
 1 Copyright © #### by ASME 

Brain Inspired Cognitive Systems 
August 29 – September 1, 2004 

University of Stirling, Scotland, UK 
 

SUPERVISED TRAINING OF SPIKING NEURAL NETWORKS WITH WEIGHT LIMITATION CONSTRAINTS 
 
 

Q Wu, University of Ulster Magee, Derry, BT48 7JL, Northern Ireland, UK {q.wu@ulster.ac.uk} 
 
 

TM McGinnity, LP Maguire, B Glackin, A Belatreche  
University of Ulster Magee, Derry, BT48 7JL, Northern Ireland, UK 

 
 

 
 
ABSTRACT 

There has been much evidence to show that single precise 
spikes, transfer information among biological neurons. Based 
on this encoding scheme various spiking neural networks have 
been proposed to solve computational problems. One such 
algorithm, a spike time error-backpropagation algorithm for 
temporally encoded networks of spiking neurons, has been 
successfully applied to the problem of complex non-liner data 
classification. There are however, certain features of the 
algorithm that can be further improved. In this paper, synaptic 
weight limitation is introduced into the algorithm and a novel 
solution for the problem raised by non-firing neurons is 
presented. In addition a square cosine encoder is applied to the 
input neurons and thus the number of input neurons can be 
reduced. The improved algorithm becomes more reliable, 
robust, efficient and reduces the implementation costs. The 
classical XOR-problem, a function approximation experiment 
and the Iris benchmark data have been applied to validate the 
improved algorithm. The experimental results reported show 
that the modified algorithm produces comparable accuracy in 
classification with the original approach utilising a smaller 
spiking neural network. 

 
1. INTRODUCTION 

Since the integrate-and fire model was first proposed, fire-
rate coding has played an important role in the measurement of 
information transferred among neurons. Recently, there have 
been many examples presented showing that information is 
carried by precise spike timing [Gerstner et al, 1996; Riehle et 
al, 1997; Bi & Poo, 1998; Diesmann et al, 1999; Song et al, 
2000, Roberts et al, 2002] and publications by Gerstner have 
demonstrated transform formulas between pulse codes and 
firing rates [Gerstner, 1999]. In general, it is acknowledged that 
by using a temporal information-encoding scheme, a 
computational spiking neural network can be constructed with a 
smaller number of spiking neurons than by using a fire-rate 
scheme. A temporal information-encoding scheme has 
therefore been applied to many computational spiking neural 
networks for self -organising or clustering [Choe 1998; Sohn 

1999; Lysetskiy 2002]. Bohte et al proposed a spike time error-
backpropagation algorithm based on this scheme [Bohte et al, 
2002] and demonstrated that spiking neural networks can be 
applied to solve non-liner classification problems. Spike time 
error back-propagation (BP) was derived by analogy with a BP 
algorithm utilised in classical neural networks, however, it was 
found that the algorithm would not converge if there were no 
constraints placed on the parameters of the spiking neural 
network.  A crucial issue for the algorithm however, is how to 
guarantee that all neurons fire at least once, as if a neuron does 
not fire, the spike-time error cannot be calculated. Modifying 
several constraints such as the learning rate and the time 
constant of spiking neurons have been suggested as a means of 
avoiding this situation however, a solution has not been 
mentioned in [Bohte et al, 2002] and there are no reports on this 
issue to date. 

 
In section 2, a general computational spiking neural 

network is presented, while a brief introduction of the spiking 
time error-backpropagation algorithm is given. In section 3, the 
problems with spiking time error-backpropagation algorithm 
and solutions for improvement of the algorithm are presented. 
Experimental results and remarks are given in section 4, while 
conclusion and further study issues are presented in section 5. 

2. SPIKING NEURAL NETWORK 
Spiking Neural Networks (SNNs) are based on spiking 

neuron models and plasticity synapses. In general a spiking 
neuron operates by integrating spike responses from 
presynaptic neurons and generating an output spike when the 
membrane potential reaches a threshold value. In the approach 
detailed in this paper, the spiking neuron model utilised was the 
spike response model [Gerstner, 1999]. The SNN was 
constructed by interconnecting a number of these neurons using 
synapses corresponding to different time delays. A 
computational representation of a spiking neural network based 
on the spike response model is shown in Figure 1.  
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Figure 1: Generic Computational Representation of Spiking 
Neural Network  

A spike response function [Gerstner, 1999] for each 
synapse can be written as follows. 
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Neuron j integrates weighted potential responses caused 

by spikes from all presynaptic neurons. The membrane 
potential is written as follows. 
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where ti
k = ti+dk, and wij

k is the weight or efficiency of the 
synapse. When the potential xj(t) reaches a threshold θ, the 
neuron generates an output spike. In [Bohte et el, 2002], the 
spiking time error is represented by the difference between 
desired firing time tjd and actual firing time  tja. In a spiking 
neuron, the firing time is dependent on the membrane potential 
xj(t). The transform from firing time error (tjd - tja) to 
membrane potential changes of ∆xj(t) can be written as  
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where θ is the threshold and yj
l(t) is the potential response 

from synapse l for neuron j. Supposing that neuron j belongs 
to the output layer and neuron  i is presynaptic of neuron j, the 
learning rule for the synaptic weight between the output 
neuron j and its presynaptic neuron i can be written as follows: 
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Following [Bohte et el, 2002], suppose that h represents a 

neuron in input layer, i a hidden neuron and j an output 

neuron. The learning rule for the weight between the hidden 
neurons can be written as follows: 
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and Γi is a set of afferent neurons for neuron i.  The algorithm 
based on these rules is called SpikeProp and detailed 
derivations of the rules can be found in [Bohte et al, 2002].  
 

3. PROBLEMS AND SOLUTIONS  
A problem arises with this approach in that if the rules are 

applied directly, the algorithm does not consistently converge. 
It is evident that the learning rule (3) cannot be used if a 
neuron does not fire because tj

a cannot be calculated for non-
firing neurons. In this paper, a feedback rule as follows is 
proposed for non-firing neurons. 
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However, the problem remains when the number of non-

firing neurons becomes large. Inspired by weight limitation of 
biological neurons [Rossum et al, 2000, Song et al, 2001], 
weight limitations of wmin and wmax are set to solve the 
problem. In order to illustrate this mechanism, a simple 
spiking neural network is shown in Figure 2 demonstrating the 
XOR problem. 

 
 

Figure 2: Spiking neural network for XOR problem 
 
 
 
Logic value '1' is assigned an early firing time and logic value 
'0' is assigned a late firing time. An input spike time of 0ms is 
associated with logic value ‘1’ while a spike time of 6ms is 
associated with logic value ‘0’. An output spike at 10 ms 
represents a logic ‘1’ and an output at 16ms represents a logic 
‘0’. The training patterns are shown in Table 1. 
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Input Output 

X(ms) Y(ms) Z(ms) 
0 (1) 0 (1) 16 (0) 
0 (1)  6 (0) 10 (1) 
6 (0) 0 (1)  10 (1) 
6 (0) 6 (0) 16 (0) 

 
 Table 1  Training pat terns associations for XOR problem 
 
In this case, the input encoding time -window is tw= 6ms 

i.e. input spikes are encoded within 6ms. The maximal 
network delay is tm= 16ms, i.e. an output should be obtained 
16ms after the network started to receive spikes. From figure 
2, u represents a neuron in hidden layer while v represents a 
neuron in output layer. The potential of neuron v is dependent 
on the output spikes of the hidden layer neurons  and can be 
represented by 
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Suppose that neuron v fires at time tm. The membrane 

potential is 

( ) ( )k k
v m uv m u

u k

x t w t tε θ= − =∑∑            (7) 

 
Let N represent the number of neurons in the hidden layer. 

Suppose that each neuron in hidden layer fires at same time tk 
and the weights from neurons in the hidden layer to neuron v 
are equal, i.e. wv

k = w1v
k = w2v

k =…= wNv
k. The weights can be 

calculated as follows  
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From these equations it can be seen that if wvu

k is not less 
than wv

k for all synapses from neurons u∈N to neuron v, 
neuron v fires at or earlier than tm. Therefore, wv

k can be 
regarded as the minimal weight for synapse with delay tuk.  By 
combining Equation (1) and Equation (8), the expression of 
minimal weight for the synapse with delay tk can be written as  
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By using equation (9) to control the weights during 

training, the learning algorithm can converge to the desired 
error. According to equation (9), the initial weights can be set 
by the following equation. 
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In the experiments detailed in this paper, the range of the 

random number is set to [0,θ]. By analogy, maximal weights 
can be derived from the desired earliest output-spike; 
however, the derivation is ignored because maximal weights 
are not important for improving the algorithm.  

 

4. EXPERIMENT RESULTS 

4.1. DEMONSTRATION WITH XOR PATTERNS 
An algorithm was implemented in software to simulate 

the spiking neural network shown in Figure 2, with two inputs  
X and Y, one spiking neuron in the hidden layer and one 
spiking neuron in the output layer. The following parameters 
were considered, time constant τ =16ms, learning rate=0.005 
and threshold=0.5. Therefore, the membrane potential of 
hidden neuron u is  
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where h∈{1,2} is an index of the two inputs, 

k∈{0,1,2,3,…,6} is an index corresponding to a delay time tk 
∈{0ms, 1ms, 2ms, 3ms,…,6ms}. The membrane potential of 
output neuron v can be described as 
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where Ku is the index of latest firing time of neuron u. Based 
on these membrane potentials, Equation (6) and the SpikeProp 
rules are applied to train the network with four XOR patterns. 
The four output spike-time curves recorded in each training 
epoch are shown in Figure 3(a). The y-axis corresponds to the 
output spike time, while the x-axis represents the training 
epoch number. The blue solid-curve is the output spike time 
for input pattern (X=0ms, Y=0ms), and the red dot-curve is 
the output spike time for input pattern (X=6ms, Y=0ms).  
During a training epoch, the four patterns are applied to update 
weights once. At epoch 1, output spike at time 10ms was 
caused by X input spike at 0ms and Y input spike at 0ms. 
Output spike at time 14ms was caused by X input spike at 6ms 
and Y input spike at 6ms. When input pattern was X input 
spike 6ms and Y input spike at 0ms or X input spike 0ms and 
Y input spike at 6ms, the network fired at 15ms. These initial 
firing times depend on random initial weights. After training 
several epochs, the red curve converged on the target output 
spike time 10ms. The blue curve oscillated but eventually 
converged on the target firing time 16ms. This curve indicates 
that the output spike-time for input pattern (X=0ms and 
Y=0ms) is later than 16ms on multiple occasions during the 
training time. When the spike time was larger than 20ms, the 
neuron was regarded as a non -firing neuron in the simulation 
program and equation (6) was applied for error feedback. If 
initial weights were in large range, the algorithm could not 
converge.  
 

Therefore, weight constraints are proposed to solve this 
problem. For example, the weights from inputs to neuron u 
can be calculated by combining Equation (9) and (11). 
Suppose that the latest firing time for neuron u is tmu=12ms.  
Following Equation (9), the minimal weights from the inputs 
to neuron u is calculated by 
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Table 2 shows all values for wu
k
(min). 
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k  0 1 2 3 4 5 6 
tk 0ms  1ms  2ms 3ms  4ms  5ms 6ms 
wu

k
(min) 0.26 0.27 0.28 0.29 0.31 0.33 0.36 

 
Table 2: Minimal weights from inputs to neuron u  

  (a) Equation (6) applied 
 

(b) Equations (9) and (10) applied 
 

Figure 3: Output Graphs of Training for XOR Patterns  
 
In order to illustrate how these weights control the neuron 
spikes, suppose that input X is a spike at 1ms (k=1) and input 
Y is a spike at 6ms (k=6). From Table 2, we have 

1
1 (min) 0.27uw = , 6

2 (min) 0.36uw = . Form Equation (11), the 
membrane potential of neuron u is  
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when t=tum=12ms, xu(t) =0.5059. The value is greater than the 
threshold value of 0.5.   
This implies that neuron u  fires earlier than tum =12 ms if the 
weight whu

k is larger than wu
k
(min). 

  

By analogy, a set of minimal weight wv
k
(min) can be 

obtained and applied to control wuv
k  Under limitation of the 

weights, the four output spike-time curves recorded in each 
training epoch were generated corresponding to the four 
training patterns shown in Figure 3(b). Here it can be seen that 
the four output spike-times are not later than 16ms. Twelve 
epochs were needed to converge to the minimal error, which is 
four times faster than that achieved by the algorithm without 
weight limitation. If equation (6), (9) and (10) are not used, the 
training does not always converge to zero error due to the fact 
that if a neuron does not fire, there is no firing-time -error 
feedback.  In [Bohte et el, 2002], a large number of input 
encoding neurons are proposed to solve this problem.  

 

4.2. SIMULATION OF NON-LINEAR FUNCTION 
The network was extended in size from that shown in 

Figure 2, and was applied to simulate the peaks function from 
Matlab (see Figure 4(a)). By using the improved algorithm, 
the network does not require the encoding neurons mentioned 
in [Bohte et el, 2002].  

 
(a) 24X24 input patterns 

 
(b) Neural network output 

Figure 4: Non-liner function simulated by SNN with improved 
learning algorithm 

 
The network is constructed in two layers with two input 

neurons representing x and y, 6 spiking neurons in the hidden 
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layer, and one output spiking neuron. In comparison with the 
network in section 4.1, the time scale has changed from 1ms to 
¼ms. The encoding time window tm= 6ms corresponds to 
tm=24 units of time scale. One unit on the axis in Figure 4 
represents ¼ms. Results for the peaks function simulation are 
shown in Figure 4(b). Figure 5 shows that the error converges 
to zero at approximately 400 epochs.  

 

 
Figure 5: Network output error changes over training time for 

peaks function simulation 

4.3. SIMULATION OF IRIS DATA SET  
The Iris Data Set consists of four inputs. The range for 

input-1 is [4.3, 7.9], input-2 is [2.0, 4.4], input-3 is [1.0, 7.0] 
while the range for input-4 is [0.1, 2.5]. For example, there are 
24 units of time scale for input encoding time window of the 
SNN in section 4.2. If all input values are converted to [0, 24], 
some inputs will lose their precision. The authors’ solution is 
to propose a square cosine encoder for the input neurons. Let 
xi be an input variable and (xi1,xi2,…xi m) be a set of spike times 
of m input neurons. For input neuron k  

εϕ
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where xik is an integer corresponding to a spike time, tw is the 
encoding time window, ε is a constant for adjusting the neuron 
sensitivity range (0.6 was used in this case),   and ϕ(k ) is a 
phase offset for input neuron k . In this example, four input 
neurons were used to deal with input-3 of the Iris data. The 
precision of the input data is represented by γ with γ = 0.1, 
xi(max) =7.0 and xi(min) =1.0. Each neuron is sensitive to ¼ range 
of the input where the first neuron with ϕ(1) = 0, is sensitive to 
low and high values (solid curve in Figure 6). Input neuron k 
for k>1 is sensitive to values around xi(min) + (k-1)( xi(max) - 
xi(min)) γ /m, therefore 
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The four curves for the input neurons are shown in Figure 

6. Input value 3.9 is indicated by the vertical line. Four spike 
times (xi1=0, xi2=9, xi3=24, xi4=6) can be obtained from four 
points that the vertical line crosses the four curves.  

 

 
Figure 6: Iris input-3 converted to 4 spike times by 

square cosine encoder 
 
By using this encoding scheme, a large input range can be 

converted to large number of input neurons and a small input 
range does not need a large number of input neurons. 
According to the input range, 3 input neurons are assigned to 
input-1 and one input neuron is assigned to input-2 and input-4 
separately. The SNN architecture for the Iris data set is shown 
in Figure 7.   

 
Figure 7: SNN architecture for classification of Iris data  
 
The Iris data set is divided into two equal sets for cross-

validation. One set is applied to train the network where after 
about 300 epochs using the improved algorithm; the output 
error of the network converges to zero. After training the 
network correctly identifies 100 percent of the training set 
patterns. When the second half of the data is used for testing 
the accuracy rate reaches 92.0%~98.6%. It was found that the 
average accuracy rate, found by cross-validating ten times, 
was 96.6%. A comparison with results reported by [Bohte et 
el, 2002] is shown in Table 3. 

 
 
 
 

Encoding 
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Hidden 
spiking 
neurons 

Output 
spiking 
neuron 

4 inputs 

3 output spike times 
corresponded to 
three classes 

In-1 

In-2 

In-3 

In-4 

BIS6.1 5 of 6



 6 Copyright © #### by ASME 

Algorithm E H O TI Train-set Test-set 
SpikeProp 50 10 3 1000 97.4%±0.1 96.1%±0.1 
MatlabBP 50 10 3 2.6e10 98.2%±0.9 95.5%±2.0 
MatlabLM 50 10 3 3,750 99.0%±0.1 95.7%±0.1 
Improved 
Agorothm 

9 6 1 300 100% 96.6% 

 
Table 3: Comparison results of Iris data classification 

 
E: number of encoding neurons 
H: number of hidden neurons 
O: number of output neurons 
TI: number of training iterations 
 

In this section, a square cosine encoder has been 
introduced, which is similar to the one dimensional receptive 
field encoding mentioned in [Bohte et el, 2002]. However, 
utilising the square cosine encoder requires much less input 
neurons than receptive field encoding. Combining the square 
cosine encoder and the weight limitation algorithm, a small 
spiking neural network was trained to solve the Iris data 
classification problem. It was found that the results were 
comparable with other approaches.  

 

5. CONCLUSIONS 
Spiking time error-backpropagation algorithm for 

temporally encoded networks of spiking neurons is based on 
the assumption that all neurons fire at least once. The weight 
limitation approach introduced in this paper ensures that 
neurons fire at a time that is not later than the maximal 
network delay and initial weights enable networks to converge 
to zero error rapidly. Using the square cosine encoder 
approach makes the input neurons more efficient and results in 
a lesser number of them being required. Combining these 
techniques together in the algorithm, a small and efficient 
SNN can be obtained. The experiments detailed in this paper 
show comparable results with other approaches. From a 
hardware engineering perspective, it is of benefit to reduce the 
implementation costs. In this paper, the SpikeProp algorithm 
has  been improved in that not only does the improved 
algorithm become more reliable and efficient, but also 
networks can be designed in smaller size ensuring that 
implementation costs can be reduced. 
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