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ABSTRACT

This paper develops the incremental learning by using
chaotic neurons, which is called “on-demand learning” at
its developing time. The incremental learning unites the
learning process and the recall process in the associative
memories. This learning method uses the features of the
chaotic neurons which were first developed by Prof. Ai-
hara. The features include the spatio-temporal sum of
the inputs and the refractoriness in the chaotic neurons.
Because of the temporal sum of the inputs, the network
learns from inputs with noises. But, it is not obvious that
all the features are needed to the incremental learning. In
this paper, the computer simulations investigate how the
refractoriness takes an important part in the incremen-
tal learning. The results of the simulations, show that
the refractoriness is an essential factor, but that strong
refractoriness causes failures to learn patterns.

1 INTRODUCTION

It is well known that associative memory can be per-
formed in the neural networks by using the correlative
learning. In the correlative learning, the learning pro-
cess and the recall process are usually separated, because
a neural network used in the correlative learning usually
learns patterns at first, then it recalls one of the patterns
when an input is given.

In the incremental learning, which is called on-demand
learning at its developing time, the learning process and
the recall process are united[1].

In this learning, the network keeps receiving the inputs.
If the inputs are known to the network, it recalls them.
Otherwise, each neuron in the network learns them grad-
ually. The basic idea of the incremental learning is from
the automatic learning[2]. As same as in the incremen-
tal learning, in the automatic learning, the neurons de-
cide whether an input is known or not by themselves and
learn. But, the automatic learning have 4 threshold values
for the learning which are difficult to determine.

Each neuron decides when it learns out of its internal
informations which are the inputs to the neuron and the
internal states of the neuron. The neurons used in this
learning are the chaotic neurons, and their network is
called the chaotic neural network which was developed
by Prof. Aihara[3].

The chaotic neuron has temporal sum of inputs, which
enables the network to learn from noisy inputs.

The chaotic neuron also has refractoriness. The re-
fractoriness is used in the learning, but it is not obvious
whether the refractoriness is essential to the incremental
learning.

In this paper, the computer simulations investigate how
the refractoriness plays an important role in the incremen-
tal learning.

2 INCREMENTAL LEARNING

The incremental learning uses Hopfield’s type network.
Each neuron in the network receives the signals from the
other neurons in the network and the signal from the ex-
ternal inputs through the connection weights. This type
of network has been used in associative memory, except
that the external inputs of this network are kept sending
the input patterns continuously.

The incremental learning was developed by using the
chaotic neurons. The chaotic neuron and the chaotic neu-
ral network were developed by Prof. Aihara.[3]. In the
chaotic neural network, the spatio-temporal sum is intro-
duced and the refractoriness is considered as a negative
feedback. The chaotic neurons in the chaotic neural net-
work depend on the dynamics as follows:

xi(t + 1) = f [ξi(t + 1) + ηi(t + 1) + ζi(t + 1)] (1)

ξi(t + 1) = ksξi(t) + υAi(t)

ηi(t + 1) = kmηi(t) +
49∑

j=1

wijxj(t)

ζi(t + 1) = krζi(t)− αxi(t)

(2)
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Figure 1: Patterns to be learnt in the network

Table 1: Parameters

υ = 2.0 ks = 0.95 km = 0.1 kr = 0.95
α = 2.0 θi = 0 ε = 0.015

where xi(t + 1) is the output of i-th neuron at time t +
1, f is the output sigmoid function described below in
Equation (3), Ai(t) is the input to i-th neuron at time
t, ks, km, kr are time decay constants, υ is the weight for
external inputs, wij is the connection weight from neuron
j to neuron i, and α is the parameter that specifies the
relation between the neuron output and the refractoriness.
In Equation (2), ξ, η, and ζ show external input, mutual
interaction, and refractoriness respectively.

f(x) =
2

1 + exp(−x
ε )

− 1 (3)

In this paper, the network is composed of 49 chaotic
neurons. The parameters in the chaotic neurons are as-
signed to the values in Table 1. The 26 input patterns
are shown in Figure 1. In each pattern, 49 inputs are ar-
ranged by 7× 7 and a large black square represents 1 and
a small one does −1.

The network has each pattern inputted during 50 steps,
before moving to the next one. After all the patterns are
shown, the first pattern comes repeatedly. A set is defined
as a period through 26 patterns from the first pattern to
the last pattern. It means that one set is 50× 26 steps in
these simulations.

The network does not make the neurons change their
connection weights simultaneously. Each neuron decides

whether it changes the connection weights or not. To
decide it, the neuron checks the learning condition shown
in Equation (4).

ξi(t)× (ηi(t) + ζi(t)) < 0 (4)

When the network knows an input pattern, the exter-
nal input and the mutual interaction have same signs in
every neurons. When the network doesn’t know an in-
put pattern, the external input—ξi(t)—and the mutual
interaction—ηi(t)—have different signs in some neurons.
In this learning method, each neuron changes its connec-
tion weights, if the mutual interaction has different signs
from the sign of the external input. To make the patterns
memorized firmly, if the mutual interaction is less than the
refractoriness—ζi(t)— in the absolute value, each neuron
also changes its connection weights.

When the condition is satisfied, the neuron changes its
connection weights as follows:

wij =
{

wij + ∆w, ξi(t)× xj(t) > 0
wij −∆w, ξi(t)× xj(t) ≤ 0 (5)

This is based on the simple rule to increase the weight
when the external input of the neuron and the output of
the other neuron have the same sign, or to decrease when
they have different signs.

The repetition of the conditions and the connection-
changes makes the network have the input pattern mem-
orized. In this learning, the initial values of the connec-
tion weights can be 0, because some outputs of neurons
are changed by their external inputs and this makes the
condition establish in some neurons. In this paper, all of
the initial values of the connection weights are set to 0.
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(b) 5 noises.
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(c) 10 noises.
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(d) 15 noises.

Figure 2: Refractory parameter α vs number of successes

3 REFRACTORINESS OF CHAOTIC NEU-
RONS

The chaotic neurons have some features which the usual
neurons don’t have. In this paper, the features of refrac-
toriness are focused.

It is not obvious whether the refractoriness is needed
in the incremental learning or not. Each neuron changes
its connection weights along with two inputs. One is the
external input from the outside of the network. The other
is the input with the mutual interaction. The basic con-
cept of changing weights of this learning is to match these
inputs in the same sign—positive or negative. Therefor,
these inputs should be important. At developing time, the
refractoriness was intended to make the patterns memo-
rized firmly.

3.1 LEARNT PATTERNS BY REFRACTORY
PARAMETERS

Computer simulations were carried out to make clear
the role of the refractoriness by changing the parameter.
When α = 0, the refractoriness does not exist. In the
former work, α was settled to 2.0[1]. In this paper, α was

swept from 0.0 to 10.0 to investigate the effects of the
refractoriness.

In the incremental learning, the network can learn from
noisy inputs, because the external input is summed in
time and the network mainly receives the effects of correct
inputs. For the noisy conditions, 5, 10, or 15 elements are
selected at random at each step and turned 1 to −1 or −1
to 1.

The result after 20 sets is shown in Figure 2. In each
graph, the horizontal axis shows the value of α and the
vertical axis shows the number of the patterns learnt suc-
cessfully. It has to be notified that the associative mem-
ory with the correlative learning could not learn any of
the patterns when all 52 patterns are inputted without
noises.

Figure 2 shows that no pattern was stored in the net-
work when there is no refractoriness (α = 0). From α = 0
to α = 0.9, the number of success is increasing steeply.
Within 5 noises, for the range near α = 2.0, all 26 pat-
terns are successfully memorized. This means that the
refractoriness is essential for this incremental learning.

Figure 2(b) to (d) show that all the numbers of success
in this range are growing down as the number of noises
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(c) 10 noises.

�

�����������

�����������

�����������

�����������

�������������

�������������

� � � � � ���

	�

� 
�
���
�����


��
��
��
��

α

(d) 15 noises.

Figure 3: The α vs total number of learning

increases. But it is remarkable that in the case of 10 noises
in Figure 2(c), the network could learn all 26 patterns at
some values of α. 10 noises are more than 20% of 49
neurons.

In the range over α = 3.5, the value of α becomes bigger,
the number of success becomes more decreasing in Fig-
ure 2(a). The strong refractoriness causes failures in the
learning of patterns. Following simulation results show
how the learning goes to failure, along with α.

3.2 REFRACTORY PARAMETER VS TOTAL
NUMBER OF LEARNING

To investigate the failure in the high value of α, the
computer simulations count how many times the neurons
satisfy the learning condition. As same as the former sim-
ulation, α was swept from 0.0 to 10.0 to count the total
number of learning.

The result after 20 sets is shown in Figure 3. In each
graph, the horizontal axis shows the value of α and the
vertical axis shows the total number of learning.

According to the value of α growing, the total number
of learning increases.

In Figure 3(a), in the range under α = 3.5, the to-
tal number of learning increases gradually. Comparing
to Figure 2, the neurons learn more, as the refractoriness
grows. From this result, it is a reasonable consideration
that the number of success is getting bigger from α = 0
to α = 0.9 because the total number of learning increases,
and that it saturates from α = 0.9 to α = 3.5. The upper
limit is 1274000—49 neurons × 50 step par each pattern
× 26 patterns × 20 sets.

While the total number of learning increases steeply
over α = 3.5, the number of success is getting smaller.

Figure 3(b) to (d) show that all the total number of
learning increases more rapidly, as the number of noises
increases. The noises probably make the learning condi-
tion establish even when the learning is not needed.

For more considerations, the next computer simulations
investigate how the total number of learning in one set
varies along with sets.
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Figure 4: Total number of learning in each set without noises

3.3 TOTAL NUMBER OF LEARNING IN
EACH SET

In these simulations, to investigate the failure in the
high value of α, the total numbers of learning in one set
are counted in each set. A set has been defined as a period
of 50× 26 steps in this paper. In each noise condition, α
is set to four different values. The first is where α is low,
the second is where the number of success becomes high in
Figure 2, the third is where the number of success becomes
steep in Figure 3, and the fourth is where α is too big.

The result is shown in Figure 4. The horizontal axis
shows the sets. The vertical axis shows the total number
of learning in each set.

In Figure 4(a), the total numbers of learning are get-
ting smaller, in the successful value of α = 2.0, as the
time is passed by in the network. Because the network
has memorized no pattern at first, the neurons learn fre-
quently. When the network gets memorized the patterns,
the neurons don’t learn frequently any more.

Comparing Figure 4(a) to (d), the curves become flatter
as the noises increase. This means that the network has

not learnt the patterns. Therefore, the noises with high
occurring rate must prevent the network to learn correctly.
At high noise occurring rate, the noises could change the
signs of the external inputs and make the learning con-
dition satisfied, then the neurons change their connection
weights to the wrong way.

In the low value of α = 0.2, it is obvious that the total
numbers of learning are too small to learn.

In the high values of α = 4.0 or 8.0, the total numbers
of learning are high, especially α = 8.0. In the case of
α = 8.0, the numbers are almost same. There are two
hypothetical reasons that can be thought.

One is that the learning is so strong that the network
forgets the former patterns, because most patterns that
the network didn’t learn in the high α are in the head
part of the patterns as shown in Figure 5. In Figure 5,
the horizontal axis shows the value of α and the vertical
axis represents the patterns to be learnt. The top of these
patterns is “A” followed by “B”, “C”, and the bottom is
“Z”. The black square shows that the network memorized
the pattern in the value of α. At α = 1, α = 2, and α = 3,
there are black squares throughout the patterns, which
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Figure 5: A pattern that the network learnt without noises is shown as a black square. In the high values
of α, the head part, which is A, B, C, · · ·, are not learnt by the network.
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(b) α = 8.0

Figure 6: Transitions of internal states of a neuron learning without noises. In (a), the mutual interaction
η is following the external input ξ. In (b), η is not following η and is changing unstably.

means the network learnt all the patterns. At α = 7,
α = 8, and α = 9 the patterns figured “A” to “I” are
not memorized in the network. At α = 10, the patterns
figured “A” to “T” are not memorized by the network.
The patterns are inputted in alphabetical order. The head
part of the input patterns go out of the memory of the
network, being overwritten by the following patterns.

The other is that the learning is not effective to learn
the patterns, because the internal states of the neurons
are changing against our expectations. It seems to change
unstable as shown in Figure 6. In both graphs, the hori-
zontal axis shows the steps that the simulation continues
and the vertical axis shows the values of the internal in-
formations in a neuron. At α = 2.0, after the external
input changed at step 50, ξ is moving to positive. When ξ

crosses 0, η and ζ start to change. After ζ crossed 0, the
learning condition is satisfied again and again. At α = 8.0,
ζ changes its moving direction frequently. Therefore, the
neurons change their connection weights right way and
wrong alternately.

The verification of these hypothesizes remains for fur-
ther works.

4 CONCLUSION

The incremental learning is another way to construct
the associative memory, and can make the network learn
from inputs with noises. In this paper, the computer sim-
ulations investigated how the refractoriness plays an im-
portant role in the incremental learning.
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The results of the simulations show that the refractori-
ness is an essential factor. The neurons which have the
refractoriness, like the chaotic neurons, must be used in
this incremental learning. And they also show that the
strong refractoriness causes failures of the learning of pat-
terns. In this paper, two hypothetical reasons were of-
fered, but the further detailed investigations remain for
further works.
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