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ABSTRACT 

The interacting questions of consciousness, awareness and 
depth of anaesthesia are challenging and timely. A neuronal 
network of the somatosensory pathway relating to 
administration of narcotic/hypnotic drugs for surgical 
anaesthesia has been developed. It employs spatially distributed 
and lumped-parameter modelling, and is a derivative of other 
established neuronal models. It comprises 22 ODE (Ordinary 
Differential Equations) and has many connectivity parameters 
which require careful selection. The initial model used 
connectivity coefficients proportional to the average number of 
synaptic contacts between the relevant cortical cellular 
components based on histological examination. While giving 
reasonable correspondence to experimental data from rats, the 
manual adjustment of these crudely estimated coefficients was 
both tedious and not entirely satisfactory. In this paper,  the 
connectivity terms have been optimised using global GA 
(Genetic Algorithm) tuning. The GA is seeded with the 
previously established synaptic weighted estimates. It is shown 
that very good agreement with physiological data has been 
achieved in an automated fashion. The resultant connectivity 
coefficients can now be investigated for probing likely areas of 
uncertainty for further detailed anatomical studies. 

 
INTRODUCTION 

The literature discusses extensively, based on physiological 
experiments, the structure and functioning of the somatosensory 
cortex and its role in anaesthesia processing (Angel 1993; 
Treede et al. 1999; Kaas and Collins 2001). To alleviate the 
dependence upon animal experiments, a neuronal network of the 
somatosensory pathways, as shown in Figure 1, was proposed 

previously (Ting et al. 2003) by the researchers to provide a 
framework for a wide range of hypothesis  testing in exploring 
the anaesthetic mechanisms/dynamics. Though the structure is 
realistic and parsimonious, it is valuable as a paradigm on which 
a series of anaesthetic phenomena have been explored in a 
focused scientific  manner. Analytical studies were not 
undertaken due to the lack of physiological information and the 
complexity of the model, and hence existing neuronal models 
and physiological parameters were utilised in the proposed 
pathway model. By comparison with responses from 
anaesthetised rats, the model’s responses are able to describe the 
dynamics of somatosensory evoked responses  (SER) under 
general anaesthesia. However, one of the major problems in 
application of the proposed model is the insufficient knowledge 
on the numbers of inter-neuron synaptic contacts which are 
normally roughly counted in histological studies (White 1989). 

 

 
Figure 1 A proposed neuronal model of the 
somatosensory pathways (Ting et al. 2003). 

 
In Figure 1, the number of either excitatory or inhibitory 

synapses per neuron is  represented using a connectivity 
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coefficient accounting for the average number of synaptic 
contacts between the correlating cells (Wilson and Cowan 
1972). The connectivity coefficients can be partially derived 
from costly and time-consuming histological studies  (White 
1989; Jansen and Rit 1995), but mainly as a compromised result 
from simulations (Ting et al. 2003). This inherent drawback  
gives simulation responses with a big discrepancy from 
physiological responses  although a similarity in between exists . 
There is  a certain, subject-dependent combination of the 
connectivity coefficients in light of physiology (Tsodyks et al. 
1998), but it was not successful in previous work and hence 
coefficient selection was mainly induced by trial-and-error. Thus, 
it would be beneficial to derive a set of optimal coefficients 
based on which simulation responses may be more coincident to 
physiological responses. In lieu of physiology, the derived 
optimal combination of coefficients may be used as a guideline 
in exploring the synaptic distribution in the brain. 

RESEARCH METHODS 

Network Modelling of the Somatosensory Pathway 

Modelling the Neuron Cells 
 
A neuron can be seen as the construction of synapses, cell 

body, and axon hillock using the concept of lumped modelling 
(Lopes da Silva et al. 1982). The synapses convert  incoming 
signals into membrane potentials. Membrane potentials, either 
temporally or spatially distributed, are integrated by the cell 
body. The integration is  then converted to nerve impulses at the 
axon hillock if the voltage reaches a threshold potential. Finally, 
the nerve impulses are transmitted through the axons. 

Physiological experiments show that the EPSPs and IPSPs 
have impulse responses and can be lumped as follows (Lopes da 
Silva et al. 1982): 
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with 3.25mVA = , 22mVB = , -1100sa = , -150sb = . 
A and B represent the amplitude gains of the PSP functions and 
a and b the transmission lag constants. 

The interneuron has its own transfer function (Jansen and 
Rit 1995): 
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where 3/aad ≈ means that the interneuron has a latency 3 
times longer than the cortical cells.  The axon hillock model is 
lumped as (Freeman 1987): 
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where 156.0 −= mVγ , Hze 5.20 = , mV60 =ν .  

Because of the lack of sufficient physiological information, 
both cortical cells and interneurons are assumed to have the 
same hillock model.  This approach has been used by several 
researchers in modeling various nervous pathways such as the 
visual pathway by Jansen and Rit (1995), alpha EEG rhythm by 
Rotterdam et al. (1982), the olfactory pathway by Freeman 
(1987), and the somatosensory pathway by Ting et al. (2003). 

Network for Numerical Simulation 
 
A block diagram of the physiological pathway of Figure 1 is 

obtained by applying the above linear synaptic transfer functions 
and the nonlinear hillock activation function to each cell in the 
pathway and is shown in Figure 2. Constants #C  represent the 
connectivity coefficients which account for the average number 
of synaptic contacts between the correlating cells (Wilson and 
Cowan 1972). Based on the pathway network and the neuronal 
models we can construct a set of 22 ODEs suitable for numerical 
solution to describe dynamics of the pathway in various aspects 
of neurophysiological studies (Ting et al. 2003).  

The block representation of Figure 2 was solved using 
numerical techniques with a fourth-order Runge-Kutta-Fehlberg 
(RKF4) method under a fixed step length. Responses recorded 
on the scalp corresponding to the integrated current generated by 
the membrane potential fluctuations of the cortical cells. Hence 
the model validation signals are obtained by collecting results of 
y5-y7 for the output of the primary somatosensory cortex cells in 
layer IV.  

A noticeable difficulty encountered in dealing with model 
simulation is the selection of the connectivity coefficients  – 
sixteen coefficients exist in the model, ie. 161, L=kCk , 
which are not well known yet. The literature gives only partial 
and inaccurate information on the connectivity coefficients. 
Hence, to arrive at an oscillatory evoked response more realistic 
to physiological responses, it has been a laborious task in 
manually selecting the coefficient values in accordance to the 
histological literature and existing similar works. 

Our previous work adopted a combination of the 
connectivity coefficients as below: C1=C, C2=0.25C, C3=0.1C, 
C4=C, C5=C, C6=C, C7=C, C8=0.25C, C9=C, C10=0.1C, 
C11=0.8C, C12=0.1C, C13=0.1C, C14=C, C15=C and C16=C with 
C=135 being decided by trial and error. Since large changes of 
the connectivity coefficients can make the system unstable, the 
above selection was maintained constant throughout all 
simulations. This is physiologically reasonable since the number 
of synaptic contacts should be a constant under normal 
conditions (Thomson and Deuchers 1994). 

Pilot Simulation Results 
 
The 22 ODEs of the network model in Figure 2 were 

implemented in GNU C++ on Linux workstations. The ODEs 
were solved using the fourth-order Runge-Kutta-Fehlberg 
(RKF4) method with a fixed step length. A sweep is envisaged to 
consist of 500 samples at sampling rate of 500 Hz. The sampling 
period in the RKF4 integration is divided into 50 steps for a 
better resolution. Fifty (50) raw responses are averaged to give 
an evoked response, this being the so-called ensemble 
averaging.  
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Figure 2. Detailed block diagram of the proposed model for the somatosensory pathways of Figure 1.  

 
The responses representing the post-synaptic membrane 
potentials occur at the respective neuron.  

A monotonic function was used to mimic the somatic 
stimulus (Jasen and Rit 1995): 
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with 7n = , 0.005w = , and 0.5q = . Stimuli generated 
using the above function were applied to the cortical model at the 
50th sample time of each sweep. Spontaneous activities, 2 5x xL , 
applied to the cortical cells from the surroundings were assumed 
to be a random disturbance with a magnitude range of (120,320) 
impulse per second representing the instantaneous frequencies.  

In analogy to SEPs recorded from living subjects, we are able 
to define the usual terms relating to SEP analysis as shown in 
Figure 3. Figure 3a is a response recorded from a 
urethane-anaesthetised rat. In Figure 3b, obtained from the model, 
the onset, initial positive peak and initial negative trough are also 
well defined.  These indices are used as neurophysiological 
indicators in clinical applications (Angel and LeBeau 1992).  

The Need  for Optimised Connectivity Coefficients 
 
The connectivity coefficients employed in the above study 

were kept constant through the whole process of simulation. This 
is the major drawback of this cortical model in that it does not 
have sufficient knowledge on real connectivity coefficients. 
Variations of the coefficient values make the system outcomes to 
differ from the animal data and be unstable. Though constant ,the  
connectivity coefficients during simulation simply follow the 
nature law if the synaptic contacts are not damaged by either 
chemicals (drugs) or physical disturbances (Thomson and 
Deuchers 1994). However, the above simulation result implies 
that there exists an optimal combination of the connectivity 
coefficients which produce more realistic responses in 
comparison with physiological data. This concept is well 

recognised by those who use artificial neural networks (ANN) in 
solving engineering problems. In ANN applications, the 
weightings connecting neural elements are optimised using a 
learning engine. Being motivated  by the success of ANN 
learning, we employed Genetic Algorithms to determine an 
optimal combination of the connectivity coefficients with the aim 
to give more realistic simulation results. 

  
 
 
 

 

 
Figure 3. A simulation response in analogy to a 
realistic SEP sweep: (a) from an anaesthetized rat, (b) 
simulation result. 

BIS6.4 3 of 6



 4 Copyright © #### by ASME 

OPTIMISATION OF CONNECTIVITY COEFFICIENTS 

The Need of Optimisation 
The optimisation of the connectivity coefficients is a 

problem to simultaneously search for multiple, competing 
solutions. Traditionally, this problem is solved using either a 
calculus-based or numerical technique(mainly dynamic 
programming) (Tang et al. 1996). The former may result in local 
optima while the latter is only suitable for problems of moderate 
size and is time consuming in computation. The Genetic 
Algorithm(GA) is a search process based on the law of natural 
selection and genetics. Usually, a simple GA  consists of three 
operations: selection, genetic operation, and replacement. 
Because of its simplistic implementation procedure, the GA is 
used as an optimisation tool in this study for searching the 
optimal combination of the connectivity coefficients. T he GA has 
also been used in construction of ANNs for engineering 
applications (Maniezzo 1994; Angeline et al. 1994). For details 
of the GA the readers are referred to the large volume of 
literature.  

Optimisation  with Genetic Algorithms 
In this study, the GA is employed to arrive at global 

optimisation of the connectivity coefficients. The connectivity 
coefficients are described as a population which comprises a 
group of chromosomes, from which the connectivity coefficients 
are randomly selected in accordance with our previous work. The 
fitness values of the all chromosomes are evaluated by 
calculating the objective function in a decoded form. A parent 
group of chromosomes is selected from the population to 
generate the offspring by the defined genetic operations. The 
fitness of the offspring is evaluated in a similar fashion to their 
parents. The chromosomes in the current population are then 
replaced by their offspring, based on a certain replacement 
strategy.  

The GA cycle is repeated till a desired termination criterion 
is reached. If all go well throughout this process of simulated 
evolution, the best chromosome in the final population can 
become a highly evolved solution to the problem. A top-level 
description of the GA employed in this study is itemised below 
and is shown in Figure 5: 

1. Randomly generate an initial population. 

2. Calculate the fitness ( )iF x of each chromosome ix  in 

the current population ( )X t . 

3. Create new chromosomes ( )rX t  by mating current 
chromosomes, applying mutation and recombination as 
the parent chromosomes mate. 

4. Delete numbers of the population to make room for new 
chromosomes. 

5. Compute the fitness of ( )rX t  and insert those with a 
higher fitness into the population. 

6. Go to step 2 till end test or the best chromosomes reached.  
 
In step 1, parameters of the initial population are normally 

selected to 1 to 4 times the number of parameters being sought 
(Lee and Fan 2000). Hence the number of generations is set to 25. 
An 8-bit binary encoding scheme is employed. The length of bit 

number is a compromise between accuracy and computation 
time. 

Pre- processor

Population
In i t i l i sa t ion

Calculate 
Fitness Function Reproduction

Satisfactory?

Yes      No

Mating MutationOptimum
Result Selection

 
Figure 5. A GA cycle.  

 
The status of each chromosome is evaluated using an 

objective function. The objective function calculates the fitness 
of a new population of chromosomes. The objective (fitness) 
function is defined as:  
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where max,ix  and min, jx  are the maximum/minimum of 

chromosome ix  after encoding and N  is the number of 
chromosomes. The adoption of 0.1 in the denominator prevents 
the calculation from an overflow error in division. A population 
with a higher fitness is used for reproducing a new generation 
based on the roulette wheel selection method (Tang et al. 1996). 
Mating is a process based on which chromosomes of populations 
exchange in the mating pool. The mating rate is 0.6 in this study. 
While mating allows chromosomes to exchange chromosomes, 
the process of mutation opens a door for new chromosomes to be 
part of the population. Mutation enhances the parameter search 
zone so that possible local optimisation can be avoided. In this 
study the mutation probability is set to 0.01. The elitism strategy 
(Wall 1996) is used in step 5 for retaining the best fit 
chromosomes in the old generation while the remaining are 
substituted with new chromosomes.  

This simple GA engine is combined with the network model 
of the somatosensory pathways of Figure 2. The connectivity 
coefficients are encoded, mated, mutated and then reproduced to 

a globally optimised combination C
~

. C
~

 is furthermore refined 
with the following iterative learning algorithm: 

e
CC

+
+=

1
1~ˆ  (7) 

with parameters as defined in Figure 6. The learned coefficients 

Ĉ stipulate the somatosensory model and hence a new sweep of 
simulated evoked-response is obtained. The optimisation and 
learning operations are terminated when the simulated response 
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by  matches the animal data refy  within a tolerable range, with 
the criterion defined below: 
 

∑ −= 2)( bref yyISI  (8) 
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Figure 6. The GA optimizer. 

 

TENTATIVE SIMULATION RESULTS AND DISCUSSION 
 
The GA -based simulator was implemented using the C++ 

language based on an object-oriented approach. The GA 
operation was realis ed using the open-source GAlib, a C++ 
library of Gas components available freely at 
http://lancet.mit.edu/da/.  

The animal response of Figure 3a is used as the reference 

data refy  in GA optimisation of Figure 6. The numerical 
simulator for the somatosensory pathways is identical to that for 
Figure 3b with the same neuronal parameters. Connectivity 
coefficients used for Figure 3b are used as initial value in 
coefficient optimisation. The following  GA parameters are 
adopted during simulation: population size (25), generations 
(500), mutation rate (0.01), mating rate (0.6), and convergence 
rate (0.99). A pilot study shows that the optimisation converges 
after 120 generation of iteration as shown in Figure 7. Hence the 
simulation terminates at 120th generation to save computational 
time.  

An optimal combination of the connectivity coefficients are 
obtained and then fixed in the whole course of SEP simulation. 
Figure 8 shows a sweep of simulation response with parameter 
search ranges as summarized in Table 1.Comparing Figure 3.b 
and Figure 7 it is seen that the latter  matches the animal data well. 
The promising simulation result implies that there exists an 
optimal combination of the connectivity coefficients in a living 
subject. This is physiologically reasonable as the number of 
synaptic contacts in the brain is unlikely to change with time 
except when brain lesions occur.  
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Figure 7. GA-optimised simulation results.  

 

 

 

 

 

 

 

 

 

Table 1. Search ranges of connectivity for optimization and optimized coefficients.  
 

1C  2C  3C  
4C  5C  

6C  
7C  

8C  
9C  

10C  11C  
12C  13C  14C  

15C  
16C  

Upper 

Bound 135 37.5 14.8 139 139 139 139 139 139 14 139 14 14 139 139 139 
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Lower 

Bound 135 30 12.1 122 122 122 122 30 122 12 122 12 12 122 122 122 

Optimised 
135.8 34.15 13.6 135.7 135.67 135.7 134 35.5 133.3 14.4 108.88 14.6 14.77 135.54 133.76 133.76 

 

 

CONCLUSIONS 
The proposed somatosensory neuronal model shown in 

Figure 1 was initially simulated based on “best guess” 
connectivity coefficients. The scenario gave promising 
simulation responses from a physiologically-based structure and 
components . Though the result was promising, there still exists a 
big discrepancy between realistic responses from a living subject 
and the simulation responses. This is understandable since the 
connectivity coefficients were derived by trial, which do not 
account for actual combination in living subject. This is 
inevitable as it is really difficult to count the actual synaptic 
distributions or obtain even a rough estimate by histology. 

The GA -based simulator was implemented using the C++ 
language based on an object-oriented approach. The pathway of 
Figure 1 consists of spatially distributed cortical neurons. Each 
cortical neuron represents a population of neurons in the 
respective area. Hence it would be natural and challenging to 
utilise clustering computing to construct a parallel computing 
platform and hence facilitate its computational speed (Dorigo and 
Maniezzo 1992). We may expect that each neuron population of 
the pathway can be decomposed into unique computing units. 
Based on this approach a real-time nervous simulation system 
may be possible in the near future. 

This simulation result of this pilot study reveals that it would 
be valuable to use the optimised connectivity coefficients as a 
guideline for histology in counting the number of synaptic 
contacts  in the brain. Further works should be conducted to 
explore several physiological aspects of the application of this 
GA -based simulator. 
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