier of heuristics employed. Thus the computations required
super computers for tackling the complexity of brain modfor multi-million neuron interconnectivity prediction gets
eling. In the subsequent sections we present the mema®duced to about0®.
and the computational complexity of the proposed MMINi-  The computational complexity throws a big challenge

DASS Interconnectivity prediction methodology. to the supercomputer and defies the computational power
of the existing ones. This leads to 2 major research de-
5.1 Memory Complexity velopments : one, evolution of an architecture $oiper-

The expression for memory complexity for representing Esiupercomputer$va§\n5200_3] [a_1k2003] [332.003] [nk2003]
N neuron interconnectivity is given below. and the other, deS|g_n_of I|brar_|e§ for mapping the MMIN:i-
DASS Interconnectivity prediction methodology on the
Memory Complexity of representing N neuron |ntercon_§uper—supercomputer. These Iibraries. are for t_he pre'dic-
nectivity = 2 x N2 + XN (PrN; x Pr;) + SN, (Bd; x tion a'Igorlthm (refer section 4.2), Pa'rt|'al and. @ﬁgrenﬂal
Pr; x 8) + =N (Bd; x Dnodes; x 8) + SN, (PoN; x equations, MMIN|-DASS interconnectivity partitioning al-
Po;)+ 3N (Bt; x Po; x8)+ 3 (Bt; % Tnodes; X 8)+ g_onthm (refe_r section 4.1.1), sorting an_d searchmg algq-
N+ Zf\il_PTi + 3N (8 + (re; ><_8)) I‘.Itth, massive rgndom numbgr generauop algonth_ms, ini-
where N = number of neuron®rN; = number of pre- tial MMINI-DASS interconnectivity generation algorithms

synaptic neuron of neuron Pr; = number of pre-synapses (réfer section 3).

of neuron i, Bd; = number of branches of dendritic trees

of neuron i, Dnodes; = number of nodes in the dendritic 6 Discussion

tree of neuron iPoN; = number of post-synaptic neuron of ) )
neuron i,Po = number of post-synapses of neuroli;, = S0me of the parameters like neuron cell body shape, im-

number of branches in the telodendria of neurdfvipdes; ~ Pact of myelin sheath, dendritic tapering, dendritic and telo-
= number of nodes in the telodendria of neuran:j,=num-  dendria orientations need to be included to predict both the

ber of recurrent collateral in the axon of neuron i. MMINI-DASS Interconnectivity realistically and its struc-
ture. However, inclusion of these parameters would in-
5.2 Computational Complexity crease the computational demand to several petaflop years.

The authors feel that the MMINI-DASS Interconnectiv-

The computational Complexity of predicting a N neuron Inity prediction being fundamental in modeling brain func-
terconnectivity is given below. o tionality, new avenues of DNA based computing need to be

Computational Complexity of predicting a N neuron In-eyoved to tackle the awesome computations demanied.
terconnectivity =a3v460 is our strong feeling that the problem and the solution pre-

where sented in this paper is bound to open up massive research
a=3N, (%%, (Bfiis!)'s' ), front's on developing DNA computing_for _brain model?ng |n

N toﬂ.z s)!s! e ‘ volving neuroscientists, computer scientists, DNAscientists,

p= Ei:lm(Bdizj:O (Pri—j)+(Bd;— computer architects and algorithm designers. Further, the

1) £l (Pri—j)+...+1(m+m—14+m—2+..41)))), prediction methodology presented should help fault simu-
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late the brain regions involving millions of neurons therebykigvss] Kirkpatrick S, C D Gelatt and M P Vecchi, “Optimization by Simulated

P P PAl ; i Annealing”, Science, Volume 220, 1983, 671-680.
leadmg to dlscovery of new medicines for brain diseases. [lkgs93] George Lake, Neal Katz, Thomas Quinn, Joachim Stadel, “Cosmological

Instead of correlating the EEG obtained from the N-Body Simulation”, Nikos DrakosComputer Based Learning Unit, Uni-
MMINi-DASS Interconnectivity and the experimental [nar74] \ﬁ;gg;ﬁ:gs:‘é?:; theory with applications to engineering and com
S . . i , Y Wi icati ineeri -
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. . . - n . Niranjan Kumar, “The ompiler-On-Silicon”, Thesis Pro-
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Thesis Proposal submitted to Waran Research Foundation, WARF, 2003.
(http://www.warfindia.org/charaka)
. [shep98] “The Synaptic Organization of the Brain”, Oxford University Press, 1998
7 COﬂC'USIOn [spk96] Sunaga T.,Peter M. Kogge et al. “A Processor In Memory chip for mas-
sively parallel embedded applications.” |.E.E.E Journal Solid state circuits,

In this paper, an attempt is made to present an approach Oct. 1996. . . , o
for predicting a Multi-Million Neuron Interconnection in- o< e T ambidge. o 10 necretical neroblology’, Can-
volving soma, axon, dendrites and synapse. Moreover tiweans2003] N.venkateswaran, Arrvindh Sriraman, Adithya Krishnan, Niranjan Ku-
approach is a parttioned one enabling it to be executed on T Sas Sriharen emary i Processor: A Novel esinParaca
parallel machines. A simulation model has been developed Architecture news, March 2004.
involving randomized simulated annealing algorithm fOI[wgwkZOO§Ln‘i‘§Eéking Nfeuron Models : Single Neurons, Populations, Plasticity”,
X . o A ge University Press, August 2002

MMINI-DASS Interconnectivity prediction. Besides crack-
ing down the intricacies and complexities of the MMINi-
DASS Interconnectivity, the identification of this intercon-
nectivity in a particular brain center will be of great impor-
tance as a research opening in the field of neuroscience.

The paper clearly brings out the need for this MMINi-
DASS Interconnectivity prediction in understanding the in-
formation processing, the spatio-temporal activities and
learning in various brain regions. This simulation model
is expected to be highly helpful in developing fault simula-
tion techniques for modeling brain diseases. The computing
power needed for the simulation model is presented and the
necessity for, evolving super-supercomputer and investiga-
tion on DNA computing paradigm.

“DNA Computing Takes Up the Challenge of Brain

Modeling”
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