
Methods for Simulating High-Conductance
States in Neural Microcircuits

Eilif Müller, Karlheinz Meier, Johannes Schemmel
University of Heidelberg, Kirchhoff Institute for Physics,

INF 227, D-69120 Heidelberg
E-mail: emueller@kip.uni-heidelberg.de
http://www.kip.uni-heidelberg.de/vision

Abstract— A network simulation paradigm was devel-
oped to be consistent with observations of the high-
conductance state of layer IV cortical neurons in an
awake brain in-vivo. Two classes of integrate-and-fire based
neurons, pyramidal (with adaptation) and inhibitory, were
modeled. Synapses were conductance based. The high-
conductance state was induced by synaptic bombardment
with 1000 excitatory and 250 inhibitory Poisson process
with firing rates (e,i) respectively. The rates (e,i) were
chosen so that the respective neuron models, (pyramidal,
inhibitory), reproduce these rates under this bombard-
ment. Network synapses were then enabled, replacing a
fraction of the Poisson process input. A 9x9x9 lattice
of neurons with a cortical layer IV inspired network
topology was simulated at 1/200th real-time. Coherent
network bursting emerged at 5-7 Hz. The dependence of
the burst period on the time constant of adaptation was
demonstrated to be linear with a slope consistent with
unity. The simulation uses event based communication and
a scalable Linux cluster implementation is foreseen.

I. INTRODUCTION

The field of neuroscience is in a state similar to that
of the field of thermodynamics at the beginning of the
20th century prior to the introduction of the theory of
statistical mechanics by L. Boltzmann. By connecting
the properties and behavior of atoms and molecules with
the large scale properties and behavior of the substances
for which they are building blocks, Boltzmann brought
clarity and new fundamental understanding to the field
of physics and laid the foundation for much of present-
day research.

In neuroscience, such a unification of the bottom-
up and top-down approaches has yet to be achieved.
Much is known about the anatomy and dynamics of
single neurons, the building blocks of the central nervous
system (CNS) [1]–[5]. Additionally, much is known
about the holistic and dynamical properties of the de-
veloping and functioning brain [6]–[8]. However, un-
like ensembles of indistinguishable atoms, the extent to
which the unique contribution of each distinct neuron
is important for network function remains a mystery.
Networks of neurons are in detail analytically intractable
and ensemble methods apply only in the simplest of

cases and, in the end, seem to miss the point. Numerical
investigations provide an ever more viable tool with
continuing advancement in microprocessor speed and
parallelization techniques. Still, simulations on the scale
of a complete brain remain science fiction.

In what follows, a network simulation paradigm will
be presented which, while working under computational
limitations, still provides insight into emergence of
global properties from local dynamical rules in a patch
of a cortex-like neural network in an active awake state.
Simulations on this modest scale will bring clarity to
the dominant assumptions regarding the behavior of
individual neurons in a network setting. Additionally,
they could reveal semi-local principles for the function
of small networks which are repeated throughout the
brain [9], [10]. In the future, as network modeling
matures, coupled simulations in a Linux cluster envi-
ronment will allow a glimpse of the difficulties of larger
scale experiments. This will provide critical information
needed for the less configurable analog VLSI implemen-
tations which are likely the future of large scale network
modeling [11].

II. NEURON MODEL

Two classes of integrate-and-fire (I&F) neurons, pyra-
midal and inhibitory, with conductance-based synapses,
were modeled. The neuron parameters were deter-
mined by fitting to NEURON based Hodgkin-Huxley
models under various conditions [12]. An additional
phenomenological mechanism for spike-rate adaptation
(SRA) was required, in the case of the pyramidal neuron
class, to achieve satisfactory generality across all fit
situations investigated. It consists of a action potential
(AP) activated and exponentially decaying conductance,

gsra(tAP + dt) = gsra(tAP ) + qsra,

dgsra(t)
dt

=
−1
τsra

gsra(t),
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coupled to the neuron resting potential so that the
standard membrane equation takes the form:

cm
dv(t)
dt

= gl(El − v(t)) + gsra(t)(Esra − v(t))

+
∑

j

gj
s(t)(E

j
s − v(t)),

where qsra is the SRA quantal conductance increase,
τsra is the time constant of adaptation and the sum j is
over all input synapses. Recently, the use of a similar
adaptation mechanism was reported in [13].

All simulations to follow were custom written in C++
and analyzed off-line in MATLAB (The MathWorks,
Inc., Natick, MA). Single neuron experiments were
compared to their equivalents in NEURON for quality
assurance [14]. The exponential Euler method with a
time step of 0.1ms was used for all temporal integration
[15].

III. MODEL-CONSISTENT BACKGROUND RATES

Cortical neurons under awake conditions in-vivo are
found to be characterized by low input resistance, depo-
larization, continuous membrane potential fluctuations
and spontaneous firing, all features due mostly to op-
posing excitatory and inhibitory spontaneous synaptic
activity [6]. This mode of operation is known as the
high-conductance state of cortical neurons.

There are many approaches to induce a high-
conductance state in simulation. Synaptic bombardment
with Poisson process events was the method chosen here.
Synaptic activity is generated by 1000 excitatory and
250 inhibitory Poisson processes with Poisson release
rates of e and i respectively. For rates, (e,i), above a
few Hz, the synaptically activated contribution to the
membrane conductance becomes appreciable and the
transition to the high-conductance state occurs.

The synaptic events used to establish the high-
conductance state for a single neuron could just as
well come from another neuron in a high-conductance
state so long as the neuron firing rates are equal to the
synaptic bombardment (background) rates. The model-
consistent background (MCB) rates are defined here as
those background rates (e,i) under which the pyramidal
and inhibitory models together fire again at the rates
(e,i) respectively. The MCB rates can be determined by
finding the (e,i) for which the functions

f(e, i) = fPY (e, i) − e,

g(e, i) = fIN (e, i) − i,

have simultaneous zeros, where fPY (e, i) and fIN (e, i)
are the firing rates of the respective neuron classes as
a function of (e,i) shown in fig. 1. To determine the
MCB rates, first find i∗(e), the zero of f(e, i), as a
function of e. Then find e∗∗, the zero of g(e, i = i∗(e)).
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Fig. 1. A: Reciprocal mean ISI as a function of synaptic bombardment
background rates for the pyramidal I&F neuron model. B: As in A,
but for the inhibitory I&F neuron model.

Then (e∗∗, i∗(e∗∗)) are the MCB rates. A graphical
representation of the procedure is shown in fig. 2.

IV. NETWORK SIMULATION

A network of 729 neurons arranged on a 9x9x9 lattice
with approximately 80% pyramidal and 20% inhibitory
neurons was simulated. The number of output synapses
per neuron is parameterized by the connection factor,
rcon which, based on biological measurements [8], is
between 20%-40%. Connections are random without
spatial preference over the lattice, as the volume of
cortical tissue the network represents, (200µm)3, is
smaller than the axonal extent of typical cortical cells.
Synaptic strengths are uniform. Transmission delays are
the Euclidean distance times the delay factor, fdelay

(≈ 0.5ms per unit distance) [16]. A schematic of the
network is show in fig. 3. A simulation run consists of
two phases:
Initiation phase: synapses between network neurons are
disabled and each neuron is synaptically bombarded
for 100ms by 1000 excitatory and 250 inhibitory Pois-
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Fig. 2. Determining the model-consistent background rates by zeros
of g(e, i = i∗(e)) by linear fit (e = 6 ± 1Hz, i = 10.1 ± 1.5Hz).

Fig. 3. A schematic of the synaptic connections made by a represen-
tative neuron (center,red) in the lattice.

son processes firing at the model-consistent background
rates. This establishes the high-conductance state for
each individual neuron.
Run phase: The neurons are now firing at exactly the
same average rates as the background activity. At each
neuron the network synaptic inputs are enabled and the
number of background synaptic inputs is reduced by the
number of enabled network inputs.

We now have a coupled network of neurons, each in
a high-conductance state. Is the configuration stable? Do
novel dynamics emerge?

V. OBSERVATIONS

Run times of 5 second lengths were simulated. A
raster plot of the typical spiking activity of the network
as a function of time is shown in fig. 4. Periodic
coherent network bursting on the order of 5 − 7Hz
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Fig. 4. A spiking activity raster plot for 5 seconds of simulation with
rcon = 0.2 and fdelay = 0.5ms. Periodic coherent bursting of the
network emerges with a period τ = 170 ± 20ms.

was observed. The dependence of bursting character on
network parameters that leave the MCB rates unchanged
was investigated, see [12]. Bursting was observed in all
such cases. The bursting period was found to be linearly
dependent on the time constant of adaptation with a
slope of unity.

Fig. 5 shows the various conductances of a sin-
gle neuron during a burst event. Characteristic is the
rapid increase in excitatory synaptic conductance of
network origin, followed by a rapid increase in in-
hibitory synaptic conductance. Adaptation current can
be seen to accumulate over multiple AP events during
the burst. Whether it is inhibition or adaptation which
extinguishes the explosion of excitation during a burst
remains unclear. However, bursting, periodic or other-
wise, was decidedly less frequent for simulations where
the adaptation mechanism was disabled. This suggests
it is the periodic application and release of a resrictive
force which brings about the cascades of excitatory
activity, rather than an inherently present mechanism.

VI. CONCLUSIONS & OUTLOOK

A neural network simulation was designed and
implemented which focused on replicating the high-
conductance states of the individual neurons as observed
during awake measurements in-vivo, while conforming
to computational restrictions. A modest network of 729
neurons with a cortical layer IV inspired connectiv-
ity was simulated. Periodic coherent network bursting
emerged with a period of 5 − 7Hz. Bursting was pre-
served under mild variation of network parameters and
was shown to be dependant on the time constant of
adaptation present in the pyramidal neuron model.

The interspike interval (ISI) statistics of single neu-
rons in the coupled network exhibited an excess of
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Fig. 5. Conductances of single neuron during a coherent network burst
event. (red) gse - excitatory synaptic activity originating from network
neurons, (blue) gsi - same as gse but inhibitory, (black) gsra - spike-
rate-adaptation conductance, (green) gt - total conductance including
background activity but not gsra, (magenta) AP train - vertical lines
indicate those times an action potential was generated by the neuron.

short ISI events compared to uncoupled neurons due
to coherent network bursting. This seems to contradict
present in-vivo observations [17]. The emergence of
bursting is thus to be taken as a bug rather than a feature.
It suggests inadequacy of the underlying neuron model
or network setup. Immediately suspect are uniform net-
work weights and neuron parameters, and the absence
of STDP rules and structured input. Moreover, this
raises doubts that simulations at this limited scale have
the potential for the complexity of dynamical behavior
sufficient to reproduce, even in a vague sense, in-vivo
firing patterns.

The possibility of running many interacting simu-
lation nodes, such as those described here, in parallel
in a Linux cluster environment is a topic currently un-
der investigation. The highly parallelized computational
paradigm of the CNS has aspects which make this
pursuit attractive. First, with biological firing rates of
≈ 10Hz and each node simulating ≈ 103 neurons at
1/200th real-time, roughly 50 events per second will be
generated by each node. The network bandwidth require-
ments are therefore low. Second, inherent transmission
delays between neurons on the order of milliseconds
translate into seconds of simulation time during which
processing nodes can operate independently. A discrete-
event based implementation is therefore possible. Third,
cortical areas separated by millimeters are largely un-
coupled except through sparse connections through the
white matter. The number of nodes to which a single
node must send its events is therefore limited making the
paradigm scalable. Such a pursuit to model the CNS on a
large scale would require us to confront details regarding

its configuration. What it would reveal concerning the
design behind such a configuration is of unquestionable
value.

By continuing with the methods described here, nu-
merically mapping the perturbation of single neuron
models to the emergence of global properties in simula-
tions of ever increasing complexity and scale, we may
hope to gain much insight into the void between the
bottom-up and top-down approaches in the field of neu-
roscience. By unifying the macroscopic and microscopic
worlds, Boltzmann made an undeniable contribution to
the field of physics. The mechanisms of discovery at
play then in the field of physics will play out once
again in the field of neuroscience, but undoubtedly in
a new and unique way. They will bring about clarity
and understanding where it is presently absent. Certainly
there will be a revolutionary idea, and a lack of universal
acceptance, but some will listen, and a fundamentally
different world will emerge where we are equipped with
new conceptual tools to understand our own minds.
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