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ABSTRACT
Modeling visual perception of motion by connectionist net-

works offers various areas of research for the development of
real-time models of dynamic perception-action. In this paper we
present the bases of a bio-inspired connectionist approach that is
part of our development of neural networks applied to autono-
mous robotics. Our model of visual perception of motion is based
on a causal adaptation of spatiotemporal Gabor filters. We use
our causal spatiotemporal filters within a modular and strongly
localized architecture that performs a shunting inhibition mecha-
nism. This model has been evaluated on artificial as well as natu-
ral image sequences.

INTRODUCTION
Processing and interpretation of visual perception of motion

has an increasing importance for autonomous robotics. In this do-
main, connectionist models have brought their power of genera-
lization and their robustness to noisy or incomplete information.
Their intrinsic parallelism combined with local processings offers
various areas of research for the development of real-time models
of perception-action applied to dynamic visual perception of mo-
tion.

For a robust, adaptive and embeddable computation paradigm
in digital reconfigurable circuits (e.g. FPGA, Field Programmable
Gate Arrays) our preliminary developments of neural models fo-
cus on highly distributed and local processings, as such imple-
mentation devices require. Our claim is that bio-inspiration is a
good guideline to satisfy such constraints.

We first propose a rapid survey of the state of the art in neuro-
physiology and of the algorithms that have been proposed for the
estimation of the optical flow. We then present the bases of a bio-
inspired connectionist approach. It uses a particular adaptation of
the spatiotemporal Gabor filters. It also takes advantage of a mo-
dular and strongly localized approach for the visual perception of
motion that handles a shunting inhibition mechanism. Finally we
describe the evaluation of this model on several image sequences.

STATE OF THE ART
Currently, the most bio-inspired computer models for motion

detection use local detections by means of the integration of va-
rious directions for various scales and spaces to end in a global
answer [40, 1]. Motion detection, spatiotemporal local inhibition,
and integration are the main ideas of neurosciences research that
will inspire our connectionist conception.

Biological point of view
We now know that motion detection and analysis are achie-

ved by means of a cascade of neural operations [33], namely: the
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FIG. 1 – Optical flow pathways

detection of local motion signals within restricted regions of the
visual field and their integration into more global descriptions of
the direction and speed of object motion.

The course of signals from the retina
From the retina up to the cerebral cortex of a human being,

seventeen different areas take part in vision processing [36]. The
main areas may be organized in four stages: acquisition and com-
pression of light signals in the retina; their relaying in the lateral
geniculate nucleus (LGN); their cortical analysis in the primary
visual area (V1), and their secondary treatment in areas 20 and
21 of the temporal cerebral cortex 1 and in area 7 of the parietal
cerebral cortex 2 (see figure 1).

Two pathways may be discovered in this course of visual si-
gnals [32]: the ventral or occipito-temporal pathway 3 and the dor-
sal or occipito-parietal pathway 4. The first one mostly consists of
parvocellular cells and it is responsible for the perception of the
objects and of their shape, and the second one mostly consists
of magnocellular cells and it is responsible for motion and space
perception. In the present study, we are particularly interested in
the dorsal pathway and in areas specialized in motion analysis.

Direction and orientation detection in V1
The human brain areas that are specialized in motion percep-

tion are [33]: the primary visual area (V1), the middle temporal
area (MT) 5, the middle superior temporal area (MST), the kine-

1. These Brodmann areas approximately correspond to infero-temporal area,
IT.

2. This Brodmann area corresponds to the posterior parietal area, PP.
3. It includes visual areas V1, V2, and V4 and the IT.
4. It includes visual areas V1, V2, and V3, the middle temporal area -MT/V5-

and the PP.
5. MT+ for human beings
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tic occipital area (KO), and finally the superior temporal sulcus
(STS).

The first cortical analysis is performed in V1 by ensuring
contrast sensitivity thanks to extended receptive fields. These
neurons mainly send their extensions in the vertical direction and
they are tuned to a preferred direction of motion [19] so that they
perform a local analysis of motion energy that is called a filter.
These “filters” detect the presence of basic features of moving
objects within their receptive fields.

These orientation-selective cells may be modeled as spatio-
temporal filters [1, 39] and their receptive fields may be modeled
as a product of inhibitory and excitatory interactions in space and
time.

On the other hand, contrast detection is sufficient for the
identification of motion direction, so that the visual mechanisms
that extract movement are built from direction-selective primi-
tives [6].

All these cells are selective in terms of preferred direction and
spatial frequency. They are not very sensitive to the composition
of the wavelength of the motion stimulus, and they are limited
to a local motion detection. These cells “see” only a part of the
scene. Their response is ambiguous because in every direction
there is a family of selective cells that react to the same spatio-
temporal changes of brightness as a local cell, and that generate
the same response. This problem is known in computer vision as
the “aperture problem” 6.

In short, the local motion of a retinal image is extracted by
neurons in V1 that have a receptive field similar to a small spa-
tially bounded window where they can detect the presence of mo-
vement in a specific direction. This strongly localized processing
based on lateral interactions is our first source of inspiration to-
wards a bio-inspired model for motion detection and estimation.

But the visual perception of motion is not completely de-
termined by the local responses in the neural receptive fields.
These responses are also handled to obtain speed informations
after having collected and combined them from V1 and after ha-
ving grouped them together in MT. The ambiguity of individual
neural responses is resolved by this combination of signals. This
backpropagation of information from MT back to V1 is part of
our further works (this paper only deals with forward and late-
ral interactions within V1). The cortical and temporal analysis of
motion (from V1 to MT/MST areas) in the brain will be the main
source of our bio-inspired connectionist approach.

Lateral connections and shunting inhibition
In the primary visual cortex, neurons with similar receptive

field properties are gathered into functional modules. Within each
module, inhibitory and pyramidal cells are densely interconnec-
ted in a local neural circuit [38]. At cortical sites where horizontal
connections converge towards the same neural populations, neu-
ral responses turn away from linear integration due to of the emer-
gence of strong inhibitory post-synaptic potentials (or emergent
inhibition). These horizontal connections get such a strong inhi-
bition from local inhibitory networks.

A shunting inhibition occurs when the potential of the inhibi-

6. This problem was first identified in [17]: there is a local ambiguity that is
due to a linear constraint between the two components of the optical flow, and that
results in confusing speed direction with the normal of local contrasts. This local
ambiguity was later termed the “aperture problem” [24].

FIG. 2 – Relation between visual cortex areas (see subsection ).

tory synapse is close to the resting potential of the cell. Such an
inhibition locally cancels excitation when it lies on the path bet-
ween the location of the excitatory synapse and the cell body [21].

Although a shunting-inhibition mechanism is theoretically
able to produce the localized interactions that are necessary to
explain many direction-selective properties, it has not been pos-
sible to perform intracellular tests within dendrites to confirm this
mechanism [13].

A lateral interaction mechanism of all locally strong inhibi-
tions between different directions of motion in V1 would yield a
global direction-selective emergent response. Our approach has
been developped so as to take advantage of such a mechanism
(see subsection ).

Figure 2 summarizes the different interactions between corti-
cal areas that have been described in this section.

Mathematical point of view
Motion detection and estimation are low level cognitive tasks,

whereas its segmentation and interpretation are high level cogni-
tive tasks. Our approach keeps dealing with low level tasks, that
make use of optical flow estimation and shunting inhibition me-
chanisms.

Optical flow
The “optical flow is the distribution of apparent velocities of

movement of brightness patterns in an image” [18]. It tries then
to match pixels having the same intensity.

According to the brightness conservation principle [18]:

∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
= 0 (1)

where I(x,t) = I(x+ δx,y + δ,t+ δt) is the brightness at point
(x,y) of the image. Assuming that it remains constant in time t,
the fundamental principles of the various approaches of optical
flow estimation [18, 4, 10] are derived: matching (correlation-
based), gradient (intensity-based differential), stochastic (relaxa-
tion), and spatiotemporal (frequency-based filtering).

The first approach, correlation-based, is based on the local
conservation of intensity distribution [2, 28]. Motion vectors are
built from local image matching.

The second approach, intensity-based differential, is based on
the intensity conservation of an image within a small interval of
time [18, 26, 22]. Motion vectors are computed from local inten-
sity temporal derivatives.
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The third approach, stochastic, is based on a constraint that
concerns motion discontinuities [16, 5]. Intermittent intensities
are modelled with the help of stochastic processes or Kalman fil-
ters.

But the aperture problem is critical with these three ap-
proaches. We are more interested in frequency-based filtering ap-
proaches. Among their advantages, such approaches appear as
more robust to the aperture problem. In these approaches, the spa-
tiotemporal frequencies are considered along with the speed of
motion stimulus, and the optical flow becomes the identification
of an energy surface in the space of spatiotemporal frequencies.
Movement-sensitive mechanisms that are based on the spatially
and temporally oriented energy in the space of Fourier have been
found to be able to estimate the motion in places where the other
approaches fail. Therefore, motion detection in images means
here the extraction of spatiotemporal orientations [1, 15, 11].

In that aim, two sub-approaches are known: phase-based filte-
ring and energy-based filtering. In the first case, the constituents
of speed may be defined in terms of immediate movement at
phase-level of the outputs of Gabor filters tuned to speed [9, 42].
In the second case, these spatiotemporal oriented filters may be
built on separate filters, i.e. the spatial and temporal filterings
may be sequentially applied to the input image [1, 41]. Obtaining
speed would be based on a codification scheme of populations
where speed is expressed as the ratio of the outputs of energy fil-
ters tuned to various speeds. Assuming a linearity, the output of
each filter changes with various contrasts but their ratio remains
constant.

Among the advantages of energy methods one could mention
an intrinsic smoothing which reduces the effects of the “aperture
problem”, a better robustness to noise, and good-quality results
for natural image sequences [35]. Drawbacks are a high compu-
tational cost and a lack of precision near the borders of the move-
ment.

The principles of spatiotemporal approaches consist in loca-
lizing non-null energy surfaces or speed surfaces that correspond
to an apparent translation movement on a spatial support bounded
by means of spatiotemporal oriented filters.

Shunting inhibition equation
Recent researches on inhibition mechanisms propose two

kinds of models: subtractive inhibition [34] and shunting inhibi-
tion [37, 13]. The first one is the most used. The second one uses
inhibitory synapses that are applied at given points on dendrites
and that divide (rather than subtract from) the potential change
which passively propagates from more distant synapses [3].

Torre and Poggio suggested that inhibition acts separately wi-
thin each branch of the cell’s dendritic tree. This inhibition works
through a synapse that causes a local change of the membrane
conductance (shunting inhibition) and a slight hyperpolarization.

Considering a patch of membrane that receives excitation
(ge(t)) and shunting inhibition (gi(t)), voltage V obeys

C
dV (t)

dt
+(ge(t)+gi(t)+gl(t))V (t) = ge(t)Ee+gl(t)El (2)

whereC is the membrane capacitance, gl(t) is the membrane leak
conductance and Ee (resp. El) is the reversal potential of ge(t)
(resp. gl(t)).

FIG. 3 – Main steps of our connectionist approach (see subsection ).

If gi(t) � ge(t) then V (t) tends towards the following equi-
librium value

V (t)→ ge(t)Ee + gl(t)El
gi(t)

→ 0 (3)

With a low contrast, high order linearities may be neglec-
ted by an estimate Fourier series. Therefore, this inhibition is
division-like rather than subtraction-like.

A BIO-INSPIRED CONNECTIONIST MODEL
With the aim of realizing a bio-inspired connectionist model

based on highly local and distributed computations, and embed-
ded onto a mobile robot that moves about in a dynamic environ-
ment with moving targets, we first propose a neural architecture
that models the following aspects: lateral interactions in V1 with
a shunting inhibition mechanism, and spatiotemporal filtering ba-
sed on an adaptation of Gabor filters. This filtering is performed in
order to model the magnocellular cells 7 that may be seen as mo-
tion sensors for the extraction of generalized spatiotemporal gra-
dients of the image intensity and of its temporal derivatives [31].

Causal spatiotemporal filters
Receptive fields modeled by bidimensional spatial Gabor fil-

ters were proposed by Marcelja [23] and they were discovered in
biological vision systems [31].

The spatial part of a standard Gabor function approximates
well the spatial profile of receptive fields in the cerebral cor-
tex [20]. But its temporal part is non-causal (negative weights
are assigned to immediate past images). Several more causal ap-
proaches have been proposed. Adelson and Bergen used an asym-
metric spatial distribution [1] and Gzrywacz and Yuille made it
with Gabor functions in spatiotemporal co-dependence [11, 12].
They concluded that directional selectiveness is equal to orienta-
tion in space-time.

Our approach handles causality in a simple and local way
with a strong hypothesis that ensures the ability to detect local
motions.

Let I(x,y,t) be an image sequence representing the shape of
intensity in the time-varying image, assuming that every point
has an invariant brightness. Let us assume that I(x,y,t) = I(x−
ut,y − vt) where (u,v) is the motion vector of a small region of
the image, and where I(x,y) is the frame of image sampling at
time t = 0. Thanks to the hypothesis of an high enough sampling
frequency to ensure local motion detection 8, we may assume an

7. The spatiotemporal Gabor filters also model the simple cells in the visual
cerebral cortex of primates [27, 14]

8. This hypothesis is also made in other works with local detection [30].

3

BICS 2004 Aug 29- Sept 1 2004

BIS3-1 3 of 7



I(x,y,t) I(x,y,t−1) I(x,y,t−2)

X

YY

XX

Y

FIG. 4 – Temporal decomposition of our causal spatio-temporal filter
for θ = 180˚, v = 1 and τ = 3 (see subsection ).

immediate constant local speed. Therefore, for a given supposed
motion direction and speed, we expect to identify a local motion
by finding a spatial contrast at expected places and times, as figure
4 shows in the case of an horizontal movement with unit speed.

By applying then an oriented Gabor filter, Gθ(x,y) with 0 ≤
θ < 2π, in I(x,y) we obtain (intensity conservation principle):

0 =

∫ ∫
dI(x,y,t)

dt

∣∣∣∣
t=0

Gθ(x̂− û,ŷ − v̂)dxdy

=
d
∫ ∫

I(x− ut,y − vt)Gθ(x̂− û,ŷ − v̂)dxdy

dt

∣∣∣∣
t=0

(4)

where the rotational equations give

x̂ = (x− ξ)cosθ − (y − η)sinθ

ŷ = (x− ξ)sinθ + (y − η)cosθ
(5)

with (ξ,η) ∈ Υ a small neighbourhood around (x,y), and

û = t−t′
τ−1vcosθ, v̂ = t−t′

τ−1vsinθ (6)

for τ consecutive images, t′ ≤ t, and a supposed velocity v that
ranges from−ω to ω where ω is the number of supposed absolute
speeds.

(x̂,ŷ) is the place where the oriented Gabor signal is going to
be computed in a standard way:

Gθ(x̂,ŷ) =
1

2πσxσy
exp

(
− x̂2

2σ2
x

− γ2ŷ2

2σ2
y

)
exp(2πi

x̂

λ
+φ) (7)

is the response function to the impulse of the Gabor filter that
models the function of the ganglion magnocellular cells, where γ
is the eccentricity of the receptive field and σx,σy its dimensions,
λ is the wavelength and φ is the phase.

By discretizing equation 4, we finally compute the following
spatio-temporal filter 9:

fτ,θ,v(x,y,t) =
1

τ

τ−1∑

t′=0

∑

(x̂,ŷ)

Gθ(x̂−
t− t′
τ − 1

vcosθ,ŷ− t− t
′

τ − 1
vsinθ)

(8)
The measure that is obtained by a single filter is not able to

determine the 2D motion vector. It is necessary to use a set of
filters that differ only in orientation. Then they are gathered in a

9. This basic motion feature detection is combined with the detection of
strong motionless contrasts, so as to suppress any confusion between motion and
contrast.

FIG. 5 – The differents levels for excitatory and inhibitory connections
that depend on influence range κ (see subsection ).

vector called motion sensor vector where every orientation is a
motion sensor.

Neural architecture
We propose a fully modular connectionist model that is stron-

gly local and computationally distributed, and that is inspired by
neurophysiological results about magnocellular pathways. It uses
a set of excitatory and inhibitory lateral interactions inspired by
the cortical columns that stem from V1 (see sections and ) and
it uses a strongly local scheme of connectivity with an influence
range that depends on the local response obtained by equation 4
(see the main steps in figure 3). This variable influence range is
motivated by lateral interaction models [8, 7], where the concept
of adaptive neighbourhood to select a working scale at each point
of the image and for each computation level is fundamental.

After the acquisition of images in RGB format, the following
steps are performed on greyscale images:

1. Causal spatiotemporal filtering in two phases:
(a) Spatial filtering for all regions Υ in the image.
(b) Temporal processing on the image sequence for ω dif-

ferent supposed absolute velocities.
2. Shunting inhibition mechanism.

(a) Computation of the influence range κ.
(b) Excitation-inhibition process.

3. Standard winner-take-all properties of competitive proces-
sing.

Spatiotemporal filtering
We apply equation 8. Parameters γ,σ,λ and φ are fixed accor-

ding to the suggestions of [29].

Shunting inhibition mechanism
We adapt equation 2 according to ideas of Moga [25] and

Fernandez et al. [8].
We propose for a local time, T � t, and its filtering response

at time t, F (x,y,T = 0) = fτ,θ,v(x,y,t), then

δF (x,y,T )
δT = −A · F (x,y,T )

+(B − F (x,y,T )) · ge(x,y,T )
+(C − F (x,y,T )) · gi(x,y,T )

(9)

4
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where

ge(x,y,T )
= fτ,θ,v(x,y,t) +

∑
(x′,y′)∈Λ1

(
w(x′,y′) · F (x′,y′,T − 1)

)

gi(x,y,T ) =
∑

(x′,y′)∈Λ2

(
v(x′,y′) · F (x′,y′,T − 1)

)

(10)
with A,B, and C being constants. ge(x,y,T ) is the magnitude of
excitation with an influence range κx,y that is computed as the
integer part of

Γ|F (x,y,T )

saturation
(11)

where Γ is the supposed maximum influence range, and
saturation = 2maxx,y(|fτ,θ,v(x,y,t)|) is the maximum value
of all Gabor filters. This influence range determines the size of
the influence blob in sets Λ1 and Λ2, and as a consequence it de-
termines their cardinality. Weights w(x′,y′), with (x′,y′) ∈ Λ1,
are the excitation connection weights. gi(x,y,T ) is the magnitude
of inhibition with an influence range κx,y , and weights v(x′,y′)

are the inhibition connection weights 10 (see figure 5).

Standard WTA properties
For ζ different supposed velocities vi, for ψ possible direc-

tions, and in order to have only one local response, we apply a
standard WTA to all supposed velocities and to all directions.
Then

fτ,Θ,V (x,y,t) = maxv∈−ω,...,ω

(∑

θ

fτ,θ,v(x,y,t) · d̂θ
)

(12)

where V is the winner velocity in direction Θ of pixel (x,y) at
time t, d̂θ is the unit vector in direction θ.

RESULTS
Our model has been tested with synthetic and natural image

sequences. First results show that our approach induces some im-
provements in both motion feature detection and signal enhance-
ment, thanks to our causal spatiotemporal filters and to the shun-
ting inhibition mechanism respectively. Nevertheless, paramete-
rization is still a difficult problem (a balance must be obtained
between the enhancement of motion detectors and the spreading
of their enhanced outputs).

A simple example of synthetic images corresponds to a ball
that goes forward and backward in a corridor. As shown in figure
6, an improvement of basic motion feature detection is given by
our spatiotemporal filters, that are essentially based on our strong
hypothesis of a high enough sampling rate that makes possible
the local detection of an immediate constant speed.

Natural image sequences raise more contrast-linked problems
than synthetic ones. An example of real images is the famous
Hamburg taxi scene from the University of Hamburg 11. In this se-
quence, contrast-based motion detection appears to “forget” some
moving objects with weak contrasts. As shown in figure 7, our
model takes advantage of a densely interconnected architecture
of shunting inhibition to enhance neuron outputs, so that these
“forgotten” objects re-emerge.

10. In direction θ, a neural response in (x,y) inhibits 100ρ
π

% in direction θ+ ρ
(with 0 ≤ ρ ≤ π )

11. In this sequence, there are four moving objects: a taxi turns the corner, a car
in the lower left part drives from left to right, a van in the lower right part drives
from right to left and a pedestrian walks in the upper right part. In this sequence,
there is a slight egomotion from left to right and from up to bottom.

(a) Gabor (b) causal

FIG. 6 – Synthetic image sequence with τ = 3, ω = 2 (ball going
forward): (a) motion feature detection with standard Gabor fil-
ters, (b) motion feature detection with our causal spatiotemporal
filters

(a) input of the shunting inhi-
bition process

(b) after 20 epochs

(c) after 50 epochs (d) after 100 epochs

FIG. 7 – Shunting inhibition mechanism applied to a real image
sequence. Parameters in equation 9 are set according to the ideas
proposed by Moga [25], namely: A = 1.4fsat, and B = C =
0.95fsat, where fsat is the neuron saturation value. A maximum
influence range Γ = 7 is chosen. Parameters are τ = 3, ω = 2,
and 0.0001 as learning rate.
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CONCLUSION
Perception of motion is vital for living beings. According to

neuro-physiological results of primate vision study, we set out
that: the retina plays a role of light signals filtering, the lateral ge-
niculate nucleus performs a binocular integration, V1 carries out
a spatial analysis, MT and MST carry out a temporal analysis.
The strong reduction of information from the retina and the huge
amount of lateral interactions in superior areas bring to the fore-
ground the dynamics of our world perception. These various le-
vels of processing and their respective feedback illustrate the co-
operations that exist between retinotopically close columns. Our
connectionist architecture makes use of such cooperations.

In this paper, we have presented the early stages of a stron-
gly localized bio-inspired connectionist model for the perception
of motion. This first part of our work models forward and lateral
interactions in V1, thanks to the use of adapted spatiotemporal
filters based on Gabor filters, and to a shunting inhibition me-
chanism. Similar interactions within MT are studied, and their
influence will be backpropagated towards V1.

Current efforts focus on the definition of a model of the dorsal
pathway for the detection of the movement of one or several ob-
jects in various dynamic scenes after egomotion extraction. Fur-
ther works will aim at integrating the various stages of the dorsal
pathway followed by the optical flow. These works will still stress
our modular, purely connectionist and strongly localized point of
view.
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S. Barro. Local Accumulation of persistent activity at sy-
naptic level: application to motion analysis. In J. Mira and
F. Sandoval, editors, From Natural to Artificial Neural Com-
putation, IWANN’95, volume 930, pages 137–143, Berlin,
1995. Springer.

[8] Antonio Fernández-Caballero, José Mira-Mira, Miguel A.
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