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Abstract- This paper presents a simulation model based on parti-

tioned parallel processing approach to predict Multi-Million Neuron

Interconnections in the various brain regions involving soma, axon,

dendrites and synapse. This is an attempt to develop a methodology

for predicting such massive neural inter-connectivity to analyze the

spatio-temporal information processing and synaptic based learning

in its lowest level. The paper presents the importance of such massive

prediction and opens up avenues for developing fault simulation tech-

niques for modeling various brain diseases and disorders. The predic-

tion of multi-million neuron interconnectivity involves awesome com-

putations. To tackle this massive computational complexity a parti-

tioned parallel approach employing the randomized algorithm namely

the simulated annealing is evolved. The computational complexity is

derived and is shown to be in hundreds of petaflop years. Heuristics

are presented to drastically reduce this complexity. However, the high

computational complexity necessitates the evolution of a novel super-

supercomputer. This paper strongly suggests the need for evolving a

DNA based computing paradigm for brain modeling in its total reality.

Index terms

biological neural networks, inter-neural connectivity or neuron intercon-

nections, algorithms, simulated annealing algorithm, supercomputer, fault

simulation, computational and memory complexities

1 Introduction

Connectivity among neurons in the brain via their somas,
axon, dendrites, telodendria and synapses is the crux that
governs the functionality of various brain regions [rr2003]
[shep98]. The inter-neural connectivity is the major factor
that influences temporal, spatial and spatio-temporal infor-
mation processing and the learning by the brain. In this
regard, the knowledge of multi-million neuron interconnec-
tivity involving complex dendritic arborescence, axons, bil-
lions of synapse and millions of soma is highly imperative.

The existing population models [wgwk2002] cannot pro-
vide connectivity details with regard to the dendritic ar-
borescence, millions of soma, axons and billions of synaptic
contacts. To develop an analytical (mathematical) model to
deal with such massiveness to track the complex, intricate
and finer neural connectivity will be highly intractable and

impossible. Simulation models are powerful in dealing with
such complex and massive systems.

This paper presents a partitioned parallel processing
[dj99] approach to predictMulti-M illion Interconnected
Neuronsinvolving theDendrites,Axon,Soma andSynapse
(MMINi-DASS Interconnectivity).

1.1 Importance of MMINi-DASS Interconnectivity

Once the MMINi-DASS interconnectivty is obtained a great
deal of investigation can be performed with regard to simu-
lation of the learning process, simulation of the information
processing and the fault simulation of various brain regions.

With the help of the MMINi-DASS Interconnectivity ei-
ther temporal or spatial or spatio-temporal information pro-
cessing can be analyzed.

A deeper look at synaptic connectivity and the associ-
ated learning process is extremely feasible. The MMINi-
DASS Interconnectivity prediction would be a powerful tool
in evolving a simulation mechanism for the learning pro-
cess [ejt95]. This MMINi-DASS interconnectivity would
give the learning matrices that corresponds to the strength
of each pre- and post-synaptic contact.

The predicted MMINi-DASS interconnectivity can be
adopted straight away for fault simulating the correspond-
ing brain region of interest. This fault simulation could be
for electrical misbehaviour, physical damages or abnormal
chemical activities and disequilibrium. Simulation of faults
concerning dendrites, soma, axon, telodendria and synapse
may be performed and the results can be analyzed.

For instance, in a given MMINi-DASS interconnectiv-
ity either millions of synaptic connectivity could be totally
removed or ionic imbalances may be introduced in these
synaptic contact affecting the neurotransmission. The im-
pact of this on the information processing capabilities can
then be studied. Similarly, faults like snapping off the axon
or introduction of a graceful degradation to myelin sheath of
the axon can be introduced in the predicted MMINi-DASS
interconnectivity and its impact can be analyzed. In real-
ity such an axonal fault occurring in scores of axons will
greatly affect the information processing of million of neu-
rons. Further the learning process can also get badly af-
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fected due to such faults. Fault simulation on a predicted
MMINi-DASS interconnectivity can help study the various
brain diseases to discover new medicines.

However, there is neither experimental techniques nor
theoretical approaches available currently that would deter-
mine the MMINi-DASS Interconnectivity.

Currently imaging techniques are widely used for diag-
nostic purposes. Structural Imaging Techniques like Mag-
netic Resonance Imaging (MRI) and Computer Aided To-
mography (CAT) give details regarding the physical and
chemical composition of various brain regions and are help-
ful in medical diagnosis of tumors etc. Functional Imag-
ing techniques like Functional Magnetic Resonance Imag-
ing (fMRI) gives details regarding the location of various
brain centers and the corresponding Blood Oxygen Level
Dependent (BOLD) response. Electroencephalograph, an-
other functional imaging technique gives the temporal elec-
trical activity of brain surface regions.

Massive edge detection can be employed using image
processing techniques to the brain images obtained from
MRI. There is a sea of difference between the capabilities
of the simulation model to predict the MMINi-DASS Inter-
connectivity and even the enhanced images obtained from
MRI. Moreover, the quality of MRI images are yet to reach
a mark so that powerful image processing techniques could
be efficiently applied for detecting the edges (soma, axon,
dendrites, synapse) in the image. Even then the analysis
that can be performed using these images can in no way
match the capabilities of the predicted MMINi-DASS In-
terconnectivity using the proposed methodology. The sim-
ulation model based on partitioned parallel processing pre-
sented in the paper could be implemented as a research tool
for deep brain analysis concerning spatio-temporal informa-
tion processing, individual synaptic connectivity and asso-
ciated learning, fault simulations concerning soma, axon,
dendrites and synapse.

It is further discussed in detail in this paper, the limita-
tions of the silicon supercomputer in handling the simula-
tion model of the MMINi-DASS Interconnectivity predic-
tion. A DNA computing paradigm needs to be evolved for
the proposed prediction methodology.

Section 2 explores the application of the Simulated An-
nealing (SA) algorithm [kigv83] to predict MMINi-DASS
interconnectivity. The generation of biologically realistic
random MMINi-DASS interconnect structure as a initial
state for the prediction algorithm (section 4.2) is discussed
in section 3. The proposed partitioned parallel processing
approach is given in section 4. The summary of the overall
MMINi-DASS interconnectivity prediction approach is pre-
sented in table 3 in the form of a flowchart. The complexity
of the proposed MMINi-DASS interconnectivity methodol-
ogy is discussed in section 5.

Figure 1: (a) shows the Generic Simulated Annealing Algorithm, (b) is the cor-

responding flowchart for the Generic Simulated Annealing Algorithm

2 Application of Simulated Annealing to
MMINi-DASS Interconnectivity Prediction

The generic simulated annealing (SA) algorithm [kigv83]
is given in figure 1(a). The corresponding flowchart is dis-
cussed in figure 1(b). Application of the Simulated Anneal-
ing (SA) algorithm to a system (here in our case it is the
MMINi-DASS Interconnectivity) for optimizing its system
parameters to obtain the near optimal solution (the desired
MMINi-DASS interconnectivity) involves identification of
the system parameters both variables and constants. It in-
volves establishing a correspondence between the parame-
ters of the SA algorithm namely the State of the systemS,
TemperatureT , the energy difference∆, Initial stateS0 and
the Initial temperaturesT0 to that of the parameters of the
MMINi-DASS interconnectivity (refer table 3). The system
parameters correspond to the temperature parameters in the
Generic Simulated Annealing algorithm, excluding the sys-
tem parameters that are constant. The SA algorithm can
also involve multiple temperature parameters correspond-
ing to several system parameters. In that case the parame-
ters of the SA algorithm would be the State of the system
S, Temperature set (T -set){T1, T2..., Tn}, the Energy dif-
ference∆, Initial stateS0 and the Initial temperature set
{T01, T02, ..., T0n}.

The near-optimal solution from the SA algorithm is the
StateS of the system which corresponds to a minimum en-
ergy configuration. In our case the minimum energy state
(near optimal solution) corresponds to the MMINi-DASS
interconnectivity whose calculated temporal electrical ac-
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tivity has maximum correlation with the experimental tem-
poral activity of the desired brain region. The energy dif-
ference,∆ is the difference in energy of the current state
and that of the previous state (∆ = C(S

′
) - C(S)). TheT -

set is heuristically scheduled in such a way that this energy
difference is minimized over subsequent iterations. The in-
termediate state (S

′
) is accepted or rejected during the it-

erations based on whether calculated probability is≥ or≤
random(0,1) (refer algorithm in figure 1(a)). This contin-
ues until we land up with the desired or the near optimal
solution.

2.1 MMINi-DASS System Parameters, the{S − set}

MMINi-DASS system parameters (theS-set) character-
ize the electrical, chemical, physical and geometrical
properties of the MMINi-DASS Interconnectivity. Cur-
rently, 35 MMINi-DASS system parameters (theS-set =
{S1, S2, ..., S35) are thought-out for the proposed predic-
tion methodology. These parameters are characterized un-
der dendrites, soma, axon, telodendria and synapse. All
the system parameters thought-out with respect to dendrites
(electrical parameters, arborescence,...), soma (cell body
shape, electrical parameters,...), axon (length, number of
nodes of ranvier,...), telodendria (electrical parameters, ar-
borescence,...) and synapse (contact sites, strength, num-
ber,...) are discussed in detail in table 1.

System parameters like threshold voltage and other elec-
trical parameters of the soma of the MMINi-DASS Inter-
connectivity are treated as constants and are assumed to be
available to predict the interconnectivity. The remaining
system parameters are variables and are associated with the
temperature parameters, theT -set.

2.1.1 Identification of{T −set} with MMINi-DASS Sys-
tem Parameters

The variable and constant MMINi-DASS system parame-
ters (S-set) are listed in table 2. These variable system pa-
rameters are identified with the temperature parameter set
(T -set) as shown in table 2. Currently 24 such parameters
are taken into account in the{T − set} of the proposed pre-
diction methodology i.e.{T − set} = {T1, T2, ....., T24}.

2.1.2 Correspondence between SA algorithm and the
MMINi-DASS Interconnectivity System

The correspondence between generic SA algorithm and the
MMINi-DASS Interconnectivity system is established in ta-
ble 3. This correspondence shown in table 3 establishes
the link between SA algorithm parameters and that of the
MMINi-DASS interconnect structure.

2.2 {T − set} Scheduling Heuristics for MMINi-DASS
Interconnectivity Prediction

As discussed earlier, SA can involve multiple temperature
parameters. Currently as mentioned in section 2.1.1, 24
temperature parameters have been identified that constitute
the so-calledT -set. To attain near optimal state one needs
to schedule these temperature parameters listed in table 2
efficiently. In our case, theT -set (refer table 2) of the
MMINi-DASS interconnectivity has to be so scheduled that
the energy difference between the intermediate and the cur-
rent MMINi-DASS interconnectivity is reduced over sub-
sequent iterations to obtain the interconnect structure with
minimum energy. TheT -set heuristics will decide the time
to convergence which means how fastProb (refer algorithm
in figure 1(a)) tends to 1 (or∆ tends to 0) i.e. how fast
we obtain the state with minimum energy. These heuristics
(T -set heuristics) correspond to the so called Temperature
Scheduling mechanism of the SA algorithm.

In the current phase of this prediction methodology, a
part of the WARF1 project,The Deep Brain2, the following
system parameters (that includes some temperature param-
eters as well) have not been included :S3, S21 = T15, S22

= T16, S26 = T20, S27 = T21 (refer table 2). However the
electrical parameters associated with soma are taken into ac-
count. These electrical parameters are definitely influenced
by the shape or geometry of the soma(S3). The orientation
of the dendrites and the telodendria neither influence the in-
terconnectivity nor the spatio-temporal activities. However
they influence the overall volume occupied by the MMINi-
DASS interconnectivity.

On heuristically deciding the scheduling of the temper-
ature parameters (refer table 2), either one or more to be
scheduled, fixing up a suitable functional variations for
these temperature(s) through some mathematical functions
is called the temperature updating. One can work out sev-
eral subsets from theT -set,{T1, T2..., Tn} for the schedul-
ing process. All temperatures in each of the subsets of the
T -set can be scheduled by maintaining other temperatures
constant. Table 4 lists all the possible temperature schedul-
ing subsets (ofT -set). The total number of possible subsets
of theT -set adds up to 16777215 (=224-1). Corresponding
to each of these temperature scheduling subsets, billions of
computations are associated. This computational complex-
ity depends on the complexity of the mathematical models
of the soma-axon, dendrites, telodendria and the synapse,
number of soma-axon, number of dendrites and branches,
number of telodendria and branches and number of pre- and
post-synaptic contacts. In all the computations is of the or-
der ofO(Nk) with N varying in multi-millions and k being
a few multiples of ten.

1WAran Research Foundation, Chennai, INDIA
2http://www.warfindia.org
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2.2.1 Heuristics to Reduce the Massive Computational
Complexity

The computational complexity can be very drastically re-
duced if the following well-thought out heuristics are ap-
plied. One is by considering certain temperature parame-
ters as constants. In fact the temperature parameters associ-
ated with the dendrites and telodendria namely the number
of branches and length of individual branches need not be
scheduled for each iteration in the SA algorithm. Instead the
initial random generation of this dendritic and telodendria
tree can be so formed such that the number of branches and
the branch length fall within a minimum and a maximum
range that are biologically realistic. These heuristics are
justified due to the fact that the dendrite and the telodendria
trees and neuron interconnectivity may differ very widely
across millions of people for every brain region. Hence
the random generation of dendritic and neuron interconnec-
tivity can be resorted to. However this random generation
should be biologically realistic. More on the generation of
the initial MMINi-DASS interconnectivity and their biolog-
ically realistic random generation is discussed in section 3.

What is of great importance is the pre- and post-synaptic
connectivity and the associated learning process [ejt95].
The synaptic connectivity in general could be similar across
people. On the other hand the strength of each synaptic con-
tact will differ widely based on specialized learning that a
person would receive. Hence the variations associated with
pre- and post-synaptic contacts i.e. their corresponding tem-
perature parameters and hence their scheduling are of im-
portance. However, if on scheduling the change in energy
of the system is not appreciable then the temperature param-
eters associated with the dendrites and telodendria is also
considered for scheduling during that iteration.

Another heuristics considered to reduce computational
complexity is that only thoseT -set subsets having more
than 10 elements (or temperatures) are considered for
scheduling. This is justified since only on a change in
sufficient temperature parameters would the energy of the
MMINi-DASS interconnectivity change by an appreciable
amount.

Also, by applying SA algorithm [kigv83] to these tem-
perature themselves, computations can be reduced and
convergence can be speeded up. (SA is applied among
these temperature subsets to choose the near optimal subset
among the 16777215 temperature subsets and those temper-
atures in that subset is updated. SA is applied to choose the
near-optimal temperature subset to be scheduled, along the
similar line as explained in this section 2).

These heuristics reduce the computational complexity
drastically. The order of the computational complexity
comes down toO(N

k
x ) with N varying in multi-millions

and k varying as a few multiple of ten and 3≤x≤3.5.

Another important factor to be considered in obtaining
the near optimal solution is the selection of models for den-
drites, soma-axon and the synapse.

As in the SA, the initial state of the system (in our case
the initial MMINi-DASS interconnectivity) affects the near-
optimality (in our case the predicted MMINi-DASS inter-
connectivity) of the solution to be obtained. To arrive at the
inter-neural connectivity of the given brain region, we have
to begin with an arbitrary and realistic MMINi-DASS in-
terconnectivity which is the initial state. So another major
factor of this approach is to develop an efficient method-
ology to generate a realistic MMINi-DASS interconnectiv-
ity. Obviously one has to resort to random generation of
this MMINi-DASS interconnectivity with the extent of ran-
domness being restricted by the statistical properties (refer
table 5) of the MMINi-DASS interconnect structure to be
predicted, like the average number of pre- and post- synap-
tic contacts in each neuron and the average dendritic tree
configuration etc. More statistical properties of a MMINi-
DASS Interconnectivity is listed in table 5.

2.3 MMINi-DASS Interconnectivity Simulation Model

A simulation model is made up of several algorithmic se-
quences comprised of generation of initial MMINi-DASS
Interconnectivity, MMINi-DASS partitioning, application
of SA algorithm for prediction which also includes the tem-
perature scheduling is developed. This simulation model is
discussed over the subsequent sections.

3 Phase I : Biologically Realistic Generation
for an Initial MMINi-DASS Interconnectiv-
ity (Initial State)

As discussed under section 2 forming the initial state for the
MMINi-DASS interconnectivity prediction is of paramount
importance due to its complexity and impact on conver-
gence to a near-optimal solution. The generation of a re-
alistic initial state for MMINi-DASS Interconnectivity Pre-
diction demands a randomized approach to mimic the nat-
ural formation of the neural interconnectivity in the brain.
The randomness of initial state is constrained by the statis-
tical properties (refer table 5) of the neural interconnections
depending on the brain region whose interconnectivity is to
be predicted. The statistical properties are listed in table 5.
This random structure is used as the initial state for the sim-
ulated annealing based prediction algorithm (refer section
4.2).

The generation of a random and biologically realistic
MMINi-DASS interconnectivity requires a model of rep-
resentation for the interconnect structure. A matrix based
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Sn System Parameters{S − set} of the
MMINi-DASS interconnect structure Prediction

S1 number of neurons, N
S2 threshold (Vth) of the neuron
S3 neuron cell body shape (soma shape)or geometry
S4 relative cell body (soma) coordinates as (x,y,z)
S5 nature of the neuron - inhibitory or excitatory
S6 neuron level association i.e. which neurons are presynaptic to neuron

ni and which neurons are post-synaptic to neuronni

S7 length of axon of each neuronni

S8 conductance of axon of each neuronni

S9 number and location of nodes of ranvier in each neuronni

S10 length and thickness of each myelin sheath on axon of each neuronni

S11 number and location of recurrent collateral of neuronni

S12 with which neurons is the recurrent collateral from neuronni is
associated and type of association (inhibitory or excitatory)

S13 the location of the recurrent collateral terminal of neuronni

on the incident neuronsnj

S14 number of pre-synaptic and post-synaptic contact to each neuronni

S15 which pre-synaptic contacts of neuron,ni are provided by its
presynaptic neuron,nj

S16 which post-synaptic contacts of neuron,ni are provided by its
post-synaptic neuron,nj

S17 nature of synaptic contact - inhibitory or excitatory
S18 dendritic tree setdi associated with each neuronni

S19 number of dendritic branches in each dendritedi associated with each
neuronni and their branching structure

S20 length of each dendritic branchdl in each of the dendritic tree,
di associated with each neuronni

S21 dendritic tree orientation in 3-D or 2-D space of each neuronni

S22 dendritic tree tapering coefficient of each neuronni

S23 telodendria tree setti associated with each neuronni

S24 number of telodendria branches in each telodendriati associated
with neuronni and their branching structure

S25 length of each telodendria branchtl in each of the telodendria,
ti associated with each neuronni

S26 telodendria orientation in 3-D or 2-D space of each neuronni

S27 telodendria tapering coefficient of each neuronni

S28 location of pre-synaptic sites corresponding to each pre-synaptic
neuronnj on the dendritic tree,di associated with each neuron,ni

S29 location of post-synaptic sites corresponding to each
post-synaptic neuron,nj on the telodendria,ti associated
with each neuron,ni

S30 the strength or the learning weight associated with each synaptic
contact on the dendritic spine of each dendritedi associated with
each neuronni

S31 resistance of the membrane in the dendritic trees
S32 resistance of the membrane in the soma-axon portion in the cable

theory model
S33 capacitance of the membrane in the dendritic trees
S34 capacitance of the membrane in the soma-axon portion in the cable

theory model
S35 EEG or fMRI of the MMINi-DASS structure to be predicted

Table 1:System Parameters of the MMINi-DASS interconnect structure predic-

tion corresponding to that in the SA algorithm (Sn). Out of all these system pa-

rameters in the MMINi-DASS interconnect structure, some are taken as the system’s

temperature parameters (refer table.(2)) while others are assumed to be a constant

being the statistical property of the MMINi-DASS structure to be predicted
System Parameters{S − set} of System Parameters{S − set}
MMINi-DASS that areconstants of the MMINi-DASS
for the MMINi-DASS Interconnect that arevariablesand are
Structure Prediction considered as the Temperature

Parameters{T − set} for the
MMINi-DASS Interconnect
Structure Prediction,
{T1, T2, T3, .....,T23, T24}

S1, S2, S3, S4, S8, S14, S31, S32 S5, S6, S7, S9, S10, S11,
S33, S34, S35 S12, S13, S15, S16, S17,

S18, S19, S20, S21, S22,
S23, S24, S25, S26, S27,
S28,S29, S30

Table 2: Characterization of each System Parameter as a Constant or a Tem-

perature Parameters. The table shows that out of the 35 system parameters, 24 are

temperature parameters and 11 are constant parameters.

Terminologies in Generic Corresponding Parameters in MMINi-DASS
Simulated Annealing Algorithm
State MMINi-DASS Interconnectivity configuration
Initial Solution Arbitrary MMINi-DASS interconnectivity
S0
Initial Temperature The values of all the system parameters
T0 mentioned in table.1
Stopping Degree of accuracy of the MMINi-DASS
Criteria Interconectivity produced to that of the

actual MMINi-DASS structure sought
Current State,S Current MMINI-DASS interconnectivity

Intermediate State,S
′

Updated MMINI-DASS interconnectivity
obtained due to the scheduling mechanism

Equilibrium The updated MMINi-DASS configuration

Condition (S
′
) is better than the previous

MMINi-DASS configuration (S) in
terms of accuracy with respect to the
actual MMINi-DASS configuration

Energy degree of correlation of the temporal activity
of a MMINi-DASS interconnectivity
with that of the experimental temporal
activity of the MMINi-DASS interconnectivity

Energy Difference,∆ the difference between degree of correlation
of the temporal activity of the updated
interconnectivity with the experimental
temporal activity of the interconnectivity
and temporal of the previous
interconnectivity with the
experimental temporal activity of the
interconnectivity to be predicted

Temperature (T ) {T − set} listed in table 1
Update Temperature (T ) Some pre-determined mathematical function

to update temperature or{T − set} values
Near-optimal Solution (or) The MMINi-DASS Interconnect structure
Best Solution with least Energy

Table 3:The table illustrates what parameters of the generic simulated annealing

algorithm is mapped onto the parameters in the MMINi-DASS Interconnectivity
Number of Subsets of Possible Temperature Scheduling Schemes
Temperatures and the Number of possible scheduling subsets
Involved in the (All the Temperatures of one Subset are
Scheduling simultaneously updated during one scheduling

cycle)
One {T1}, {T2}, ....{T24}.

Number of Possible Temperature Schedulings =24C1
= 24.

Two {T1, T2}, {T1, T3} etc.
Number of Possible Temperature Schedulings =24C2
= 276.

Three {T1, T2, T3}, {T1, T2, T4}, etc
Number of Possible Temperature Schedulings =24C3
= 2024.

Four {T1, T2, T3, T4}, {T1, T2, T3, T5}, etc
Number of Possible Temperature Schedulings =24C4
= 10626.

Five {T1, T2, T3, T4, T5}, {T1, T2, T3, T4, T6} etc
Number of Possible Temperature Schedulings =24C5
= 42504.

Six {T1, T2, T3, T4, T5, T6}, {T1, T2, T3, T4, T5, T7},
etc
Number of Possible Temperature Schedulings =24C6
= 134596.

Seven {T1, T2, T3, T4, T5, T6, T7},
{T1, T2, T3, T4, T5, T6, T8}, etc
Number of Possible Temperature Schedulings =24C7
= 346104.

.. ..

.. ..
Twenty Four {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10,

T11, T12, T13, T14, T15, T16, T17, T18, T19,
T20, T21, T22, T23, T24}
Number of Possible Temperature Schedulings =24C24 = 1.

Table 4: The table shows all the possible temperature scheduling subsets. The

temperature parameters{T1, T2, T3, ....., T23, T24} are shown in table (2). The

total number of scheduling subsets are (224-1=) 16777215. Thus there are 16777215

possible temperature scheduling mechanisms for the MMINi-DASS interconnect

structure prediction. In each cycle the best possible scheduling subset is chosen

through a probabilistic process that is inherent in the Generic Simulated Annealing

Algorithm. Note: xCy = x!
y!(x−y)! .
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model has been evolved which would represent the com-
plete connectivity details of a neural interconnectivity in-
volving soma, axon, dendrites and synapse. The connectiv-
ity model has been so evolved that it would address all the
intricate neural interconnectivity details.

Moreover an algorithm for generation of random and bi-
ologically realistic MMINi-DASS interconnectivity for any
brain region given its statistical properties (refer table 5) has
been evolved and is presented in section 3.1.2.

The general connectivity model for a MMINi-DASS in-
terconnectivity is presented in the subsequent section.

3.1 Connectivity Representation for MMINi-DASS

3.1.1 The 2-D and 3-D Representation

Neuron-Neuron Connectivity Matrix (NNC) MatrixThis
matrix depicts the neuron level connectivity in the MMINi-
DASS i.e. which neurons are pre-synaptic to neurons,ni

and which neurons are post-synaptic to neurons,ni. It is
an adjacency matrix [nar74] where01 corresponds to a pre-
synaptic neuron and11 corresponds to a post-synaptic neu-
ron while0 represents no association.

Neuron Excitatory or Inhibitory (NEI) MatrixThis ma-
trix depicts which neurons are excitatory and which are in-
hibitory neurons. It a column matrix. It is matrix where0
corresponds to excitatory neuron and1 denotes a inhibitory
neuron.

Neuron Coordinate (NC) MatrixThis matrix contains the
(x,y) or (x,y,z) coordinates of the neurons. This the only ma-
trix where there is difference between a 2-D MMINi-DASS
interconnectivity or a 3-D MMINi-DASS interconnectivity.
All the other matrices would be of the same for both 2-D
and 3-D MMINi-DASS interconnectivity.

Neuron pre-Synapse Association (NpSA) MatrixThis
matrix depicts the association of each of the pre-synaptic
contact of neuron,ni with the pre-synaptic neurons of the
neuron,ni. There would be a NpSA matrix for each neuron,
ni in the MMINi-DASS interconnectivity. It is an incidence
matrix [nar74] where01 and11 represents excitatory and
inhibitory pre-synapse association with the corresponding
pre-synaptic neuron. A0 represents no association.

Neuron post-Synapse Association (NpoSA) MatrixThis
matrix depicts the association of each of the post-synaptic
contact of neuron,ni with the post-synaptic neurons of the
neuron,ni. There would be a NpoSA matrix for each neu-
ron, ni in the MMINi-DASS interconnectivity. It is an in-
cidence matrix [nar74] where01 and11 represents excita-
tory and inhibitory post-synapse association with the corre-
sponding post-synaptic neuron. A0 represents no associa-
tion.

Dendrite Structure (DS) MatrixThis matrix portrays the
structural arborescence of the dendritic tree including its in-
dividual branch lengths. There would be a DS matrix for

each dendrite for each neuron,ni in the MMINi-DASS in-
terconnectivity. It is a incidence matrix [nar74] whose ele-
ments are branch lengths.

Telodendria Structure (TS) MatrixThis matrix portrays
the structural arborescence of the telodendria including its
individual branch lengths. There would be a TS matrix for
each telodendria of each neuron,ni in the MMINi-DASS
interconnectivity. It is a incidence matrix [nar74] whose
elements are branch lengths.

Dendrite pre-Synapse Association (DpSA) MatrixThis
matrix depicts the connectivity of the pre-synapses of the
neuron,ni on its dendritic tree. It gives details regarding
the point of pre-synaptic contact on the dendritic tree. There
would be a DpSA matrix for each dendrite of each neuron,
ni in the MMINi-DASS interconnectivity. It is an incidence
matrix [nar74] whose elements are the point of contact of
the synapse on the dendritic branch.

Telodendria post-Synapse Association (TpoSA) Matrix
This matrix depicts the connectivity of the post-synapses of
the neuron,ni on its telodendria. It gives details regarding
the point of pre-synaptic contact on the telodendria. There
would be a TpoSA matrix for telodendria of each neuron,
ni in the MMINi-DASS interconnectivity. It is an incidence
matrix [nar74] whose elements are the point of contact of
the synapse on the telodendria branch.

Axon Length (Ax) MatrixThe axon length matrix con-
tains the length of axon of each neuron,ni. There would
be single Ax matrix for the MMINi-DASS interconnectiv-
ity. It is a column matrix that contains the axon length of all
neurons.

Recurrent Collateral Point (RCP) MatrixThe recurrent
collateral point matrix contains the location of the recurrent
collateral on the axon of each neuron,ni. There would be a
RCP matrix for each neuron,ni in the MMINi-DASS inter-
connectivity. It is a column matrix that contains the point of
recurrent collateral in the axon.

Recurrent Collateral Association (RCA) MatrixThe re-
current collateral association matrix contains association of
the recurrent collateral of each neuron,ni with other neu-
rons. There would be a RCA matrix for each neuron,ni in
the MMINi-DASS interconnectivity. It is a column matrix
that contains the neuron each collateral is associated with
and the type of association (inhibitory or excitatory).

The above connectivity representation can be extended
to 3-D as well by changing the NC matrix alone as discussed
under the NC matrix representation.

An Example A couple of sample matrices (DpSA ma-
trix of neuron 2,N2, DS matrix of neuron 2,N2) depicting
the connectivity is given in figure 2.

It is cumbersome to access the elements of different ma-
trices which are large in order and number. Particularly the
number of access required to these matrices is huge. It is
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\\The value of the following variables : NC, PrS, PoS, B, Pr, Po, PS1, PS2 are
\\pre-requisites for the Matrix Generation Algorithms
N NEU = Number of neurons;
NC1 = Average number of neurons pre-synaptic to each neuron;
NC2 = Average number of neurons post-synaptic to each neuron;
PrS = Average number of pre-synaptic contacts for each neuron;
PoS = Average number of post-synaptic contacts for each neuron;
B = Average number of branches in each dendritic tree;
Pr = Out of PrS average pre-synaptic contacts for each neuron, on an average how
many are associated with each pre-synaptic neuron of that neuron;
Po = Out of PoS average post-synaptic contacts for each neuron, on an average how
many are associated with each post-synaptic neuron of that neuron;
PS1 = Average number of pre-synaptic contact on each dendritic branch;
PS2 = Average number of post-synaptic contact associated with each branch of the
telodendria;
PEREI = Percentage of Neurons in the MMINi-DASS Interconnectivity that are ex-
citatory;

Table 5: Statistical Properties of the MMINi-DASS, the Pre-requisite values re-

quired for the generating the random structure
\\NNC Matrix Generation algorithm
Declare a NNEU×N NEU square matrix, NNC(i,j);
Fill NNC matrix with zeros;
\\pre-synaptic neuron connection;
ROW=random(1,NNEU);
while (connection not complete)
begin

CHECK current ROW of NNC matrix for filled positions corresponding to pre-
synaptic connections;

STORE filled positions in the current ROW of NNC matrix in FILLED array,
FILLED(i) such that 0≤i≤F where F = number of filled positions in current ROW of
NNC matrix;

A array, A(j) = (NC1 - F) random numbers such that ROW<A(j)≤106 for
1≤j≤(NC1 - F) and for each A(j) 1≤j≤(NC1 - F), A(j)6=FILLED(i) for 1≤i≤F;

flag=1;
while (flag≤total number of entries in A array)
begin

TEMP=A(flag);
if (row number TEMP of NNC matrix has less than NC1 pre-synaptic entries)

then
NNC(ROW, A(flag)) = 01;
NNC(A(flag), ROW) = 01;
flag=flag+1;

end
ROW=random(1,NNEU);

end
\\post-synaptic neuron connection;
ROW=random(1,NNEU);
while (connection not complete)
begin

CHECK current ROW of NNC matrix for filled positions corresponding to post-
synaptic connections;

STORE filled positions in the current ROW of NNC matrix (including pre-synaptic
and post-synaptic connection entries) in FILLED array, FILLED(i) such that 0≤i≤F
where F = number of filled positions in current ROW of NNC matrix;

A array, A(j) = (NC2 - F) random numbers such that ROW<A(j)≤106 for
1≤j≤(NC2 - F) and for each A(j) 1≤j≤(NC2 - F), A(j)6=FILLED(i) for 1≤i≤F;

flag=1;
while (flag≤total number of entries in A array)
begin

TEMP=A(flag);
if (row number TEMP of NNC matrix has less than NC2 post-synaptic entries)

then
NNC(ROW, A(flag)) = 11;
NNC(A(flag), ROW) = 11;
flag=flag+1;

end
ROW=random(1,NNEU);

end
\\NEI Matrix generation
begin
Declare a NNEU column matrix, NEI;
Store Zeros in the matrix;
Fill ones in the matrix randomly so that PEREI (refer table 5) is satisfied;
end
\\NC Matrix generation
begin
Declare a NNEU column matrix, NC;
Store Zeros in the matrix;
Calculate total area or volume that would occupied by NNEU neurons using DENS;
Obtain the Boundary coordinates;
Generate random coordinates such that they fall within boundary coordinates;
end

Table 6:NNC, NEI, NC Matrix Generation algorithms

\\NpSA Matrix Generation algorithm
Declare a NC1×PrS matrix, NpSA(i,j);
Fill NpSA matrix with zeros;
ROW=random(1,NC1);
while (connection not complete)
begin

CHECK current ROW of NpSA matrix for filled positions;
STORE filled positions in the all rows of NpSA matrix in FILLED array,

FILLED(i) for 1≤i≤TOTAL, where TOTAL = total number of filled positions;
STORE F = number of filled positions in current ROW of NpSA matrix;
A array, A(j) = (P - F) random numbers such that for each A(j) 1≤j≤(P - F), A(j)

6= FILLED(i) for 1≤i≤TOTAL;
flag=1;
while (flag≤total number of entries in A array)
begin

NpSA(ROW, A(flag)) = 1;
flag=flag+1;

end
ROW=random(1,NC1);

Replace 1’s in the matrix by 01 or 11 to denote inhibitory or excitatory synapse con-
nectivity randomly satisfying PERSEI (refer table 5);
end

Table 7:NpSA Matrix Generation algorithm
\\DS Matrix Generation algorithm
Generate a random number I, the number of terminals to the dendritic tree;
Generate Partition matrix [nrrsm2004] for a I input dendritic tree;
while (generated partition matrix is not acceptable)
begin

Generate another Partition matrix [nrrsm2004] for a I input dendritic tree;
end
Convert the partition matrix into the corresponding incidence matrix [nar74], IM ;
T ROWS = total number of rows in the incidence matrix IM;
ROW = 1;
while (ROW≤T ROWS)
begin
In row number ROW of the incidence matrix, IM replace all non-zero entries by
random(minl, maxl);
\\minl = average minimum length of a dendritic branch;
\\maxl = average maximum length of a dendritic branch;
end
\\Partition Matrix Generation for a I input terminal dendritic tree
COL = 1;
while (I 6= 1)
begin

Generate a unrestricted partition sequence for I;
N par = Number of unrestricted partition into which I has been broken into;
\\all ones partition must be excluded
STORE this sequence column number COL of the partition matrix;
I = N par;
COL = COL +1;

end

Table 8:DS Matrix Generation algorithm
\\DpSA Matrix Generation algorithm
Declare a B×PrS matrix, DpSA(i,j);
Fill DpSA matrix with zeros;
ROW=random(1,B);
while (connection not complete)
begin

CHECK current ROW of DpSA matrix for filled positions;
STORE filled positions in the all rows of NpSA matrix in FILLED array,

FILLED(i) for 1≤i≤TOTAL, where TOTAL = total number of filled positions;
STORE F = number of filled positions in current ROW of DpSA matrix;
A array, A(j) = (PS1 - F) random numbers such that for each A(j) 1≤j≤(PS1 - F),

A(j) 6= FILLED(i) for 1≤i≤TOTAL;
flag=1;
while (flag≤total number of entries in A array)
begin

DpSA(ROW, A(flag)) = random(0,length of corresponding branch from DS Ma-
trix);

flag=flag+1;
end
ROW=random(1,B);

end

Table 9:DpSA Matrix Generation algorithm
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Figure 2: Figure on the left:2 Neuron Interconnect Structure. Key : s1 = pre-

synapse for neuron 1, s2 = pre-synapse for neuron 2, b1 = branch 1 of dendrite 1, b2

= branch 2 of dendrite 1 etc, n 1 = node 1 of dendrite 1, n 2 = node 2 of dendrite 1,

length b1=0.23, length of b2=0.11, length of b3=0.22, length of b4=0.07, length of

b5=0.09,Figure on the right:DS and DpSA Matrix of Dendrite 1 of Neuron2,N2

easier to integrate all the above matrices into a single ma-
trix in which the elements become a vector. The given vec-
tor element of this integrated matrix corresponds to the ele-
ments of all other matrices. However this integration of all
matrices to a single matrix should preserve the connectivity
represented by the original individual sets of matrices.

3.1.2 Algorithms for Initial MMINi-DASS Interconnec-
tivity Matrices Generation

The algorithms for generation of the MMINi-DASS Inter-
connectivity Matrices has been presented in tables 6, 7, 8, 9.
The algorithm for the generation of other matrices are very
similar to the matrices whose algorithms are presented.

4 Phase II : The Proposed Partitioned Parallel
Processing Approach for Predicting the Bi-
ologically Realistic MMINi-DASS Intercon-
nectivity

To tackle the computational complexity and to achieve very
high performance, parallel processing [dj99] approach is es-
sential. High degree of parallelism is achieved by proper
partitioning of the MMINI-DASS Interconnectivity matri-
ces. With this individual partitions can be executed simul-
taneously on a parallel machine [vaans2003] [spk96].

4.1 Application of Graph theory for Partitioning

The paper evolves a methodology for MMINi-DASS In-
terconnectivity Prediction using a graph theoretic approach
(refer fig.3). The MMINi-DASS interconnectivity is mod-
eled as a graph. The graph [nar74] is divided into a number

of subgraphs. Each of these subgraphs represents a smaller
neural interconnect structure in the bigger MMINi-DASS
interconnect structure to be predicted.

Figure 3: (a) shows the snapshot of the Graph theoretic approach, (b) shows the

flowchart for the simulation model for the MMINi-DASS interconnectivity prediction

The MMINi-DASS Interconnectivity partitioning algo-
rithm is given in the next section.

4.1.1 MMINi-DASS Interconnectivity Partitioning Al-
gorithm

The design of the MMINi-DASS Interconnectivity Parti-
tioning Algorithm first requires the enumeration of a set of
well thought-out rules to partition the MMINi-DASS Inter-
connectivity. These rules are :

• the MMINi-DASS interconnectivity must be parti-
tioned (or severed) only along its dendritic trees

• the pre-synaptic contact or the post-synaptic contact
of the dendrite or telodendria along which partition-
ing is to be done must be grouped to be on the same
of the partition

• the number of neuron in each partition must be such
that their temporal electrical activity in the form of
EEG or fMRI is obtainable or measurable. Also, the
number of neurons in each partition must be similar

The algorithm for partitioning the MMINi-DASS inter-
connectivity is given in table 10.
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4.2 The Prediction Algorithm

Using the Initial State discussed in section 3, the tempera-
ture parameters discussed in section 2.1.1 and the tempera-
ture scheduling heuristics discussed in section 2.2, the pre-
diction algorithm given in table 11 is applied to each parti-
tion. The prediction algorithm is applied iteratively as per
the graph theoretic approach. Currently the temporal elec-
trical activity of the EEG is being made use of in the predic-
tion methodology.

The simulation model used to predict MMINi-DASS In-
terconnectivity of a brain region applying the graph theo-
retic approach is given in figure 3 in the form of a flowchart.

4.2.1 Dendrites, Telodendria, Synapse and Soma-Axon
models

The models used for dendrites, soma-axon, telodendria
and synapse has a great deal of influence on the predicted
MINi-DASS Interconnectivity. The Hodgkin-Huxley model
[tuckwell88] for soma-axon, cable theory models for den-
drites and telodendria [tuckwell88] [nrrsm2004], Spike re-
sponse model [jr99] model for the synapse are being made
use for the prediction methodology.

These models are integrated with the state S and S’ (re-
fer table 3 elaboration) during each iteration of the predic-
tion algorithm, to obtain the complete voltage depolariza-
tion across the neural interconnectivity represented by the
states S and S’ during that iteration. From these depolar-
ization voltage, EEG is calculated and correlated with the
experimental EEG of the neural interconnectivity.

5 MMINi-DASS Interconnectivity Prediction
Challenges the Supercomputers

Application of parallel processing for solving highly com-
plex problems has acquired great importance in recent
times. This is due to two major factors, one is the Deep
Sub-Micron (DSM) [itrs2002] technological advancement
leading to multi-billion device fabrication and the other is
emerging need for challenging applications like weather
modeling, ocean modeling, n-body simulation, molecular
dynamics, seismological predictions and many more appli-
cations.

The following excerpt from [lkqs93] gives the extent of
computational complexity of galaxy structure prediction.

If we want to determine the structure of a cluster of galaxies, how large must

the survey volume be?..... The Sloan Digital Sky Survey will produce fluxes and sky

positions for 5× 107 galaxies with redshifts for the brightest106. Our ambitious

observational colleagues have cut steel and ground glass to survey a “fair volume” that

we must simulate, bue we need N=1012 to do this. Direct summation of the gravita-

tional forces using fixed timesteps would take1010 Teraflop-years.”[lkqs93]
IBM is involved in designing supercomputer named Blue

\\MMINi-DASS partitioning algorithm for 2 partitions;
Identify the Boundary Neurons in a such a way that the number of neurons is large
enough and also number of neurons in all the partitions is the same;
Number of boundary neurons = nboun;
Identify all the neurons in each partition;
Form the Connectivity representation of each partition by retaining all the matrices
associated with interior neurons;
\\The matrices associated with the boundary neurons are formed as follows
i=1;
partition = 1;
while (partition¡=2)
begin

while (i¡=nboun)
begin

Assemble all the DpSA matrices and DS matrices of the neuron i in partition j;
Identify the node in the each of the dendritic tree of neuron i in partition j such

that there is no synapses after that node;
Update the DpSA and DS matrices as it would be when the partition is made at

that node in each of the dendritic trees;
Update the connectivity matrices of partition j;

end
end

Table 10:MMINi-DASS Interconnectivity Partitioning Algorithm
begin
N = Number of neurons involved in the population of neurons whose interconnectivity
is to be predicted;
V = Experimental Temporal electrical activity of the N neuron population;
In Struct = Generated Biologically Realistic Random Neural Interconnectivity of N
neurons satisfying the statistical properties of the population of neurons to be pre-
dicted as discussed in section.3.1.2;
\\refer table.3 for correspondence of simulated annealing terminologies with that of
the neural interconnectivity;
S := Initial solutionS0 := In Struct = Biologically Realistic Random neural intercon-
nectivity of N neurons generated using algorithms discussed in section.3.1.2;
T0-set := Initial temperature set := Initial value of the temperature parameters gen-
erated for the Biologically Realistic Random N neuron interconnectivity i.e. Initial
value of all temperature parameters in InStruct;

while(temporal electrical activity of state S is acceptably close to that of the
experimentally determined temporal electrical activity (V) of the neural population
whose interconnectivity is to be predicted) do

begin
while(the correlation of the temporal electrical activity of the intermediate

state S’ with V is worse than the correlation of the temporal electrical activity of the
state S with V, i.e.∆ < 0) do

begin
S’ := Some random neighbouring solution of S;
∆ := corr(S’,V) - corr(S,V);

Prob := min(1, e
− ∆

kbT1 , e
− ∆

kbT2 , e
− ∆

kbT3 ,....,

e
− ∆

kb{T1,T2} ,..., e
− ∆

kb{T1,T2,T3} ,..., e
− ∆

kb{T1,T2,T3,T4} ,...,

e
− ∆

kb{T1,T2,T3,T4,...,T10} ,..., e
− ∆

kb{T1,T2,T3,T4,...,T10,...,T15} ,

e
− ∆

kb{T1,T2,T3,T4,...,T10,...,T15,...,T20} ,

e
− ∆

kb{T1,T2,T3,T4,...,T10,...,T15,...,T20,...,T24} );
\\refer table.1 and table.2 for details regarding the temperature parameters;

if random(0,1)≤ Prob then S := S’;
end;

if (Prob =e
− ∆

kbT1 ) then UpdateT1; if (Prob =e
− ∆

kbT2 ) then UpdateT2;
..

if (Prob =e
− ∆

kb{T1,T2} ) then Update{T1, T2};
..

if (Prob =e
− ∆

kb{T1,T2,T3} ) then Update{T1, T2, T3};
..

if (Prob = e
− ∆

kb{T1,T2,T3,T4,...,T10} ) then Update
{T1, T2, T3, T4, ..., T10};

..

if (Prob =e
− ∆

kb{T1,T2,T3,T4,...,T10,...T15,...,T20,...,T24} ) then Update
{T1, T2, T3, T4, ..., T10, ..., T15, ..., T20, ..., T24};

end;
Output best neural interconnectivity of N neurons;
end;
\\Currently temporal electrical activity being made use for the prediction is the
\\EEG;

Table 11:Prediction algorithm based on the SA algorithm
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Gene to be applied for the protein folding problem. This
proposed supercomputer would contain a million nodes and
would have a computational capability of a1015 computa-
tions per second (Petaflop) [blueg]. The following excerpt
from “Blue Gene : A vision for protein science petaflop
supercomputer” [protfold] is an indication of the computa-
tions required to identify a protein structure involving min-
imum number of atoms.

“The computational effort required to study protein folding is enormous. Using
crude workload estimates for a petaflop/second capacity machine leads to an estimate
of three years to simulate 100 microseconds.

Physical Time for Simulation :10−4 seconds
Typical time step size :10−15 seconds
Number of MD time steps :1011

Atoms in a typical protein and water simulation : 32000
Approximate number of interactions in force calculations :109

Machine instructions per force calculation : 1000

Total number of machine instructions :1023”. [protfold]
However, initiatives on application of Supercomputers

for modeling the complex brain regions has not been much.
Some initiatives has been taken by IBM to develop fastest
super computers for tackling the complexity of brain mod-
eling. In the subsequent sections we present the memory
and the computational complexity of the proposed MMINi-
DASS Interconnectivity prediction methodology.

5.1 Memory Complexity

The expression for memory complexity for representing a
N neuron interconnectivity is given below.

Memory Complexity of representing N neuron Intercon-
nectivity = 2×N2 + ΣN

i=1(PrNi × Pri) + ΣN
i=1(Bdi ×

Pri × 8) + ΣN
i=1(Bdi × Dnodesi × 8) + ΣN

i=1(PoNi ×
Poi)+ΣN

i=1(Bti×Poi×8)+ΣN
i=1(Bti×Tnodesi×8)+

N + ΣN
i=1Pri + ΣN

i=1(8 + (rci × 8))
where N = number of neurons,PrNi = number of pre-

synaptic neuron of neuron i,Pri = number of pre-synapses
of neuron i,Bdi = number of branches of dendritic trees
of neuron i,Dnodesi = number of nodes in the dendritic
tree of neuron i,PoNi = number of post-synaptic neuron of
neuron i,Po = number of post-synapses of neuron i,Bti =
number of branches in the telodendria of neuron i,Tnodesi

= number of nodes in the telodendria of neuron i,rci = num-
ber of recurrent collateral in the axon of neuron i.

5.2 Computational Complexity

The computational Complexity of predicting a N neuron In-
terconnectivity is given below.

Computational Complexity of predicting a N neuron In-
terconnectivity =αβγδθ

where

α = ΣN
i=1(Σ

si
s=1

Bdi!
(Bdi−s)!s! ),

β = ΣN
i=1

tot1i!
Pri!×(tot1i−Pri)!

(BdiΣ
j=m
j=0 (Pri−j)+(Bdi−

1) Σ2m+1
j=m+1(Pri−j)+...+1(m+m−1+m−2+...+1)))),

γ = ΣN
i=1(Σ

si
s=1

Bti!
(Bti−s)!s! ),

δ = ΣN
i=1

tot2i!
Poi!×(tot2i−Poi)!

(BtiΣ
j=l
j=0(Poi − j)+(Bti −

1) Σ2l+1
j=l+1(Poi − j) + ... + 1(l + l− 1 + l− 2 + ... + 1)))

θ = O(Nn)where n varies from n varies from 1 to 3
depending on the accuracy required.

The notations used in the computational complexity ex-
pression is the same as that used for memory complexity.
However,tot1i = PrNi ×Poi andtot2i = PoNi ×Pri, si =
subset size for scheduling.

The computational complexity for a Million Neuron In-
terconnectivity prediction is of the order ofO(Nk) where
N is in Millions while k is a few multiples of 10. Thus
the computations required for multi-million neuron inter-
connectivity prediction is about10200. By applying certain
heuristics (refer section 2.2.1) the order of computations is
reduced toO(N

k
x ) where 3≤x≤3.5 depending on the num-

ber of heuristics employed. Thus the computations required
for multi-million neuron interconnectivity prediction gets
reduced to about1060.

The computational complexity throws a big challenge
to the supercomputer and defies the computational power
of the existing ones. This leads to 2 major research de-
velopments : one, evolution of an architecture forsuper-
supercomputers[vaans2003] [ak2003] [as2003] [nk2003]
and the other, design of libraries for mapping the MMINi-
DASS Interconnectivity prediction methodology on the
super-supercomputer. These libraries are for the predic-
tion algorithm (refer section 4.2), Partial and differential
equations, MMINi-DASS interconnectivity partitioning al-
gorithm (refer section 4.1.1), sorting and searching algo-
rithms, massive random number generation algorithms, ini-
tial MMINi-DASS interconnectivity generation algorithms
(refer section 3).

6 Discussion

Some of the parameters like neuron cell body shape, im-
pact of myelin sheath, dendritic tapering, dendritic and telo-
dendria orientations need to be included to predict both the
MMINi-DASS Interconnectivity realistically and its struc-
ture. However, inclusion of these parameters would in-
crease the computational demand to several petaflop years.

The authors feel that the MMINi-DASS Interconnectiv-
ity prediction being fundamental in modeling brain func-
tionality, new avenues of DNA based computing need to be
evolved to tackle the awesome computations demanded.It
is our strong feeling that the problem and the solution pre-
sented in this paper is bound to open up massive research
fronts on developing DNA computing for brain modeling in-
volving neuroscientists, computer scientists, DNAscientists,
computer architects and algorithm designers. Further, the
prediction methodology presented should help fault simu-
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late the brain regions involving millions of neurons thereby
leading to discovery of new medicines for brain diseases.

Instead of correlating the EEG obtained from the
MMINi-DASS Interconnectivity and the experimental
EEG, fMRI could be adopted. Our initial investigation
shows there is a lot of scope for the electrical activities
of the predicted MMINi-DASS interconnectivity to be con-
verted to the corresponding Blood Oxygen Level Dependent
(BOLD) response. This could be correlated with the exper-
imental BOLD response of the MMINi-DASS interconnec-
tivity of the concerned brain center. This would enable us
to predict MMINi-DASS interconnectivity in the deep brain
regions.

7 Conclusion

In this paper, an attempt is made to present an approach
for predicting a Multi-Million Neuron Interconnection in-
volving soma, axon, dendrites and synapse. Moreover the
approach is a partitioned one enabling it to be executed on
parallel machines. A simulation model has been developed
involving randomized simulated annealing algorithm for
MMINi-DASS Interconnectivity prediction. Besides crack-
ing down the intricacies and complexities of the MMINi-
DASS Interconnectivity, the identification of this intercon-
nectivity in a particular brain center will be of great impor-
tance as a research opening in the field of neuroscience.

The paper clearly brings out the need for this MMINi-
DASS Interconnectivity prediction in understanding the in-
formation processing, the spatio-temporal activities and
learning in various brain regions. This simulation model
is expected to be highly helpful in developing fault simula-
tion techniques for modeling brain diseases. The computing
power needed for the simulation model is presented and the
necessity for, evolving super-supercomputer and investiga-
tion on DNA computing paradigm.

“DNA Computing Takes Up the Challenge of Brain
Modeling”
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