
FAMILIARITY GATED LEARNING FOR INFERENTIAL USE OF EPISODIC MEMORIES IN NOVEL 
SITUATIONS - A ROBOT SIMULATION

Emilia I. Barakova
RIKEN Brain Science Institute (BSI) 

2-1, Hirosawa, Wako-shi,
Saitama, 351-0198 Japan

emilia@brain.riken.jp 

Brain Inspired Cognitive Systems
August 29 - September 1, 2004

University of Stirling, Scotland, UK
ABSTRACT
This paper presents a computational model for encoding and 

inferential reuse of memories, based on novelty and familiarity 
principle. The method is strongly inspired by the state of the art 
understanding of the hippocampal functioning and especially its 
role in novelty detection and episodic memory formation in rela-
tion to spatial context. A navigation task is used to provide an 
experimental setup for behavioral testing with a rat-like agent. 
The model is build on three presumptions. First that episodic 
memory formation has behavioral, as well as sensory and per-
ceptual correlates; second, hippocampal involvement in the nov-
elty/familiarity detection and episodic memory formation, 
experimentally supported by neurobiological experiments; and 
third, that a straightforward parallel exists between internal hip-
pocampal and an abstract spatial representations. Some simula-
tion results are shown to support the reasoning and reveal the 
methods applicability for practically oriented behavioral simula-
tion.

INTRODUCTION
Behavioral studies have found a convenient testbed in robotic 

simulations due to the embodied nature of both living organisms 
and robots. There are three systems that have to be considered in 
making this parallel: a sensory system, an action system, and a 
system that connects both. The last system can have arbitrary 
complexity, ranging from simple coupling between the sensing 
and action to a detailed model of integrative, perceptual, mem-
ory, attentional and motivational processes.

Most of the models of biologically inspired robotic systems 
are build by simulating insect-like behaviors, for a review see 
[12]. The simulations following the functionality of the mam-
malian brain, that include memory or motivational features are 
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seldom implemented on a robot. The theoretical models of the 
hippocampus and basal ganglia, however, suggest neural solu-
tions that incorporate those features, and produce results on a 
behavioral scale, although not in the range of the computational 
expense, affordable for robotics. 

The objective of this paper is to propose a model suitable for 
simulated or embodied behavior, that facilitates inferential reuse 
of experienced memories. Therefore, internal memory is a nec-
essary feature of the proposed model. In addition, the model has 
to satisfy requirements coming from the behavioral setup as 
well as requirements that concern memory reuse.

An animate continuously gathers information about the sur-
rounding world through experiencing sequences of events. The 
organisms, which are capable of making mental representation 
encode such subjectively experienced sequences (episodes). 
This capability arises with the availability of a limbic system 
(e.g. in mice).

The analysis and modeling viewed trough this aspect have the 
following feature. Many models in computer science and robot-
ics exploit the characteristics of the semantic memory - memory 
for facts; Actually, memory for events and their relatedness is 
the way higher organisms build their knowledge. Moreover, 
memory for episodes copes naturally with the sensory, percep-
tual and behavioral character of learning of an embodied agent.

To be able to simulate the episode encoding, remembering has 
to be an intrinsic property of the learning model, instead of an 
external storage mechanism. To meet this standard, this paper 
uses a learning mechanism with asymmetric temporal associa-
tion rule.

In addition, the memory has to be flexible in both encoding 
and retrieval. Flexibility, as opposite to exact storage puts for-
ward the need to selectively store the incoming perceptual infor-
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mation, judging which is new, or very similar to the experienced 
one. The criteria of familiarity will determine the behavioral 
choice in the retrieval phase. 

The so narrowed scope puts forward memory based behavior, 
which includes recall of past events, distinguishment of what is 
novel at present, in order to perform selective encoding, and 
familiarity detection to facilitate the ability to infer appropriate 
behavior in a novel environment or for performing a novel task. 

Therefore, discrimination of novelty and familiarity is a cen-
tral aspect of this work. Novelty is a known factor that gates 
learning in natural and artificial systems (for a recent review of 
on novelty detection in artificial systems see [15]). Definitions 
of novelty vary widely, due to the many perspectives within the 
considered multidisciplinary research area. Approaching the 
novelty and familiarity discrimination problem from the per-
spective of an embodied agent, has the following meaning: first, 
that novelty has to be considered in relation to behavior; and 
second, the information, that has to be judged for novel or 
familiar is derived by the experienced episodes of events.

The relation between novelty and behavior has received much 
attention by experimental neuroscientists[3][9][10]. The mam-
mals, who are able to form episodic memories, and especially 
humans can remember some information for the whole life 
span. This fact suggests, that the episodic memory encoding is 
an efficient process, capable of one-trail learning and in the 
same time a degree of selectiveness of the content and impor-
tance of the encoded information is available. 

In this study, novelty is considered as only gating factor for 
forming episodic memories during learning and familiarity as a 
mechanism for inferential use of episodic memories while 
behaving in a unseen environment. Technically, the novelty and 
familiarity are reciprocal criteria. The base for this model is the 
hippocampal function, since the hippocampus can effectively 
perform both functions together: episodic memory encoding, 
and novelty judgement, while, for instance, the organism is 
involved in spatial behavior task. Such model, adapted for a 
robotics task, has the potential to go beyond the state of the art 
robotic applications since it intrinsically accounts for the fol-
lowing aspects.

• Robots interact with the environment through a continuous 
stream of sensory information, eventually forming an inter-
nal representation and acting accordingly. The hippocam-
pus processes information sequentially, combines various 
sensory and memory experiences in a representation that is 
possibly modulated by behavioral feedback.

• Many experimental studies suggest the involvement of the 
hippocampal formation in novelty and familiarity detection 
[11][18] and inferential reuse of old episodes [7][24]. 

• Extensive modeling has created a consistent computational 
framework that connects the internal hippocampal and spa-
tial representations. 

• Experimental evidence has shown that the pyramidal cells 
in hippocampal area CA1 code for spatial location in terms 
of environmental queues and memorized episodes; more-
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over, it provides a novelty/familiarity distinguishment.
This paper is organized as follows: In Section I a hypothesis 

of how the novelty function of the hippocampus is accom-
plished and proposes a computational scheme accordingly. In 
Section II global framework is constructed that makes a parallel 
between robot’s and hippocampal encoding; The framework 
and the scheme from the last two chapters is bridged to the com-
putations, derived by theoretical findings in Section III to lay a 
ground for further modelling. The initial results are shown in 
Section IV. Section V offers a discussion of the state and the 
perspectives of this research. In addition, the place of the work 
done so far in the overall navigation model is given, and the 
connection between the different elements are made explicit.

I. HYPOTHESIS 
It is widely known that the hippocampus encodes episodic 

memories. In particular, the CA1 area, to which projections of 
sensory-bound stimuli come together with formed episodes of 
recent memories is an area of interest [11][18][25]. Recent anal-
ysis of the data from rat experiments [25] has shown the bi-
modal structure of the theta rhythm, a brain rhythm which 
appears when exploratory behavior takes place. A possible rea-
son for bimodality might be the different nature of information 
that comes at the same time to CA1 area - sensory and episodic, 
and the different time it needs to be projected to this area. Other 
studies suggest, the function of CA1 as a comparator [11][18]. 
There are slight variations of how exactly the comparison takes 
place, but in general they agree in the following mechanism:

The same sensory-bound pattern is transferred trough the 
direct and the indirect pathway from the Enthorinal cortex to 
CA1 area (Figure 1). During the indirect path the pattern passes 
DG and CA3 areas, where orthogonalization, and episodic 
memory encoding take place.

The combination of the information from the learned episode 
from CA3 and the sensory-bound information coming directly 
from EC forms a representation that controls the upcoming 
behavior. At the same time the comparison between the two pat-
terns produces a novelty signal which indicates whether encod-
ing has to take place, or the episode is familiar already.

Subsequently, during recall, the perforant path input initially 
has a stronger influence on activity in CA1. However, for famil-
iar stimuli, the pattern of the activity arriving from region CA3 
via the Schaffer collaterals will dominate within region CA1, 
allowing output from region CA3 to drive neurons which had 
previously been associated with the particular activity pattern in 
region CA3. 

Our hypothesis is, that the CA1 area of the mammal hippoc-
ampus is one possible place where sensory and memory-related 
information comes together to form a representation. This repre-
sentation determines the future behavior, and indicates the 
familiarity/novelty of the upcoming information. It therefore 
determines what has to be remembered or forgotten.
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Figure 1.   Working scheme, accentuating on the 
comparative role of the CA1 area. The sensory bound and 
episodic memory related representations are compared to 
indicate the familiarity.

Based on this hypothesis, we refine the computational scheme 
as shown in Figure 1. This scheme accentuates the CA1 area, as 
a physical component with comparative function: CA1 are in 
this scheme provides two types of signals - one that will be fur-
ther used to form a motor representation, and the other, that 
accounts for novelty.

The information from the learned episode from CA3 and the 
sensory-bound information coming directly from EC forms the 
pattern that controls the upcoming behavior. At the same time 
the comparison between the two patterns produces a novelty 
signal which indicates wether encoding has to take place, or the 
episode is familiar already.

The scheme in Figure 1 demonstrates the computational flow 
for encoding within the behavioral setup of a simulated rat. To 
put it into the right perspective the global view of the overall 
system is shortly outlined. In feedforward manner, first environ-
mental sensory information is gathered; Next, the perceptual/
episodic memory system (that takes the computational steps as 
shown in Figure 1) encodes the sensory information and pre-
pares for the corresponding behavior; Third, the navigation sys-
tem, associated with the motor/behavioral functionality uses the 
produced episodic representation. The behavioral feedback has 
its impact on the internal hippocampal representation. The sen-
sory and behavioral part will not be further discussed in this 
paper.

Several studies have established the opinion, that the parahip-
pocampal area is responsible for novelty detection and manage-
ment, while the hippocampus is involved in encoding relational 
memory. Recently a series of new experimental and neuroimig-
ing studies [13][17][21] [24][27] confirmed that the hippocam-
pal formation contributes similarly to declarative memory tasks 
that require relational or familiarity processing. This confirms 
the plausibility of the proposed schematic representation.
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III. EPISODIC MEMORY AND ROBOTICS FORMAL-
ISM

Episodic and autobiographical memories have intrinsic rela-
tion to sensory, perceptual, and behavioral events.

The term “episodic memory” is used differently by the 
researchers. Here the episodic memory will be understood in the 
line of meaning proposed by Tulving [23], and developed by 
Conway [5]. The episodic memory notion, as used in the hip-
pocampal studies has some differences. By a definition, given 
by Conway [5], which extends the widely accepted definition of 
Tulving [23], the episodic memory has event specific, sensory-
perceptual details of recent experiences that lasted for compara-
tively short periods of time (minutes to hours). 

Exploiting the idea, that the organism-environmental interac-
tion is continuous and inseparable process[1] we argue, that epi-
sodic memory has also behavioral correlates:

• There is not a clear separation between action and percep-
tion. Every sensory-perceptual event causes behavior, 
which in turn either changes the environment or reflects the 
changes that occurred independently of its action; 

• Episodic memory is formed during specific experienced 
sequence of events, and every event consists of sensing, 
binding the sensed information into a coherent perception, 
acting accordingly; 

• Episodic encoding consists of organizing abstract knowl-
edge derived from goals active during experience. 

• Episodic memory formation takes short time slices, possi-
bly determined by changes in goal-processing. Goal and 
action processing are tightly related.

The computational approach that has been taken in this work 
requires a formalization of the episodic memory task. Let us 
assume that an episode  evolves under the action of the 
following competing influences: sensory , perceptual  and 
behavioral . 

(1)

where f denotes a functional dependence, and  is a self 
inhibitory term.

For a robotic framework it is feasible to consider discrete pro-
cessing. Therefore an episode  is a set of n discrete events 
occurring in a temporal order ,  defined by a 
considerable difference in the event representations.

(2)

A single event  is defined by ,  and , 

(3)

where the sensory component  introduces the influence from 
the external world and constitutes by feedforward connections; 
perceptual component  represents the internal influences, and 
is performed by the lateral connections; the behavioral 
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component  represents the influence, that the previous action 
has brought on the current event. All three components can be 
multidimensional vectors. The change from one to another 
event requires a change in at least one component, that is bigger 
than an internal threshold, indicating the detection of a novel 
event. The distinguishment among sensory and perceptual 
influences is very delicate, since the perception includes sensory 
as well as memory related, anticipatory and behavioral 
correlates. In our notation an artificial division is made which 
assumes that perception is a result of an internal state changes 
only.

Learning of an episode means that associations can rapidly be 
formed among items presented in temporal proximity. This is 
especially valid for events, or routes, where the temporal order 
is of importance. Therefore by episode learning the order or the 
temporal association has appeared important rather than or 
along with another common feature, and this has influenced the 
encoding. So, the events that have been learned as an episode 
will tend to be recalled together and after each other, even if 
presentation order is changed. In addition, the following two 
dependencies between the temporally related connections are 
important: contiguity and asymmetry. Contiguity means that 
stronger associations are formed between stimuli that occur near 
each other in time than between those that are separated by a 
larger interval. Asymmetry determines that the forward associa-
tions are stronger than backward associations.

IV. MODEL OF THE BIOLOGICAL LEARNING PRO-
CESS

This model follows the information flow as suggested in the 
scheme of Figure 1. It is widely known that the cells in the rat 
hippocampus fire when the rat is at particular location of the 
environment. Because of that feature, this cells are called also 
place cells. If the rat moves trough the environment, at every 
particular place a number of place cells fire. Cells that code for 
places in nearest vicinity fire most strongly, while the cells that 
code for more distant location fire less. The activity of the place 
cell firing can be modelled by a Gaussian for the open environ-
ments, where place cells show non-directional firing. Therefore, 
the movement of a simulated rat at every place of the environ-
ment is characterized by a particular pattern of firing, containing 
of the active place cells in vicinity of the animate. The activity 
of each cell can be represented in the following way:

(4)

where  is the location in the space of the center of the cell ‘s 

place field,  is the position of the simulated rat, and  
represents the width of the place field. s corresponds to the 
sensory representation within a single event, eq. (3).

The sensory as well as behavioral signals are encoded into a 
constellations of the active place cells. The unique pattern of 
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activity corresponds to a certain position  in the environment. 
The level of activity of every place cell depends on the distance 
between the rat position and the place fields centers. Figure 2
shows two single activation patterns from the rat route, which 
represents the pattern of activation of the simulated EC area. 
These patterns are dependant on the external-world and are fur-
ther transmitted through the direct pathway. 

Figure 2.   Samples of sensory bound patterns.

The same patterns are projected to CA3 area and therefore 
take also the itinerary of the indirect pathway, where they partic-
ipate in the formation of episodes. The representation, projected 
to CA1 area through the indirect pathway is formed within a 
network structured as a two layer lattice of neurons, correspond-
ing to the EC and CA3 layer. The feedforward connections from 
a EC area, that contain patterns as the ones shown in Figure 2, to 
the superficial CA3 area are trained trough a modified hebbian 
rule as shown in Eq. (5).

(5)

where  is learning rate, notation CA-EC shows the starting 
and destination layer of the connection (coming from EC, 
reaching CA layer) the indices i and j denote neurons on the 
input and output layer, correspondingly. The CA layer is not 
denoted as CA1 or CA3, because the learning rule is used for 

EC-CA1 as well as EC-CA3 learning. The term  
of Eq. (5) is needed due to internal instability of the Hebbian 
rule.

The predominant are the topological connections - the simula-
tion is done as the neurons from the first layer project to a topo-
logically correspondent area, in a way that every input neuron is 
connected to 20% of the output neurons.The lateral inhibition 
connections, denoted as LI have a sharpening effect on the 
transmitted to CA3 area activations. Eq.(6), i.e. they promote 
self-organization.

(6)

where  are learning rates,  is a gating factor,

The biological and computational plausibility of the learning 
process performed in Eq. (5),(6) have been shown previously in 
[22] where the learning parameters choices is explained in 
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detail. 
By far, the representation made within the layer denoted as 

CA3 has not the intrinsic capacity for temporal association. This 
quality is obtained by applying a hebbian rule with asymmetric 
time window over the lateral connections only. The asymmetric 
time window has been simulated to correspond to the experi-
mental measurements as found by [28], see also [14]. Due to 
computational difficulties it has been scaled symmetrically in 
the interval [-1 1]. The lateral learning rule is adapted from the 
initially proposed by Dayan and Abbott rule [6], so that it fits to 
the practical constrains of the asymmetric time window function 
- Eq.(7).

(7)

where ATW stays for the asymmetrical time window function, 
the one shown in Figure 3, v and u are correspondingly the post, 
and presynaptic lateral neurons, and bound is the time window 
size. 

Figure 3.   Asymmetrical time window function based on 
experimental studies.

In summary, modified Hebbian learning mechanism with 
20% projections between the layers and inhibitory connections 
to promote topological self-organization form the episodic sam-
ples. A plot of a sample learned episode performed by the set of 
the explained rules is shown in Figure 4.

The result of this learning process corresponds to the percep-
tual contribution of the proposed event definition . Behavioral 
influence is represented by a neuromodulator-like gating signal:

(8)

where  denote correspondingly the learning rate, 
current, and desired state of CA1 output. Due to the scope of 
this paper, this influence will not be elaborated further on.
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Figure 4.   An episode, formed during a single run.

V. NOVELTY DETECTION AND THE HIPPOCAMPAL 
PARADIGM

The two representations, the sensory bound representation of 
the direct pathway, and the episodic representation of the indi-
rect pathway, come together in CA1 area, where the comparison 
(novelty/familiarity judgements) takes place. Note, that at the 
same time, the CA1 area gets input from the current pattern of 
EC area and a pattern from CA3 area, which does not have pro-
cessed yet (incorporated into an episode) the pattern that EC 
area currently projects. 

The sensory bound patterns from the direct pathway are sim-
plified in order to fit into the representation of the encoded epi-
sodes, some examples are shown in Figure 5.

Figure 5.   Some training patterns, based on the place field 
activation patterns.

For solving of the novelty problem, that will reflect the com-
putations on the behavioral scale, the network build on the basis 
of the proposed computational scheme is simplified.

The hebbian learning followed by a lateral inhibition is 
replaced by a modification of the competitive hebbian learning 
algorithm [8][16], which makes a single neuron to represent a 
input pattern.The connections between events within an episode 
are formed as an internal property of the learning process, that is 
a principle difference from existing models with temporal his-
tory encoding [1]. An on-line comparison of the incoming sen-
sory-bound patterns with those encoded into the episodes. As a 
result of training the two episodes from the figure below have 
been distinguished: after the presentation of the third pattern, 
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the novelty signal gradually increases, which initiates encoding 
of a new episode.

Figure 6.   Learning of two episodes with an overlap. After 
the two trajectories show discrepancy, the novelty signal is 
issued.

VI. DISCUSSION 
This study aims to show the relevance of novelty/familiarity 

discrimination method based on the hippocampal modelling for 
robotics exploration. The embodied nature of an animal and 
robot makes this parallel useful, and the functional efficiency of 
the hippocampal encoding, while performing both tasks: epi-
sodic encoding and novelty detection, suggests an optimal com-
putational scheme. 

The impact of novelty is two-fold: it allows an efficient 
encoding (exploration) phase and it is a basis for flexible reuse 
of memories in the recall (exploitation) phase. The same com-
putational paradigm is used in both cases, which makes possible 
on-line implementation. The paper accentuates on the method-
ological part and shows simulations of episodic memory encod-
ing and novelty/familiarity detection, on which efficiency of the 
encoding process is based. The reuse of memories on familiarity 
principle is in an experimental phase. 

Making the parallel between the robotics and episodic mem-
ory formalism we argue, that in addition to sensory and percep-
tual (memory and another internal factors related), behavioral 
influence contributes to episodic memory formation. The 
behavioral feedback, however is not a part of the simulations 
shown so far and is to be described elsewhere. Novelty and 
familiarity principle is the only gating factor for encoding and 
recall at this stage of the work. Including the behavioral feed-
back shall change this setting as goal oriented behavior and nov-
elty will determine learning.

The method differs from the existing navigational models, 
that relate hippocampal modelling and robot navigation tasks, 
since it focuses on novelty for episode formation that is to deter-
mine emergent behavior.

x

y
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