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ABSTRACT 
 
This paper presents an innovative approach to investigate 

the information encoding taking place in the visual pathway, 
particularly the retinal pathway. Gabor time-frequency (TF) 
transformation is applied to the spatio-temporal spike trains 
from the layers of the retinal pathway, corresponding to input 
object stimuli varying in shape, orientation & distance. These 
spike trains are generated by employing simulation tools. Using 
the TF transformation, a methodology is evolved to analyze 
information encoding in terms of dominant harmonic 
variations. Statistical analysis of these variations and 
extrapolation reveal that the dominant harmonic variations can 
be encoded as multinomial (multivariate polynomial) functions. 
For the set of input stimuli considered, a bivariate polynomial 
encoding is observed with the order of the polynomial and its 
coefficients encoding the variations in amplitude of dominant 
harmonics. Analysis of encoding is carried out for both ‘within 
the layers’, like horizontal only and ‘across the layers’, the 
entire retinal pathway. The simulation results presented 
enunciate the findings. In the companion paper part II, neuronal 
encoding for chromatic information is analyzed on similar 
lines. After analyzing the neuronal color encoding process in 
part II, a generalized encoding scheme applicable to object 
shapes as well as color is proposed.  
  
INDEX TERMS: Dominant harmonics, Information processing, Neuronal 
encoding, Object Recognition, Sensory pathways, Spatio-temporal analysis, 
Visual pathway 

1 INTRODUCTION 
 
The retinal pathway comprises of layers of the 

photoreceptors, the horizontal, the bipolar and the ganglion 
cells. The Laterate Geniculate Nucleus (LGN) & the Visual 
cortex further process the visual stimuli. These layers together 
with the striate & extra striate regions in the brain work in 
unison for perception and recognition to take place. Information 
about stimulus undergoes processing at each stage starting from 
the receptor cells to the cortical regions. Each stage of the 
pathway encodes the information in a particular way leading to 
the recognition of objects in the cortex. Different schemes have 
been proposed [1] [2] [13] to understand the encoding process.  

 
In papers part I & II, a novel perspective into the neuronal 

encoding process of the retinal pathway is evolved. This is 
based on the dominant harmonic component analysis in TF 
domain, which has not yet been proposed. Unlike the 

experimental analysis of the encoding process [3][12], this 
paper and the companion paper part II, present a simulation 
based approach and proposes an analytical model for object and 
color information encoding respectively. 

 
Section 2 of this paper presents the retinal physiology. The 

proposed information encoding is discussed in section 3. The 
TFD analysis is dealt in section 4. Simulation results and 
inferences are provided in section 5.  

2 THE RETINAL PATHWAY 
 
Various layers of the retina are briefly introduced in the 

following lines.  
 
Rods- They are color insensitive but sensitive to dim light. 

Rods enable vision in dark-dim conditions. Cones- They are 
responsible for black, white and color vision and work in bright 
light. The Horizontal- The horizontal cells are responsible for 
sending visual information back to receptors through feedback 
synapses. These feedback responses are important to stabilize 
the frequency responses of the cones. The Bipolar- The 
pathway from the receptors to ganglion consists only of two 
synapses having two types of bipolar cells (ON and OFF 
center) in between. They have a center-surround organization 
similar to that of the ganglion. The Ganglion- These cells 
transmits information as trains of action potentials. This is 
unlike the photoreceptors, which respond to light with graded 
changes in membrane potential [4] [5].  

 
The spikes from the ganglion cells of the retina are the final 

source of visual information passed to the brain. In this context, 
retinal processing is of great importance and is investigated 
here. Various physiological experiments with the retina have 
lead to interesting theories [6] that develop linear and nonlinear 
models for the ganglion cell activity.  

3 PROPOSED INFORMATION ENCODING IN RETINAL 
PATHWAY 

 
 Conventional neuronal encoding schemes are classified 

into spike codes and rate codes [1] [2] [13]. Rate codes are 
based on mean firing rate as a method of encoding the 
information. The exact spike timing is lost in the process of 
taking the temporal average. 

 The spike train responses of the neuronal cells of the 
various layers are analyzed to understand how information is 
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encoded in the form of action potentials. The spatio-temporal 
pattern of pulses holds a key to the principle of neuronal 
information processing. This work aims to examine the 
dominant harmonic components of the spatio-temporal spike 
train in time-frequency domain (TFD) at each layer of the 
retinal pathway applying Gabor transformation. The effect of 
distance, orientation on the spatio-temporal encoding for object 
information is discussed. This approach examines how the 
input stimulus (the corresponding spatio-temporal spiking 
activities) gets encoded in the amplitude variations of the 
dominant harmonics in the Gabor TFD. 

4 PROPOSED TFD ANALYSIS 

4.1 GABOR TRANSFORMATION 
 
The Gabor transformation [7] [8] decomposes a signal into 

functions localized in time and frequency. A common method 
for computing the transform coefficients involves the 
multiplication of a signal by a function, which is bi-orthogonal 
to a Gaussian window. The generalized Gabor expansion of a 
complex valued discrete signal is 

 
where h(k) is a discrete periodic window sequence with period 
L=MN.  The expansion coefficients are given by  

 
where       satisfies the equation  

         
The Gaussian window shifted to the centre of the analysis 
window is used for Gabor transform. 
 

 

4.2 TF ANALYSIS 
 
The TF analysis is a powerful tool employed extensively in 

digital and biological signal (EEG) processing and also in 
speech signal processing systems [9]. However it has not been 
applied to analyze the spatio-temporal spiking activities of the 
layers of the retinal pathway. This paper, part-I deals with the 
application of the Gabor transformation to analyze the spatio-
temporal activities of different layers in the retinal pathway for 
object information encoding. This analysis is applied to evolve 
the encoding process within and along the different retinal 
layers in terms of the amplitude variations of dominant 
harmonics for varying input stimuli.  

In fact there could be several dominant harmonics 
existing in a particular layer for a set of input stimuli. The set of 

dominant harmonics are analyzed, grouping them into different 
harmonic ranges. 

4.3 STATISTICAL ANALYSIS 
 
The dominant harmonics of the TF transformed signal are 

identified after statistical analysis using SAFNET (Statistical 
Analyzer For dominant harmonic analysis of Neuronal 
Encoding in TFD), which is developed as a part of this work. 
The different modules of SAFNET are shown in the Figure 1. 

 

 
Mean (µ) is calculated by taking the range from the 

probabilistic value 0.5 of all the harmonics till the maximum 
probability of 1. The Standard Deviation (σ) of the harmonics is 
calculated by the SDE. The DHE extracts the entire dominant 
harmonics having amplitudes higher than the µ+σ.  The DHT 
traces the amplitude variations of particular dominant 
harmonics across layers. 

5 SIMULATION  
 
The simulation model developed consists of layers 

modeling the photoreceptors, the horizontal, the bipolar & the 
ganglion. Spatio-temporal spike train activities of the neuronal 
cells are obtained from each of these layers after presenting the 
stimulus over the photoreceptors. The spike trains are generated 
by employing simulation tools. The methodology of analyzing 
the spatio-temporal spike train of each layer is presented in 
Algorithm 1.  

Algorithm 1: Analysis Methodology 
Step1:Present the stimulus over the receptor  
      Cells 
Step2:Obtain the spatio-temporal spiking  
      activity from each layer 
Step3:Sample the spikes at discrete  
      Intervals                
Step4:Apply the time frequency Gabor 
      transform to the sample values 
Step5:Input the frequency components to 
      SAFNET 
Step6:Extract the amplitudes of the dominant  
      harmonics from the Dominant harmonic  
      tracer       
Step7:Plot the extracted dominant harmonic   
      Components 
Step8:Perform multinomial curve fitting and  
      identify the Order, Number of  
      variables and the Coefficient set 

HMC: Harmonic Mean 
Calculator 

SDE: Standard Deviation 
Engine 

DHE: Dominant Harmonic 
Extractor

DHT: Dominant 
Harmonic Tracer

Figure 1: SAFNET (Statistical Analyzer For dominant harmonic analysis 
of Neuronal Encoding in TFD) 
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5.1 RESULTS AND INFERENCES 
 
Simulations are carried out for different object shapes 

varying the orientation and distance. The objects considered are 
cone, cube and donut. With respect to cone, simulations were 
carried out by varying orientation and with respect to cube by 
varying distance.  Simulation results are provided for ‘within 
the layer’ and ‘across the different retinal layers’.  

 
The figures 2—7, give the simulation results for different 

cases and are listed in table 1. In figures 2-7, the graph plots on 
the left show the variations in amplitudes of the dominant 
harmonics, and the plots on the right show the respective 
extrapolated bivariate polynomial (henceforth called 
polynomial). The corresponding input stimuli are inset in the 
graph plots on left. 

Table 1 List of figures with description 

Figs. Description 
2 a-j Cone in different orientations† across 

layers↑  
3 a-f Cone in different orientations within layers 
4 a-j Cube at different distances£ across layers 
5 a-f Cube at different distances within layers 
6 a-b Donut across layers 
7 a-f Shapes–cone, cube, donut within layers 

† Angle varied by 10 deg (ori1, ori2….ori10) results shown for variations by 20 
degs, ↑ Horizontal, Bipolar & Ganglion,  £ Stimulus size varies with distance 
  

The tables 2—6 show the extracted polynomial encoding 
functions & their coefficients corresponding to the graph plots 
presented in figures 2—7. These polynomial functions give the 
amplitude variations of the dominant harmonic components of 
the spatio-temporal neuronal activities for different input 
stimuli.  

 
The core observation is that the order ‘O’ of the encoding 

polynomial remains same across different object shapes both 
for ‘within’ (refer table 7) and ‘across’ the layers (refer table 6). 
The dominant harmonic variations are reflected through the 
polynomial coefficients. However, the order of the encoding 
polynomials remains constant for both ‘within’ and ‘across’ the 
layers for different object shapes.  

                                                                                                                                                                                                                           
We define an encoding format through set Si containing the 

order of the polynomial ‘O’, and the coefficients of the 
polynomial function. The set Si contains the coefficients A, B, 
C, D,(refer tables 2-7) and O. The encoding format is 
applicable for both ‘within’ and ‘across’ the layers. 

 
For a cone with different orientations, the neuronal code 

‘within’ the layers is given by the encoding format Si (Refer 
table 3 for values of the set elements). ‘Across’ the layers also 
the same encoding format is followed. For the coefficient 
values, and O of the polynomial, refer table 2.  

 
The neuronal code ‘within’ the layers is given by Si (Refer 

table 5 for element values) for a cube placed at different 
distances from the receptors. Table 4 gives the element values 
for the set Si for the neuronal encoding ‘across the layers’ for a 
cube at varying distances from the receptors. The simulation 

results for a donut placed at a particular skew, orientation & 
distance are given in figure 6. 

 
Simulation Environment- Neuronal cells: 10,000+, 

Platform: P-IV, Tools: Matlab, Ret4, C, C++, LabFit, 
Sigmaplot, SAFNET. 

 
6 DISCUSSION 

 
The results presented in this paper are for individual 

objects. However the encoding process has to be analyzed in 
recognizing multiple objects like a pair of a cube & a pyramid 
placed together in different orientations. This needs to be 
extended to stationary and non-stationary complex visual 
sceneries.  

 
An important issue to be addressed is the influence of 

synaptic learning process on the values of the elements of the 
encoding set Si.  

 
The authors feel that the encoding process related to 

complex object & visual scenes recognition can be represented 
as a new generalized stochastic multinomial (multivariate 
polynomial) function discussed in the companion paper part II 
[10]. A stochastic multinomial function with the coefficients & 
order of the polynomial as random variables might encode the 
random natural scenes. Each element of the encoding set might 
follow a probability distribution. 

 
The multiple objects could be split into encoded basic 

components [11], which in turn will get represented by the 
stochastic multinomial function that may facilitate the cortex in 
the recognition process.  

7 CONCLUSION 
 
The Neuronal encoding process along the retinal pathway 

based on the dominant harmonic component analysis in TF 
domain has been presented in this paper for object information 
encoding. This TFD analysis can be extended to the visual 
cortex. Considering the complexity and quantum of information 
processing in the visual pathway, the methodology evolved 
here can be applied to other sensory pathways as well. Part II, 
presents further analysis on aspects of chromatic information 
encoding and projects a new mathematical formulation called 
the generalized “stochastic multinomial” encoding. 
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Figure 2 Simulation results of different orientations of cone for ‘across layers’ (contd…) 
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Figure 2 Simulation results of different orientations of cone for ‘across layers’ 

Figure 3 Response of horizontal, Bipolar & Ganglion for different orientations of cone for ‘within layers’ (contd...) 
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Figure 3 Response of horizontal, Bipolar & Ganglion for different orientations of cone for ‘within layers’ 

Figure 4 Simulation Results for cube at different distances for ‘across layers’ (contd...) 
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Figure 4 Simulation Results for cube at different distances for ‘across layers’ 
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Figure 5 Response of Horizontal, Bipolar & Ganglion for a cube at different distances for ‘within layers’ 
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Figure 6 Simulation Results for donut for ‘across layers’ 

Figure 7 Response of Horizontal, Bipolar & Ganglion for different shapes  (cone-Fig 2a, cube Fig 4g, donut Fig 6a) for ‘within layers’ 
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                       Table 2 Polynomial and Coefficients from Figure 2 

Stimulus Polynomial A B C D 
Cone ori 1 A+B*X2+C*X12 0.6943E+03 -0.1616E+00 -0.2072E+02  
Cone ori 2 (A+B*X2)/(1+C-X1+D*X12) 0.4024E+01 0.2936E+00 -0.6902E-03 -0.3557E-01 
Cone ori 3 (A+X1)/(B+ C*X22)+D 0.1618E+01 -0.8605E+00 0.2975E-05 0.2086E+03 
Cone ori 4 (A+X2)/(B+ C*X12)+D 0.3397E+06 0.6540E+01 0.1881E-02 -0.5137E+05 
Cone ori 5 A*X1+B*X12+C*X2+D*X22 -0.5606E+01 0.8329E+01 0.5486E+01 -0.7706E-02 

                       Table 3 Polynomial and Coefficients from Figure 3 

Layer Polynomial A B C D 
Horizontal A +B*X2+C*X12 0.7420E+03 -0.3763E+00 -0.2067E+02  
Bipolar (A+X2)/(B+ C*X12)+D -0.2262E+03 0.4070E+01 -0.9915E-01 0.3998E+03 
Ganglion A*X12+B*X1+C*X2+D 0.5254E+01 -0.1342E+02 0.1458E+00 -0.1003E+03 

                       Table 4 Polynomial and Coefficients from Figure 4 

Stimulus Polynomial A B C D 
Distance 1 A*X1+B*X2+C/X14 -0.6223E-05 -0.7231E-06 0.2773E-03  
Distance 2 (A+X2)/(B+ C*X12)+D -0.3006E+03 0.3847E+01 -0.8672E-01 0.3552E+03 
Distance 3 A*X22+B*X2+C*X1+D 0.6727E-02 -0.5269E+01 -0.9359E+01 0.7514E+02 
Distance 4 A+B*X2+C*X12 0.3359E+03 0.2119E+00 -0.1101E+02  
Distance 5 A+B*X2+C*X12 0.3076E+03 0.1272E-+00 -0.7347E+01  

                      Table 5 Polynomial and Coefficients from Figure 5 

Layer Polynomial A B C D 
Horizontal (A+X1)/(B+C*X22)+D-X2 -0.1355E+07 0.9434E+06 -0.2021E+01 0.7772E+00 
Bipolar A+B*X2+C*X12 0.3336E+03 0.2129E+00 -0.9332E+01  
Ganglion A*X22+B*X2+C*X1+D -0.9682E-02 0.7094E+01 -0.2299E+01 0.1273E+03 

                      Table 6 Polynomial and Coefficients from Fig 2a, Fig 4g and Fig 6 

 

 

 

                       Table 7 Polynomial and Coefficients from Figure 7 

Layer Polynomial A B C D 
Horizontal A+B*X2+C*X12 0.6337E+03 -0.6156E+00 -0.1411E+02  
Bipolar A+B*X2+C*X12 0.6139E+03 -0.3217E+00 -0.1758E+02  
Ganglion A*X22+B*X2+C*X1+D -0.9232E-02 -0.7495E+01 0.5836E+01 0.2868E+03 

 
 
 

Shape Polynomial A B C D
Cone A+B*X2+C*X12 0.6943E+03 -0.1616E+00 -0.2072E+02  
Cube A+B*X2+C*X12 0.3359E+03 0.2119E+00 -0.1101E+02  
Donut A+B*X2+C*X12 0.4119E+03 0.7110E-01 -0.1166E+02  
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