
 1 Copyright © #### by ASME

Brain Inspired Cognitive Systems
August 29 – September 1, 2004

University of Stirling, Scotland, UK

SUPERVISED TRAINING OF SPIKING NEURAL NETWORKS WITH WEIGHT LIMITATION CONSTRAINTS

Q Wu, University of Ulster Magee, Derry, BT48 7JL, Northern Ireland, UK {q.wu@ulster.ac.uk}

TM McGinnity, LP Maguire, B Glackin, A Belatreche
University of Ulster Magee, Derry, BT48 7JL, Northern Ireland, UK

ABSTRACT

There has been much evidence to show that single precise
spikes, transfer information among biological neurons. Based
on this encoding scheme various spiking neural networks have
been proposed to solve computational problems. One such
algorithm, a spike time error-backpropagation algorithm for
temporally encoded networks of spiking neurons, has been
successfully applied to the problem of complex non-liner data
classification. There are however, certain features of the
algorithm that can be further improved. In this paper, synaptic
weight limitation is introduced into the algorithm and a novel
solution for the problem raised by non-firing neurons is
presented. In addition a square cosine encoder is applied to the
input neurons and thus the number of input neurons can be
reduced. The improved algorithm becomes more reliable,
robust, efficient and reduces the implementation costs. The
classical XOR-problem, a function approximation experiment
and the Iris benchmark data have been applied to validate the
improved algorithm. The experimental results reported show
that the modified algorithm produces comparable accuracy in
classification with the original approach utilising a smaller
spiking neural network.

1. INTRODUCTION

Since the integrate-and fire model was first proposed, fire-
rate coding has played an important role in the measurement of
information transferred among neurons. Recently, there have
been many examples presented showing that information is
carried by precise spike timing [Gerstner et al, 1996; Riehle et
al, 1997; Bi & Poo, 1998; Diesmann et al, 1999; Song et al,
2000, Roberts et al, 2002] and publications by Gerstner have
demonstrated transform formulas between pulse codes and
firing rates [Gerstner, 1999]. In general, it is acknowledged that
by using a temporal information-encoding scheme, a
computational spiking neural network can be constructed with a
smaller number of spiking neurons than by using a fire-rate
scheme. A temporal information-encoding scheme has
therefore been applied to many computational spiking neural
networks for self -organising or clustering [Choe 1998; Sohn

1999; Lysetskiy 2002]. Bohte et al proposed a spike time error-
backpropagation algorithm based on this scheme [Bohte et al,
2002] and demonstrated that spiking neural networks can be
applied to solve non-liner classification problems. Spike time
error back-propagation (BP) was derived by analogy with a BP
algorithm utilised in classical neural networks, however, it was
found that the algorithm would not converge if there were no
constraints placed on the parameters of the spiking neural
network. A crucial issue for the algorithm however, is how to
guarantee that all neurons fire at least once, as if a neuron does
not fire, the spike-time error cannot be calculated. Modifying
several constraints such as the learning rate and the time
constant of spiking neurons have been suggested as a means of
avoiding this situation however, a solution has not been
mentioned in [Bohte et al, 2002] and there are no reports on this
issue to date.

In section 2, a general computational spiking neural

network is presented, while a brief introduction of the spiking
time error-backpropagation algorithm is given. In section 3, the
problems with spiking time error-backpropagation algorithm
and solutions for improvement of the algorithm are presented.
Experimental results and remarks are given in section 4, while
conclusion and further study issues are presented in section 5.

2. SPIKING NEURAL NETWORK
Spiking Neural Networks (SNNs) are based on spiking

neuron models and plasticity synapses. In general a spiking
neuron operates by integrating spike responses from
presynaptic neurons and generating an output spike when the
membrane potential reaches a threshold value. In the approach
detailed in this paper, the spiking neuron model utilised was the
spike response model [Gerstner, 1999]. The SNN was
constructed by interconnecting a number of these neurons using
synapses corresponding to different time delays. A
computational representation of a spiking neural network based
on the spike response model is shown in Figure 1.

BIS6.1 1 of 6

 2 Copyright © #### by ASME

Figure 1: Generic Computational Representation of Spiking
Neural Network

A spike response function [Gerstner, 1999] for each
synapse can be written as follows.

()1()
() ()

k
it tk

jk k
i i

t t
y t t t e τε

τ

−−−
= − = (1)

Neuron j integrates weighted potential responses caused

by spikes from all presynaptic neurons. The membrane
potential is written as follows.

∑ ∑ −=
i k

k
i

k
ijj ttwtx)()(ε (2)

where ti
k = ti+dk, and wij

k is the weight or efficiency of the
synapse. When the potential xj(t) reaches a threshold θ, the
neuron generates an output spike. In [Bohte et el, 2002], the
spiking time error is represented by the difference between
desired firing time tjd and actual firing time tja. In a spiking
neuron, the firing time is dependent on the membrane potential
xj(t). The transform from firing time error (tjd - tja) to
membrane potential changes of ∆xj(t) can be written as

∑
∂

∂

−
=

∂

∂
−

=
∂

∂
=

∂

∂
=

)(
)(

1

)(
)(
1

)(
)(

)(
,

)(

a
j

l
jl

ijli
a
j

j
x

j

xja
j

j

j

t
t

ty
wt

t

txtx

t
t

tx

t
j

j

θ

where θ is the threshold and yj
l(t) is the potential response

from synapse l for neuron j. Supposing that neuron j belongs
to the output layer and neuron i is presynaptic of neuron j, the
learning rule for the synaptic weight between the output
neuron j and its presynaptic neuron i can be written as follows:

()()
()

()
j

k a d a
i j j jk a

ij j l a
j jk

i l ij a
j

y t t t
w t

y t
w

t

η

∈Γ

−
∆ = −

∂

∂∑ ∑
 (3)

Following [Bohte et el, 2002], suppose that h represents a

neuron in input layer, i a hidden neuron and j an output

neuron. The learning rule for the weight between the hidden
neurons can be written as follows:

{
()

() }

()
()

k ay ti jk a ky t wj kh i j ij atk k a iw y thi h i i l ay tl n iwn l ni ai ti

δ

η δ η

∂
∑ ∑

∂
∆ = − = −

∂
∑ ∑∈Γ

∂

 (4)

where,

{ }

∑ Γ∈ ∑
∂

∂

∂

∂
∑ Γ∈ ∑

=

ih l a
it

a
it

l
hyl

hiw

a
it

a
jtk

iy
ij k

k
ijwj

i
)(

)(
δ

δ (5)

and Γi is a set of afferent neurons for neuron i. The algorithm
based on these rules is called SpikeProp and detailed
derivations of the rules can be found in [Bohte et al, 2002].

3. PROBLEMS AND SOLUTIONS
A problem arises with this approach in that if the rules are

applied directly, the algorithm does not consistently converge.
It is evident that the learning rule (3) cannot be used if a
neuron does not fire because tj

a cannot be calculated for non-
firing neurons. In this paper, a feedback rule as follows is
proposed for non-firing neurons.

)(

))()((
)(

jtjx
jtjxjtk

iy

jtk
ijw

−
−=∆

ϑ
η (6)

However, the problem remains when the number of non-

firing neurons becomes large. Inspired by weight limitation of
biological neurons [Rossum et al, 2000, Song et al, 2001],
weight limitations of wmin and wmax are set to solve the
problem. In order to illustrate this mechanism, a simple
spiking neural network is shown in Figure 2 demonstrating the
XOR problem.

Figure 2: Spiking neural network for XOR problem

Logic value '1' is assigned an early firing time and logic value
'0' is assigned a late firing time. An input spike time of 0ms is
associated with logic value ‘1’ while a spike time of 6ms is
associated with logic value ‘0’. An output spike at 10 ms
represents a logic ‘1’ and an output at 16ms represents a logic
‘0’. The training patterns are shown in Table 1.

d K ti

xj(t)

vj wij
1

d k

d1 wij
k

wij
K ui

d K
t1

d k

d1

wi1
1

wi1
k

wi1
K

u1

yi(t)

X

Y u v 10 16

Z
wk

1u

wk
2u

wk
uv

BIS6.1 2 of 6

 3 Copyright © #### by ASME

Input Output

X(ms) Y(ms) Z(ms)
0 (1) 0 (1) 16 (0)
0 (1) 6 (0) 10 (1)
6 (0) 0 (1) 10 (1)
6 (0) 6 (0) 16 (0)

 Table 1 Training pat terns associations for XOR problem

In this case, the input encoding time -window is tw= 6ms

i.e. input spikes are encoded within 6ms. The maximal
network delay is tm= 16ms, i.e. an output should be obtained
16ms after the network started to receive spikes. From figure
2, u represents a neuron in hidden layer while v represents a
neuron in output layer. The potential of neuron v is dependent
on the output spikes of the hidden layer neurons and can be
represented by

() ()k k
v uv u

u k

x t w t tε= −∑∑

Suppose that neuron v fires at time tm. The membrane

potential is

() ()k k
v m uv m u

u k

x t w t tε θ= − =∑∑ (7)

Let N represent the number of neurons in the hidden layer.

Suppose that each neuron in hidden layer fires at same time tk
and the weights from neurons in the hidden layer to neuron v
are equal, i.e. wv

k = w1v
k = w2v

k =…= wNv
k. The weights can be

calculated as follows

()
k
v k

m

w
N t t

θ
ε

=
−

 (8)

From these equations it can be seen that if wvu

k is not less
than wv

k for all synapses from neurons u∈N to neuron v,
neuron v fires at or earlier than tm. Therefore, wv

k can be
regarded as the minimal weight for synapse with delay tuk. By
combining Equation (1) and Equation (8), the expression of
minimal weight for the synapse with delay tk can be written as

()
1

(min)
()

k
mt t

k
v k

m

w e
N t t

τθτ
−

−
=

−
 (9)

By using equation (9) to control the weights during

training, the learning algorithm can converge to the desired
error. According to equation (9), the initial weights can be set
by the following equation.

numberrandomwinitw k
v

k
vu _(min))(+= (10)

In the experiments detailed in this paper, the range of the

random number is set to [0,θ]. By analogy, maximal weights
can be derived from the desired earliest output-spike;
however, the derivation is ignored because maximal weights
are not important for improving the algorithm.

4. EXPERIMENT RESULTS

4.1. DEMONSTRATION WITH XOR PATTERNS
An algorithm was implemented in software to simulate

the spiking neural network shown in Figure 2, with two inputs
X and Y, one spiking neuron in the hidden layer and one
spiking neuron in the output layer. The following parameters
were considered, time constant τ =16ms, learning rate=0.005
and threshold=0.5. Therefore, the membrane potential of
hidden neuron u is

()
1()

()
k
ht tk

k h
u hu

h k

t t
x t w e τ

τ

−
−−

= ∑∑ (11)

where h∈{1,2} is an index of the two inputs,

k∈{0,1,2,3,…,6} is an index corresponding to a delay time tk
∈{0ms, 1ms, 2ms, 3ms,…,6ms}. The membrane potential of
output neuron v can be described as

()

1
16

0

()
()

16

k
uu

t tkK
k u

v uv
k

t t
x t w e

−
−

=

−
= ∑ (12)

where Ku is the index of latest firing time of neuron u. Based
on these membrane potentials, Equation (6) and the SpikeProp
rules are applied to train the network with four XOR patterns.
The four output spike-time curves recorded in each training
epoch are shown in Figure 3(a). The y-axis corresponds to the
output spike time, while the x-axis represents the training
epoch number. The blue solid-curve is the output spike time
for input pattern (X=0ms, Y=0ms), and the red dot-curve is
the output spike time for input pattern (X=6ms, Y=0ms).
During a training epoch, the four patterns are applied to update
weights once. At epoch 1, output spike at time 10ms was
caused by X input spike at 0ms and Y input spike at 0ms.
Output spike at time 14ms was caused by X input spike at 6ms
and Y input spike at 6ms. When input pattern was X input
spike 6ms and Y input spike at 0ms or X input spike 0ms and
Y input spike at 6ms, the network fired at 15ms. These initial
firing times depend on random initial weights. After training
several epochs, the red curve converged on the target output
spike time 10ms. The blue curve oscillated but eventually
converged on the target firing time 16ms. This curve indicates
that the output spike-time for input pattern (X=0ms and
Y=0ms) is later than 16ms on multiple occasions during the
training time. When the spike time was larger than 20ms, the
neuron was regarded as a non -firing neuron in the simulation
program and equation (6) was applied for error feedback. If
initial weights were in large range, the algorithm could not
converge.

Therefore, weight constraints are proposed to solve this
problem. For example, the weights from inputs to neuron u
can be calculated by combining Equation (9) and (11).
Suppose that the latest firing time for neuron u is tmu=12ms.
Following Equation (9), the minimal weights from the inputs
to neuron u is calculated by

() (12)1 1
160.5 16

(min)
() 2(12)

k k
mut t t

k
u k k

mu

w e e
N t t t

τθτ
− −− −×

= =
− −

Table 2 shows all values for wu
k
(min).

BIS6.1 3 of 6

 4 Copyright © #### by ASME

k 0 1 2 3 4 5 6
tk 0ms 1ms 2ms 3ms 4ms 5ms 6ms
wu

k
(min) 0.26 0.27 0.28 0.29 0.31 0.33 0.36

Table 2: Minimal weights from inputs to neuron u

 (a) Equation (6) applied

(b) Equations (9) and (10) applied

Figure 3: Output Graphs of Training for XOR Patterns

In order to illustrate how these weights control the neuron
spikes, suppose that input X is a spike at 1ms (k=1) and input
Y is a spike at 6ms (k=6). From Table 2, we have

1
1 (min) 0.27uw = , 6

2 (min) 0.36uw = . Form Equation (11), the
membrane potential of neuron u is

(1) (6)

1 11 616 16
1 2

(1) (6)
() ()

16 16

t t

u u u

t t
x t w e w e

− −
− −− −

= +

(1) (6)1 1
16 16(1) (6)() 0.27 0.36)

16 16

t t

u
t tx t e e

− −− −− −= +

when t=tum=12ms, xu(t) =0.5059. The value is greater than the
threshold value of 0.5.
This implies that neuron u fires earlier than tum =12 ms if the
weight whu

k is larger than wu
k
(min).

By analogy, a set of minimal weight wv
k
(min) can be

obtained and applied to control wuv
k Under limitation of the

weights, the four output spike-time curves recorded in each
training epoch were generated corresponding to the four
training patterns shown in Figure 3(b). Here it can be seen that
the four output spike-times are not later than 16ms. Twelve
epochs were needed to converge to the minimal error, which is
four times faster than that achieved by the algorithm without
weight limitation. If equation (6), (9) and (10) are not used, the
training does not always converge to zero error due to the fact
that if a neuron does not fire, there is no firing-time -error
feedback. In [Bohte et el, 2002], a large number of input
encoding neurons are proposed to solve this problem.

4.2. SIMULATION OF NON-LINEAR FUNCTION
The network was extended in size from that shown in

Figure 2, and was applied to simulate the peaks function from
Matlab (see Figure 4(a)). By using the improved algorithm,
the network does not require the encoding neurons mentioned
in [Bohte et el, 2002].

(a) 24X24 input patterns

(b) Neural network output

Figure 4: Non-liner function simulated by SNN with improved
learning algorithm

The network is constructed in two layers with two input

neurons representing x and y, 6 spiking neurons in the hidden

BIS6.1 4 of 6

 5 Copyright © #### by ASME

layer, and one output spiking neuron. In comparison with the
network in section 4.1, the time scale has changed from 1ms to
¼ms. The encoding time window tm= 6ms corresponds to
tm=24 units of time scale. One unit on the axis in Figure 4
represents ¼ms. Results for the peaks function simulation are
shown in Figure 4(b). Figure 5 shows that the error converges
to zero at approximately 400 epochs.

Figure 5: Network output error changes over training time for

peaks function simulation

4.3. SIMULATION OF IRIS DATA SET
The Iris Data Set consists of four inputs. The range for

input-1 is [4.3, 7.9], input-2 is [2.0, 4.4], input-3 is [1.0, 7.0]
while the range for input-4 is [0.1, 2.5]. For example, there are
24 units of time scale for input encoding time window of the
SNN in section 4.2. If all input values are converted to [0, 24],
some inputs will lose their precision. The authors’ solution is
to propose a square cosine encoder for the input neurons. Let
xi be an input variable and (xi1,xi2,…xi m) be a set of spike times
of m input neurons. For input neuron k

εϕ
π

1
2)]

(min)(max)
)((min)

([cosint(
ii

ii
wik xx

kxx
tx

−
−−

= (13)

where xik is an integer corresponding to a spike time, tw is the
encoding time window, ε is a constant for adjusting the neuron
sensitivity range (0.6 was used in this case), and ϕ(k) is a
phase offset for input neuron k . In this example, four input
neurons were used to deal with input-3 of the Iris data. The
precision of the input data is represented by γ with γ = 0.1,
xi(max) =7.0 and xi(min) =1.0. Each neuron is sensitive to ¼ range
of the input where the first neuron with ϕ(1) = 0, is sensitive to
low and high values (solid curve in Figure 6). Input neuron k
for k>1 is sensitive to values around xi(min) + (k-1)(xi(max) -
xi(min)) γ /m, therefore





>−−

=
=

1)(min)(max))(1(
1

10
)(

kforixixk
m

kfor
k

γ
ϕ (14)

The four curves for the input neurons are shown in Figure

6. Input value 3.9 is indicated by the vertical line. Four spike
times (xi1=0, xi2=9, xi3=24, xi4=6) can be obtained from four
points that the vertical line crosses the four curves.

Figure 6: Iris input-3 converted to 4 spike times by

square cosine encoder

By using this encoding scheme, a large input range can be

converted to large number of input neurons and a small input
range does not need a large number of input neurons.
According to the input range, 3 input neurons are assigned to
input-1 and one input neuron is assigned to input-2 and input-4
separately. The SNN architecture for the Iris data set is shown
in Figure 7.

Figure 7: SNN architecture for classification of Iris data

The Iris data set is divided into two equal sets for cross-

validation. One set is applied to train the network where after
about 300 epochs using the improved algorithm; the output
error of the network converges to zero. After training the
network correctly identifies 100 percent of the training set
patterns. When the second half of the data is used for testing
the accuracy rate reaches 92.0%~98.6%. It was found that the
average accuracy rate, found by cross-validating ten times,
was 96.6%. A comparison with results reported by [Bohte et
el, 2002] is shown in Table 3.

Encoding
neurons

Hidden
spiking
neurons

Output
spiking
neuron

4 inputs

3 output spike times
corresponded to
three classes

In-1

In-2

In-3

In-4

BIS6.1 5 of 6

 6 Copyright © #### by ASME

Algorithm E H O TI Train-set Test-set
SpikeProp 50 10 3 1000 97.4%±0.1 96.1%±0.1
MatlabBP 50 10 3 2.6e10 98.2%±0.9 95.5%±2.0
MatlabLM 50 10 3 3,750 99.0%±0.1 95.7%±0.1
Improved
Agorothm

9 6 1 300 100% 96.6%

Table 3: Comparison results of Iris data classification

E: number of encoding neurons
H: number of hidden neurons
O: number of output neurons
TI: number of training iterations

In this section, a square cosine encoder has been
introduced, which is similar to the one dimensional receptive
field encoding mentioned in [Bohte et el, 2002]. However,
utilising the square cosine encoder requires much less input
neurons than receptive field encoding. Combining the square
cosine encoder and the weight limitation algorithm, a small
spiking neural network was trained to solve the Iris data
classification problem. It was found that the results were
comparable with other approaches.

5. CONCLUSIONS
Spiking time error-backpropagation algorithm for

temporally encoded networks of spiking neurons is based on
the assumption that all neurons fire at least once. The weight
limitation approach introduced in this paper ensures that
neurons fire at a time that is not later than the maximal
network delay and initial weights enable networks to converge
to zero error rapidly. Using the square cosine encoder
approach makes the input neurons more efficient and results in
a lesser number of them being required. Combining these
techniques together in the algorithm, a small and efficient
SNN can be obtained. The experiments detailed in this paper
show comparable results with other approaches. From a
hardware engineering perspective, it is of benefit to reduce the
implementation costs. In this paper, the SpikeProp algorithm
has been improved in that not only does the improved
algorithm become more reliable and efficient, but also
networks can be designed in smaller size ensuring that
implementation costs can be reduced.

ACKNOWLEDGMENTS
The authors acknowledge the financial and technical

contribution of the SenseMaker project (IST -2001 -34712)
which is funded by the EC under the FET life like perception
initiative.

REFERENCES
[Bi & Poo, 1998] Bi Quo-qing, Poo Mu-ming, “Precise Spike
Timing Determines the Direction and Extent of Synaptic
Modification in Cultured Hippocampal Neurons”,
Neuroscience 18:10464-10472, 1998

[Bohte et al, 2002] S Bohte, JN Kok, HL Poutré, "SpikeProp:
Error-Backpropagation for Networks of Spiking Neurons",
Neurocomputing, 48(1-4), pp 17-37, 2002

[Choe 1998] Y Choe, R Miikulainen, “Self-organization and
segmentation in a laterally connected orientation map of
spiking neurons”, Neurocomputing, 21:139-157, 1998

[Diesmann et al, 1999] M Diesmann, MO Gewaltig, and A
Aertsen, “Stable propagation of synchronous spiking in
cortical neural networks”, Nature, 402:529 -533, 1999

[Gerstner, 1999] W Gerstner, “Spiking Neurons”, In Pulsed
neural networks/ edited by Wolfgang Maass and Christopher
M. Bishop, Cambridge: MIT Press, 1999, pages 1-53.

[Gerstner et al, 1996] W Gerstner, R Kempter, JL Hemmen H
Wagner, “A neuronal learning rule for sub-millisecond
temporal coding”, Nature, 383:76-78, 1996

[Lysetskiy 2002] M Lysetskiy, A Ozowski and JM Zurada,
“Invariant Recognition of Spatio-Temporal Patterns in The
Olfactory System Model”, Neural Processing Letters 15:225–
234, Kluwer Academic, 2002

[Riehle et al,1997] A Riehle, S Grun, M Diesmann, A Aertsen,
“Spike synchronization and rate modulation differentially
involved in motor cortical function”, Science 278, 1950-1953,
1997

[Roberts et al, 2002] PD Roberts, CC Bell, "Spike Timing
Dependent Synaptic Plasticity in Biological Systems", Biol.
Cybern. 87, 392–403, 2002

[Sohn 1999] JW Sohn, BT Zhang, BK Kaang, “Temporal
Pattern Recognition Using a Spiking Neural Network with
Delays”, Proceedings of the International Joint Conference on
Neural Networks (IJCNN'99), vol. 4, pp. 2590-2593, 1999

[Song et al, 2000] S Song, KD Miller, LF Abbott,
“Competitive Hebbian Learning Through Spike -Timing
Dependent Synaptic Plasticity”, Nature Neuroscience. 3:919-
926, 2000

[Song et al, 2001] S Song, LF Abbott, “Column and Map
Development and Cortical Re-Mapping Through Spike-
Timing Dependent Plasticity”, Neuron 32:1-20, 2001

BIS6.1 6 of 6

