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ABSTRACT
One of the advantages of the neuromorphic approach is
energy efficiency, which comes from the exploitation of the
intrinsic physics of electronic devices. Taking the intrinsic
efficiency of physics as a guiding principle, we can extend it
beyond electronics to other technologies including optical,
mechanical, and chemical. In this paper we consider the role
that some of these other technologies may has to play in this
area,  describe some of the work that has already been done,
and suggest some advantages of pursuing what we call a
physical computational approach to AI.

1. Introduction
This paper considers how the concept of neuromorphic
engineering may usefully be broadened to a much wider
range of technologies than just electronics. In particular, we
discuss how it may be more efficient to allow technologies
that are normally considered part of sensing or actuation
sub-systems to be considered part of the intelligence of the
machine and therefore better integrated.

First we consider why it may make sense to
consider this hardware- rather than software-oriented
approach to artificial intelligence. In section 3 we consider
some lessons from neuromorphic engineering and then the
underlying challenge of building brain-like systems in part
4. In sections 5 and 6 we consider two areas where
integrating optics with our systems may be particularly
useful:  increasing synaptic interconnectivity and neural
complexity. In part 7 we look at the issue of analogue to
digital conversion, the advantages of avoiding it, and
discuss robotic implementations where some processing is
performed in the body (rather than it all being done in the
brain. In addition, we briefly consider the advantage of
avilding digitization when it may be necessary to fuse
interdependent sensory information. In section 8 we give an
example of how optics and electronics can be used more
powerfully when properly integrated, and discuss the
general implications of this, after which we conclude.

2. Embodied AI as hardware problem
We are concerned with the design of hardware that will
implement embodied artificial intelligence, ideally to the
point that a machine will be able to react to the environment
in ways that make it appear to be as intelligent as a human.
By starting with hardware, rather than cognitive models or
connectionist networks, we do not intend to imply that
software is not important. Rather, we want to show
thatwith a task as challenging as animal- or human-like
AIhardware may represent a bottleneck that we cannot

afford to ignore.
We can break the problem of intelligent interaction

down into a process of sensing the outside world, learning
and making decisions based on the information acquired,
and then actuating to change the world as necessary. If we
do this then some of the potential problems become
apparent. Are we sensing the world sufficiently (in terms of
number, type, and sensitivity of sensors)? Do we have
enough computing power to process this information
appropriately in order to make decisions about what to do
next? Finally, can our actuators implement these decisions
sufficiently well? Do they have high enough speed,
accuracy, and degrees of freedom to make the appropriate
action? Lastly, is the latency of the entire system (from
sensor to actuator) sufficiently low that circumstances will
not have changed dramatically (at the appropriate
macroscopic physical level) by the time actuation takes
place.

There are additional engineering constraints: power,
size, and heat dissipation among them. We are unlikely to
want to build an android that requires its own power station
to operate. Or that is the size of a tall building. Or that is too
heavy to walk on the floors of our homes and offices. Or
that singes our hair if we get within ten feet.

From a hardware point of view we can see that there
are sufficient issues to attend to without needing a full
knowledge of the algorithms to be run. Further, hardware
constraints might lead us to prefer some approaches to AI
over others. The application constrains the hardware, then
the hardware (may) constrain the software.

3. Neuromorphic engineering
Carver Mead is best known to many of us for pioneering a
new way of exploiting analogue electronics. His approach
came from an interest in implementing neural circuits in
order to process sensory information. In a book that has
come to define the field of neuromorphic engineering
(Mead,1989), Mead showed that brains are about a billion
times more power efficient than conventional computers.
Though part of this could be attributed to the inefficiency of
the individual transistors, etc. he believed that a
performance improvement of six orders of magnitude was
possible based on two things: using less wire and more local
interactions; and using, not suppressing, the intrinsic
physics (i.e. analogue nature) of the device.

The first of these two strategies is an architectural
issue that is helpful for any computer whether digital or
analogue. In an electronic system, the length of wire
between one component and another acts as a power drain.
Component A only really wants to charge up component B:
that's all that's necessary for the computation. But to do that,
it has to charge up all of the wire between the two
components as well. The extra power required to do this is
fulfilling no computational purpose, it is simply an
architectural overhead. Though designers do spend a lot of
time trying to keep the amount of wire to a minimum, the
kinds of processes that we run on digital computers (and the
gate layouts that make them possible) do not lend
themselves to the ideal architecture: one in which devices
only have to 'talk' to near neighbours. The opposite is true of
neural networks which also have major advantages for
sensor fusion, see e.g. (Klein,1999)). By changing to this
more efficient interconnection scheme, a 100-fold power
efficiency gain can be made.

However, the advantage of moving from a digital to
an analogue neural system is potentially even greater. Mead
believes that computation could be performed up to 10,000
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times more efficiently (in terms of power) by not throwing
away the true functionality of the electronics used. In other
words, by using them in a more analogue way. For instance,
take a memory cell. Intrinsically, there is nothing about such
a circuit that forces it to be either 'full' or 'empty' (to contain
logic 1 or logic 0): we simply choose to interpret the
information that way when we read it out. Because of this
choice, we are forced to use an extra cell for each bit of
information we want to store. If we allowed the charge
within the cell to vary continuously (or at least to be able to
adopt different 'grey levels'), then we could store
significantly more information in a much smaller space. In
addition, we would need to use less energy to both store and
read out the information (because we would only have to go
to one location to get it).

The same kind of analysis is true of the information
processing side. The electronic circuits we use in computing
have interesting, and often useful, responses. For instance,
they can perform multiplications or manipulate a signal
differently based on its strength or timing. Some of these
features are, says Mead, very similar to some of those we
see in the brain's processing devices. But we do not really
make use of these as computational primitives (low-level
processes on which higher ones can be built). Instead, we
reduce problems to AND, OR, NOT, etc., and force our
hardware to give us the minimalist answer to these
questions (1 or 0) we require.

From a power-consumption point of view, it is
important to note that the forcing required to achieve this
involves driving the electronics in a particularly inefficient
mode. More energy is consumed for an incoming signal to
trigger a sharp non-linear (thresholded) response, than a
sub-threshold (closer to linear) response.

In effect, we are reducing the operations that each
component can perform, and increasing the amount of
energy it takes. Given the example in the last section, we
know why this approach is taken. If we need a precise
answer, we would not want to use an amplifier to multiply
one number by another. Depending on the noise and the
extent to which the device varies from its specifications, we
would be likely to get a different answer every time. Thus
we string together many gates, each consisting of many
different components, to perform a digital multiplication.
We get a precise answer, but at a cost in terms of efficiency.

If we have an application where we don't need that
kind of precision in the first place, then this approach makes
no sense: in this case we are throwing away the useful
physics of the devices themselves, recreating the same
functions using logic gates, and have nothing to show for it
at the end. In such applications, analogue computers can
make a real difference in terms of power efficiency without
sacrificing functionality.

An illustration of this point is the cellular neural
network (CNN) invented by Leon Chua (e.g. (Chua,1998)),
and now being used as an image-processing tool in the
vision community. The CNN is a device that is digitally
programmable but can perform complicated non-linear
operations during the analogue transient: the 'switching'
time to go from one stable state to the next. It is an apt
demonstration of Mead’s point. Not only is the device far
lower-power than the equivalent image-processor, but it is
also up to orders of magnitudes faster (depending on the
algorithms implemented).

4. The challenge of building brain-like systems
For many of us, the future of AI will involve, in one way or

other, the building of artificial brains. The human brain has
of the order of 1012 neural processors, linked by as many as
1015 synapses (Churchland et al. 1992), all contained in an
object about the size and topology of a folded pizza
(analogy from Christof Koch, California Institute of
Technology). If each of these parallel processors were
performing just one logic operation per emission of a neural
spike, duplicating this system in digital electronics would be
formidable challenge. In fact, according to Yaser Abu-
Mustafa, it would be practically impossible today because
of the lack of connectivity between neurons (Abu-
Mostafa,1988; Abu-Mustafa,1988). In his papers (and
echoed in an appendix he wrote for Carver Mead's book
(Abu-Mostafa,1989)), he argues that the ability of a local-
learning neural network (which would hold for the
biological case) is limited by the number of connections
between the neurons. This, he says, cannot be made up by
simply using a larger network.

If he is right, and biological neural networks do
indeed fall into this class, then this could represent a major
bottleneck. Either we must find a learning rule that allows
us (with a bigger network) to produce the same
discrimination ability with a modest level of
interconnectivity (of the order of 1-10 connections per
neuron rather than the average of 1000 in biological
systems), or we find some way to improve connectivity, or
we give up on the neuromorphic approach. The first and
third of these options may be the same. According to Abu-
Mustafa, the local learning rule was considered precisely
because it was biologically plausible. Departing from it
(necessary to overcome Abu-Mustafa's limit) by definition
changes the nature of the system being designed. In any
case, connectivity is an issue that has had to be addressed
for many connectionist (neural-network base) and
distributed computing applications.

5. Connectivity as a hardware problem
David Miller ( (Miller,1989, 1997; Miller et al. 1997)) has
written extensive critiques on the problems of on-chip
electronic interconnections. The problem can be expressed
simply: the longer an electronic interconnect is, the higher
its capacitance. This means that more energy is required to
get a signal from one end to the other and, since circuits
have to be designed with the worst case scenario in mind,
the performance of the entire system ends up being
determined by the longest link. As a result, designers try to
keep interconnects as short as possible: nearest-neighbour
interconnects are ideal. Similarly, the more interconnects a
chip has (of whatever length) the more power it must
produce to charge them all simultaneously. This is
particularly true when broadcasting a signal: sending it
through all its interconnects at once. Thus the number of
interconnects becomes a limiting factor. Since broadcasting
does seem to be an important part of some neural
functioning (see e.g. (Abu-Mostafa,1988)), these scaling
issues must be considered.

When information must be exchanged between one
chip and another, there is a further problem: a bottleneck is
caused by the fact that electronic die are essentially two-
dimensional. If a square chip is length x on a side, then the
area (and number of processors accommodated) varies as x2,
while the number of interconnects (pins along the edges of
the chips) varies as 4x. As silicon wafers get larger and
feature sizes get smaller, this problem gets worse (even if
the size of pins scales down too).

Finally, there is the problem of crosstalk.
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Interconnects must be electrically shielded from each other,
otherwise the electric field will create false signals (noise)
in neighbouring wires. This leakage also represents power
dissipation. The need for shielding represents a limit on the
(minimum) volume required for an electrical interconnect.

Inventive ways have been found to get around these
problems for experimental systems. The best known
electronic method, known as address-event representation
(AER, (Boahen,2000; Mahowald,1992)) , essentially gets
around the broadcasting problem by using a time-
multiplexed, pulsed network. In this asynchronous
(analogue) system, individual pixels request access to the
bus when active. For example, Eugenio Culurciello (
(Culurciello et al. 2001)) built a system where pixels in an
imaging array, via artificial neurons, emitted spikes at a
frequency proportional to the light intensity. Since AER is a
responsive networkaccess to the communications bus is
granted on requestthe available bandwidth is allocated
according to need. Also, because the spike time is small
with reference to the inter-spike-interval time for a given
neuron, delay in getting access to the bus does not
significantly change the pulse-coded signal.

Unfortunately, though it represents an ingenious and
efficient use of infrastructure, AER does not change the fact
that there is a serious scaling problem. It was designed to
scale well (which it does) for increasing numbers of
processing elements on a single array: For N elements in an
array to connect to the same number in another array, only
1+log2N wires are needed. If M  such arrays have to be
connected with each other, then M (1+log2N ) wires would
have to be in place. With current technology, only relatively
small numbers of chips can be connected in this way. In
addition, AER is not designed for on-chip communication,
so there is a trade off between making the arrays bigger (for
fewer chips in the network) and local connectivity.

There are other techniques under development,
some of which are likely to be compatible with AER. Most
of these would fall into the broad class of optical
interconnects. Unlike wires, optical signals don't have
crosstalk (unless handled poorly at the detector), and so can
co-exist in the same volume. This comes from the intrinsic
physical fact that photons neither repel nor attract each
other, nor do they interfere with each other in any way.
(Photons, when split, do interfere with themselves, but that
is another issue, and not relevant here).

The most obvious example of this is the
wavelength-division-multiplexed fibre-optical link ( (Miki
et al. 1978)) where hundreds of closely-spaced wavelength
channels can propagate down the same optical waveguide
and be differentiated at the other end without their signals
becoming mixed. As the light sources, non-linear materials,
detectors, etc., for photonic systems become cheaper and
more available, increasingly ambitious systems are being
built. For example, Nan Jokerst built a substrate-guided or
planar-optical system at Georgia Institute of Technology(
(Jokerst et al. 2000)). Essentially, this gives the light
freedom to move in 21/2 dimensions: the two dimensions of
the plane of the interconnect, plus up and down (into
devices attached to either side of the plane). By including
emitters and detectors on the top of circuits, signals can be
either actively or passively routed to other locations
(potentially many other locations) on the chip or board.

Among many other notable examples is NEC's
optical backplane network at its Laboratories in Princeton(
(Araki et al. 1996)). This was aimed at providing slow
reconfigurability for massively parallel computer systems
and used free-space optics (optics in air/gas) rather than

guided wave optics. Based on an analysis of distributed
computing systems, the NEC network was designed to use
an electronic crossbar for local interconnections on each
board, and had vertical-cavity surface-emitting lasers
(VCSELs) emit signals to travel between boards. Each
board needed a VCSEL and detector for each other board it
has to talk to, and the address is specified by the
geometrical location of the VCSEL in the array. This kind
of scaling may seem similar to the one that posed such a
problem in AER. However, optical paths can cross without
affecting each other and, since they do not have problems
with heat dissipation, they can be arranged in close-packed
arrays, with the area of the array scaling linearly with the
total number of interconnected boards.

A more radical solution, using both fibres and free-
space, was designed by Ed Frietman at the University of
Delft( (Frietman,1995)). Rather than producing a network
that on some level requires message passing, like the NEC
and AER schemes, this system was based on every
processor talking to every other processor. This works by
each sending out information through an array of light-
emitting diodes, one for each bit. This light is then captured
by a polymer fibre optic array and connected to a central
node known as the Kaleidoscope. The fibres are organized
so that their relative positions at the output are the same as
at the input: effectively making the data into a 2D image. In
the Kaleidoscope, the fibre bundles are tiled to make one
large 2D image, the size of which is dependent on the
number of bits output by each processor and the number of
processors in the array. Using a faceted mirror and lens
system, the light from the entire image is broadcast onto
separate locations for each processor, coupled into a second
fibre bundle, and then received so that the processor can
access the data electronically.

It should be noted that not all current strategies to
increase connectivity are optical. Irvine Sensors, a company
with a history of supporting research into optical
interconnects (some of which has recently been published,
(Li et al. 2002)) , invented a new mechanism designed to be
compatible with its chip-stacking technology(
(Carson,2000)). The stacking technique involved producing
essentially conventional chips and removing the substrate
(wafer) through rubbing. Apart from allowing more devices
to fit into the same volume, this also gives a new
opportunity for interconnection. To capitalize on this they
invented the three-dimensional field-effect transistor. This
device is constructed as two parts on two separate chips:
once they have been bonded together in a chip stack, they
operate as a single transistor. This means that the concept of
a nearest neighbour is extended to three dimensions rather
than two: as it is in the brain.

Though this work is not optical, it is interesting to
note that Irvine sensors is has also done significant work in
optical interconnection and that, in the company’s
speculation about building brain-sized systems, they always
assumed that it will take many different stacked modules to
produce the required power. Interconnection between
modules could therefore be optical.

6. Capturing the complexity of neuron interactions
From our discussion of Carver Mead's work earlier, we
know that the replication of simple analogue functions is
more efficiently performed using sub-threshold electronics.
However, there is much evidence that real neurons are more
complex than even Mead's circuits (see e.g. (Churchland et
al. 1992)  or (Wehr et al. 1996) for a more specific
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example). Analysis of one of the best-known neural circuits,
the Hodgkin/Huxley model of the squid axon( (Hodgkin et
al. 1952)), suggests that it performs in a mathematically
complex way (see e.g. (Arcas et al. 2000)). The excitable
membrane of the squid's axon becomes increasingly
depolarised due to the incoming signals (spikes or pulses of
ions) until it reaches a threshold potential. At this point it
abruptly inverts, producing the neuronal action potential
and, thus, the output signal. Afterwards the membrane
undergoes a period of no response, followed by another
slow build-up. As a result, a pulse arriving immediately
after firing will have a completely different effect on the
output of the neuron than a pulse arriving immediately
before. Thus, spike timing is critical.

Nabil Farhat has done significant work in this area,
both from the dynamics perspective ( (Farhat et al. 1996))
and the hardware perspective( (Farhat et al. 1995)). He
claims that the real complexity comes from combining this
behaviour with the processing carried out by the neuron's
receptors in the dendritic tree. Correlations, caused by
synchronicity in the incoming signals, cause a periodic
modulation at the excitable membrane. This gives rise to
complex ordered patterns of firing that are phase-locked to
the periodic modulation, and to disordered (chaotic) firing
that depends on the amplitude and frequency of the
modulation. In this way the neuron detects coherence or
meaning in arriving spike trains and encodes this
information in its own output.

Here, an analogy can be made here between spike
timing and optical phase. In photography, only the
combined intensity of light arriving at the film is recorded:
the phase information (encoding distance, direction) is
thrown away resulting in a flat image. In holographic
imaging, the phases of incoming rays are allowed to interact
through interference, and the result of that interaction is
recorded( (Hecht,1987)). This is what encodes the image's
third dimension, depth, and increases the amount of
information that can be stored and retrieved( (Mok et al.
1992)). In fact, researchers have exploited optical
interference to make associative memories (e.g. (Farhat et
al. 1985)), based on optical correlators ( (Casasent et al.
1976; Juday et al. 1987)) combined with holographic data
storage( (Psaltis et al. 1990)). Such devices have the
advantage of both of high densitythrough efficient use of
materialand content addressibility: possible because the
geometrical/topological integrity of images is retained in the
way they are stored.

Farhat built both simulations and actual analogue
models of neurons that could take timing into account in
this way and found that they produced a bifurcated output:
they depended on only small changes in input frequency and
phase, periodic, m- and quasi-periodic, and chaotic firing
patterns were all observed. Further, Farhat designed a
system that could take advantage of the high-connectivity
available through optical interconnects, the complexity of
analogue neurons, and the unusual properties of electron-
trapping materials (ETMs): the latter added a further layer
of (biologically plausible) nonlinear interaction to the
network.

It is worth understanding how the additional
complexity is achieved. ETMs are materials that contain
two sets of impurities: one with an electron that is easily
liberated (Eu2+) and another that provides a trap for it
(Sm3+). On illumination with blue light, electrons are
excited and either fall back to the Eu2+, producing orange
fluorescence, or become trapped. On illumination with
infrared, trapped electrons tunnel back to the Eu ions and

then fall into its ground state, again producing orange light.
Electron beams can also be used instead of the blue
wavelength, increasing the complexity of the interaction.
Normally these materials are used in a read-write series:
where the IR reads out what the blue records. However,
when IR and blue light illuminate the ETM simultaneously,
the dynamics become complex: especially if one or both
beams are changing with time. As a result, Farhat
determined that the ETMs could provide input and output
(dendritic and synaptic) weights, nonlinearly coupling
bifurcation neurons together.

In (Farhat,1998) Farhat showed that, in simulation
at least, the bifurcation neurons formed nonlinearly
interacting phase-locked netlets or neuronal assemblies with
external input. The chaotic periods served as noise, and
assisted neural functioning through a kind of stimulated
annealing process: it would help the netlet to converge by
popping it out of local minima. According to Farhat, this
behavior was very robust at the netlet level, even if the
reactions of particular neurons within it were imprecise.
Further, he says that this behaviour seems to mimic that of
cortical neurons and will be potentially useful in creating
intelligent machines. Experiments with similar networks (
(Farhat,1997)) have shown that they can be used to
accurately discriminate between objects. Similar
conclusions about noise have been reached by researchers at
Boston University( (Mar et al. 1999)).

The fact that complex (analogue) neural behaviour
exists in nature does not prove that it is functional, but Abu-
Mostafa argues that it is. In his appendix to Mead's book
(Abu-Mostafa,1989), he shows that not only does using
analogue neurons with more than two inputs reduce the
number of neurons required (to replace N K-input analogue
neurons, a minimum of N K2 binary neurons would be
required), but there is no guarantee that such binary network
would do the job.

That said, there is no reason in principle to argue
that neuron complexity cannot be traded-off against speed,
network size, etc.. However, in practice (and this chapter is
concerned with the engineering aspects of systems), though
imperfect, biology is generally very efficient. For example,
the use of ATP (adenosine triphosphate) as a fuel for motor
proteins (such as kinesin and myosin) is highly efficient(
(Howard,2001)). It has almost no thermal by-product,
turning chemical energy almost entirely into mechanical
energy. By over-simplifying neural processes and ignoring
the complexity of biological exemplars, we risk turning
human-like embodied AI from a problem that could be
solved practically (implemented in a machine the size of a
man) into one that cannot (where the machine would have
to be the size of a planet).

7. Hybrid system design and A/D conversion
Most work in embodied artificial intelligence (see e.g.
(Johnson et al. 1995)) has a conventional structure: sensors
receive analogue information from the outside world, turn it
into bits, and send it to be processed by a digital computer.
Once the processor has decided what to do, the decision is
passed to a controller that turns this information into the
appropriate (often analogue) driving signal for the actuators.
Such machines can be defined as hybridboth analogue
and digitaland their structure as conventional: the A/D
and D/A conversion stages necessitate the isolation of each
of the sensor, processor, and actuation stages from each
other.
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It is not always necessary to design systems in this
way: instead, all three stages can be merged into a single
physical system. Such an approach has two main
advantages. The most obvious is in terms of speed and
power consumption. This fact is increasingly being
recognised by roboticists. For instance Matthew
Williamson, who worked on Rodney Brooks Cog project,
was charged with engineering the robot's limbs in such a
way as to ease both the information-processing and energy
burden they represented for the machine as a whole. A
mechanical engineer by training, he designed Cog's arms
and wrists so that they were compliant ( (Williamson,1995))
and could respond mechanically to changes in the
environment rather than purely through conventional
sensor-processor-actuator loops. The result was not only a
more mechanically-efficient and natural-looking movement,
but considerably lower computational overheads.

Others interested in exploiting a balance between
information processing and a machine's physical dynamics
(in this case, mechanical) computation include Lungarella
and Berthouze( (Lungarella et al. 2002)). They have looked
at how temporarily restricting the degrees of freedom of a
mechanical system can improve a robot's ability to learn
how to manipulate it. In another recent paper, Pfeiffer gives
numerous examples of the importance of mechanical design
to machine intelligence( (Pfeifer,2002)). Going further back,
biologically-inspired roboticists have looked at how cats
survive falls from tall buildings through a mechanical
process of turning, and through using their legs as a buffer
between critical systems (the body and brain) and the
ground( (Cameron et al. 1991)).

Another advantage of avoiding the conventional
setup is that it is not necessary to determine what resolution
of A/D/A conversion is necessary. Conventionallyin the
case of machine vision, for instance an engineer has
consider how many grey levels are necessary to implement
a particular task (such as floor-following (Horswill,1993),
defect detection (Davies,1990), or number recognition(
(Hinton,2000))) in a particular set of conditions (eg. over a
given range of light levels, object orientations, distances,
etc.) in order to specify the hardware. Though machine
vision is still at a primitive stage, the reverse-engineering
process for choosing sensor sensitivity, resolution, and
dynamic range is generally well understood and is used for
most applications.

However, because one of the prerequisites for such
reverse engineeringa clear specificationis unavailable
for our application, the interface between analogue and
digital layers becomes a problem. This fact is intrinsic to
point S3 in our definition of human-like AI given earlier:
the machine must be free to adapt to its environment based
what's important to its survival. This suggests that the
machine should be free to use the dynamic range of its
sensors as it sees fit, without an artificial A/D conversion
limit. If the maximum bit resolution is specified in advance,
then information that came in through the sensors may be
withheld from the processor. As this information is
unavailable for scrutiny then the embodied agent will never
be able to learn whether it was important or not.

In humans and animals, sensors output their
information as asynchronous spike trains: the timing
between spikes can vary continuously and is not regulated
by a clock. This freedom from being forced into discrete
values can be useful. For some problems, non-linear
greyscales (such as logarithmic, see Weber-Fechner law,
e.g. (Walker,1995)) are preferable to linear: particular light
levels may more important than others and require more

discrimination, others less. Further, if the scale can be
changed for different applications or environmental
conditions, then the whatever information is available may
be exploited to it's maximum potential.

Perhaps the clearest example of where A/D/A
conversion can be a problem is in systems where feedback
is important. In electronics, positive and negative feedback
are used to either minimize or maximize small changes in
an input, thus making a circuit either stable to small changes
or extremely sensitive to them( (Young,1988)). A nice
example can be drawn from opto-electronics ( (Dupertuis et
al. 2000)) where a semiconductor optical amplifier (SOA)
can be made several times faster without reducing gain or
increasing current through the injection of a continuous-
wave light beam. The technique exploits the transparency
point of a photonic device—where a wavelength is absorbed
and emitted equally—using the incoming light to boost the
production of carriers when they are most needed. The
problem is that, when the incoming signal at one
wavelength is amplified by the SOA, there is a decrease in
the number of charge carriers available to produce gain.
Electronically it takes a long time to replenish these.
However, the decrease in charge carriers has a secondary
effect: it shifts the transparency point of the material. The
continuous-wave beam, which is at a different wavelength,
is at this transparency point, having almost no effect on the
device before the signal arrives. While the signal is present
and amplification takes place, however, the resulting drop in
charge carriers pushes the injection wavelength into the
device's absorbing region, and the absorption, in turn,
quickly produces the needed charge carriers.

Another example, particularly relevant for our
application, is local inhibition in the retina (for a brief
review and recent developments, see (Roska et al. 2000)).
Here, small differences in the intensity of light received are
amplified so that only the brightest pixel amongst nearest
neighbors fires. This principle has been incorporated into
neuromorphic systems called winner-take-all networks (
(Lazzaro et al. 1989)) and these have been used in
navigation and sensing (e.g. (Indiveri et al. 1996)). Part of
their advantage comes from their analogue nature, which
means it is almost impossible that two incoming signals can
appear to have the same intensity. Even the smallest
difference can be leveraged to produce a clear difference. If
digitized, this would not be the case.

Another area in which resolution issues can become
important is sensor fusion: this is particularly because of the
inter-dependence of sensor systems within a complex
embodied intelligence such as a human. In essence, the
sensors perform an application that is more than
implementing a particular sense. Specifically, the eyes must
not only supply sufficient information to allow, for instance,
visual pattern recognition to take place, but it must supply
sufficient information to guide and supplement (for
example) locomotion or audition. Further, it must supply
this information in an appropriate form.

To give a more specific example, in the spinal
chords of many vertebrates (Cohen et al. 1992), sensory
information is directly incorporated into the gait of the
animal through a process of entrainment. Cohen and
colleagues have modelled the interaction with visual
feedback both theoretically and experimentally. The spinal
chord has its own driving frequency, the source of which
has been modelled as a coupling between adjacent oscillator
sections (such as the vertebrae). The coupling takes place
through the neural integration of spike trains, and so can be
manipulated by the addition of extra spikes.
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The word 'entrainment' refers to the modulation of
one signal by another (similar) oscillation, with the output
both frequency- and phase-locked to the latter. This kind of
entrainment does occur with some sensory input,
particularly tactile sensors directly connected to the
locomoting limbs. However, in the visual case, the signals
are not of similar frequency: instead the integrating neuron
reaches its threshold condition earlier when additional
excitatory spikes are added, more slowly when the extra
signal is inhibitory. In this way, the analogue signals from
one sensory modality can directly interact with the
behaviour of another system: without any explicit
processing.

This is a crucial point. Studies of the brain in many
different animals (see examples for human, monkey, and cat
in (Foxe et al. 2000), (Duhamel et al. 1998), (Wallace et al.
1997), respectively) have shown that visual and auditory
signals are not just processed by their own processor (or
cortex), but that there are connections that leave each of
these sensory systems very early in the chain of processing.
Thus, the resolution required for visual applications is not
relevant in providing the correct determination for those
systems that share visual information. As in the spinal chord
example, such systems are not necessarily making use of the
results of conventional visual processes (like pattern
recognition, object tracking etc.). Rather, they are
processing the visual signals in their own ways for their
own ends.

Because of the fact that the sharing systemsthose
directly exploiting sensory signals that are nevertheless
outside their primary modalityare working with relatively
raw (unprocessed) signals, they can potentially make use of
any information that such signals contain. If the signal is
digitised then, again, the information available has been
artificially restricted. Once again we return to the problem
that, in order to be able to set a resolution that is
indistinguishable from the original analogue, then it is
necessary to fully understand both the neural processes and
the applications they are serving. Such an expectation would
not be permitted given our definition of an embodied
human-like artificial intelligence given previously.

8. An integrated approach
An excellent example of the advantages to be derived from
taking a more integrated approach—in this case integrating
optics and electronics—to designing intelligent systems is
illustrated by CDM Optics (Boulder, CO) wavefront coding.
This  approach attempts to match the optical design to the
detector electronics and application. In it, unexploited
resolution is traded for increased depth of field and a slight
increase in noise. The resolution may be unused, for
instance, because the pixel separation is significantly greater
than the focal-spot size, and can be exchanged for either a
deeper image, or for one with a more relaxed focusing
tolerance (see figure). One application of this is in color
imaging: a single lens can be designed that focuses light
over a broad bandwidth—like white light—without
chromatic dispersion. The technique works by designing
optics that have a large—but uniformly distributed—point-
spread function (PSF). Images produced by such optics
appear blurry but, because the blur is uniform, it can easily
be extracted by image processing: the PSF can be used as a
kernel filter.

Lenses designed to produce the wavefront to be
decoded generally look very different from conventional
optics. In the case of the conformal IR-imaging system, the
imaging side is conventional but the detector side has a

cosine-form surface—one with three teardrop-shaped peaks
circled around, and pointing toward, the center, [Kubala
2003]. This design not only takes account of the imaging
characteristics that are required, but also of the image-
processing overhead. Because increasing the kernel-filter
size rapidly increases the processing time, the size had to be
limited to 10Å~ 10 pixels. The ability of wavefront coding
to accommodate such constraints is one of the things that
makes it so powerful.

Examples such as this one—as well as many of the
others in this paper—show how important it is that sensing,
processing, and actuation as not treated as different design
problems but part of the a single physical problem. We have
developed a model of physical computation [Bains 2003]
that seeks to show why this is the case, and have begun to
assess the implications of this fact for engineering. One of
the most basic results of this work is that information
processing is just a slice of what any given physical object
(even one that we built entirely for information processing)
can do. Understanding the relationship between the virtual
machine and physical machine is, we believe, the first step
towards a more integrated approach to co-designing the
brains and bodies of robots.

Conclusion
In this paper we have described a number of different
projects all of which, we believe, point to the fact designing
the most efficient embodied intelligent systems requires an
integrated approach to robotics. Such an approach, which is
consistent with neuromorphic engineering, moves beyond
the consideration of brain (electronics) and body (optics,
electronics, mechanics) as separate sub-systems. Instead, it
seeks to combine them and integrate them fully, exploiting
the processing ability of all system components regardless
of their primary purpose.
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