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_____________________________________ 
Abstract 
 
To better understand how a real neuron works, 
knowledge of neuronal growth is required. 
During growth, a neuron changes many of its 
topological characteristics over time, forming 
complex dendritic trees and long, branched 
axons. Many internal and external factors 
affect the growth of these neurites. We present 
a model of dendritic growth as determined by 
the construction of its internal cytoskeleton. 
Results indicate that changes in particular 
parameters can lead to different characteristic 
tree topologies, as seen in real neurons. 
_____________________________________ 
 
Introduction 
 
The brain can be looked upon from many 
different levels of organization: systems, maps, 
layers, networks, neurons, synapses, and 
molecules (Figure 1; Churchland and 
Sejnowski, 1992). At each level of 
organization, the questions can be asked, 
“What does this do?” and “How does this 
interact?” At very high levels, these questions 
can be answered by the psychologists, and at 
very low levels by the chemists and molecular 
biologists. To answer both together is the task 
of computational neuroscientists. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Levels of Organisation. 
 

The model described here spans the levels 
from molecules to neurons, and has 
implications for the remaining levels above 
that. We are interested in how neurons 
develop, and to this end we present a 
mathematical model of neurite growth that 
incorporates known elements of the 
neurobiology. The aim is to achieve a good 
working computational model that gives 
greater insight into neuronal growth processes 
than simpler, statistical models (van Pelt and 
Uylings, 1999), and a simulation tool which 
will accurately run this model and allow it to 
be easily extended. The basic question to be 
explored here is what growth mechanisms may 
contribute to different types of neuron having 
dendritic trees of different characteristic 
topology. 
 
Understanding how neurons grow is 
fundamental to our complete unders tanding of 
the formation and operation of real neuronal 
networks. Insight into the molecular 
determinants of neuronal growth will be 
invaluable in developing therapies which 
require the regrowth of neurons, such as for 
Alzheimer’s disease and repair of spinal cord 
injuries. Such knowledge will also contribute 
to neuromorphic technologies for successfully 
growing neurons on silicon. 
 
Artificial Neural Networks (ANNs) may also 
benefit from an increased understanding of 
nervous system development. Typically ANNs 
use simple network architectures, yet how to 
design an appropriate network to solve a 
particular problem is difficult. Even being able 
to formally specify the number of neurons 
required is hard. Real neural networks develop 
in response to a combination of genetic coding 
and environmental stimuli. Knowledge of what 
is encoded, and what rules drive network 
formation in response to real-world signals 
could lead to design algorithms for ANNs. Our 
model tackles a small part of this problem in 
trying to understand the rules underlying the 
growth of a single neuron’s complex dendritic 
tree. This is a fundamental subproblem for the 
development of biological neuronal networks. 
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Theory of Neurite Outgrowth 
 
The theory presented in this paper describes a 
relatively complex model of interaction 
between three chemicals identified as 
proponents of neuronal growth: tubulin, MAP2 
and calcium (Figure 2). The interaction 
between these chemicals results in the 
production of the rigid cytoskeleton that 
generates and supports the complex topology 
of a neuron’s dendritic tree. 
 
Tubulin 
 
Tubulin is a molecule that when polymerized 
forms rigid microtubules which bundle 
together to give the internal skeleton of a 
dendrite. Tubulin is produced in the soma and 
diffuses and is actively transported through the 
length of the dendrite, until it reaches the 
terminal, or growth cone. Here, the tubulin 
molecules are added to the end of the rod-like 
microtubules, extending their length 
(Kobayashi and Mundel 1997). This assembly 
of microtubules results in elongation of the 
neurite.  
 
The individual microtubules are bundled 
together to form the rigid cytoskeleton. 
Branching within the terminal area can be 
facilitated by the destabilisation of these 
microtubule bundles, when the bonds tightly 
binding the microtubules together are relaxed, 
allowing the microtubules to separate and 
move in different directions if the conditions 
are right (Kobayashi and Mundel 1997, 
Maccioni and Cambiazo 1995).  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Internals of a growing neurite. 
 
MAP-2 
 
The rates of microtubule assembly and 
bundling are regulated by microtubule- 
associated proteins (MAPs). MAP-2 is a 
specific chemical in this family found in 
dendrites. The main purpose of MAP-2 in the 

growing neurite is to bind to the microtubules 
and stabilise them, thus promoting microtubule 
assembly and linking them together into 
bundles   (Kobayashi and Mundel 1997, 
Maccioni and Cambiazo 1995).  This 
stabilising ability depends on the 
phosphorylation state of the MAP-2 molecules. 
 
Dephosphorylated MAP-2 favours growth as it 
promotes the assembly and bundling of 
microtubules. Phosphorylated MAP-2 is more 
likely to create branching conditions as the 
microtubule binding is relaxed and they 
become spaced further apart and are therefore 
easier to be forced apart by factors such as 
stress on the growth cone (Audesirk et al, 
1997, Friedrich and Aszódi, 1991). 
 
Calcium 
 
Calcium is the mainstay of much of neuronal 
functioning in both adult and developing 
neurons. For example, it has major roles in 
synaptic plasticity and in presynaptic 
neurotransmitter release. The case of interest 
here though, is its interaction with the other 
chemicals involved in neurite outgrowth.  
 
Calcium regulates the rate at which MAP-2 is 
phosphorylated via a number of biochemical 
pathways (Hely et al, 2001). Consequently, 
calcium levels indirectly affect the rate of 
elongation and branching in a growing neurite. 
Factors that change the calcium level, such as 
electrical activity as the result of synaptic 
input, thus can also influence neurite 
outgrowth. That is to say, calcium does change 
the rate of growth and levels of branching, but 
in a subtle manner, and only as one part of 
many different elements. It can be looked upon 
as an effecter of change, rather than the be all 
and end all of growth.  
 
Other factors  
 
Neurite outgrowth is a highly complex process 
that involves many factors that are internal and 
external to the neurite. In addition to the 
microtubule cytoskeleton, the construction and 
stability of the actin cytoskeleton in the growth 
cone at the tip of a growing neurite is also 
fundamental to the growth process. Filopodia 
that extend from the growth cone sense the 
external environment and generate signals in 
response which influence the state of the 
internal cytoskeleton. 
 
The aim was to create a biologically plausible 
model explicitly incorporating only these three 
chemicals. All other factors are implicit in 
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model parameters, such as branching and 
elongation rates. Calcium influx provides a 
measure of the external environment. We have 
built upon the original model created by Hely 
et al. (2001) and have incorporated the 
numerical techniques for simulating growing 
neurites developed by Graham and van Ooyen 
(2001).  The model output ultimately will be 
compared against stochastic models of neurite 
outgrowth and statistical data from real 
neurons, as collated by Van Pelt and Uylings 
(1999). 
 
 
Methodology 
 
The model of the developing neuron is created 
in three initial segments: (1) the soma, the cell 
body in which the tubulin and MAP-2 are 
produced, (2) an intermediate neurite segment 
which links the soma to (3) a terminal growth 
cone segment where the growth is carried out. 
Each segment is divided into a number of 
small compartments of length dx in which the 
concentration of the three chemicals is 
calculated. 
 
The terminal compartment (growth cone) 
remains of fixed size. Growth is handled by 
adding new compartments of size dx whenever 
the compartment immediately prior to the 
growth cone grows to a length of 2*dx (Figure 
3). When this happens, this compartment is 
split into two compartments, and the process 
starts again (Graham and Van Ooyen, 2001). 
 
 
 
 
 
 
 
 
Figure 3. Compartmental Neurite Model. 
 
At each timestep, the terminal compartment 
has a probability of branching, determined by 
the concentration of calcium and the 
phosphorylation state of the MAP-2. A random 
number is generated, and tested against the 
branching probability. If the number is higher, 
elongation is performed as usual, however, if 
the number is less than the branching 
probability, two new daughter segments are 
created in the place of the terminal 
compartment in such a way that the volume of 
the compartments is preserved (Hely et al, 
2001). 
 
 

The formulae  
 
The model has been separated up into the three 
logical parts, the soma, the intermediate 
compartments, and the terminal compartments. 
The soma has a simple production/influx-
transport-decay structure for each chemical. 
The intermediate compartments have a 
transport in – transport out – decay structure 
for each chemical. The terminal compartment 
is more complicated. The calcium retains its 
influx-diffusion-decay structure. The tubulin 
has its transport and decay but is now affected 
by the amount of tubulin that is being 
assembled and disassemb led to and from 
microtubules. The unbound MAP-2 still has its 
diffusion and decay but is now affected by the 
rate at which it is being bound to microtubules. 
The bound MAP-2 is affected by its decay and 
its phosphorylation rate, which is a function of 
calcium. A decay rate and the rate at which it 
is being converted to and from bound, 
unphosphorylated MAP-2 determine the 
amount of phosphorylated MAP-2. 
 
Neurite elongation is a function of the 
microtubule assembly rate, which depends on 
the available tubulin and is modulated by 
bound (unphosphorylated) MAP-2. The 
terminal branching probability is a function of 
the relative amount of phosphorylated MAP-2. 
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Parameters  
 
There are three sets of parameters used during 
the simulations: an initial set and two modified 
sets to generate alternative tree topologies 
(Tables 1, 2 & 3). 
 
Calcium Influx (I) 0.3 
Decay of Calcium (s c) 0.01 
Tubulin Production (P) 0.7 
Decay of tubulin (s t) 0.01 
Unbound MAP-2 Production (S) 0.5 
Decay of unbound MAP-2 (s u) 0.3 
Active Transport Rate (?) 0.3 
Tubulin Assembly Rate (et) 0.1 
Tubulin disassembly rate (? t) 0.0005 
Decay Phosphorylated MAP-2 (s p) 0.5 
Decay of Bound MAP-2 (s b) 0.3 
Conversion Constant 1 (c1) 0.4 
Conversion Constant 2 (c2) 0.3 
Conversion Constant 3 (c3) 0.4 
Conversion Constant 4 (c4) 0.3 
Calcium Rate Constant (F) 0.5 
Calcium Rate Constant (G) 0.5 
Branching Constant (kB) 0.01 
Diffusion Constant (D) 0.3 

Table 1. Initial parameter values. 
 
Conversion Constant 1 (c1) 0.2 
Conversion Constant 2 (c2) 0.5 
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Conversion Constant 3 (c3) 0.5 
Conversion Constant 4 (c4) 0.2 
Branching Constant (kB) 0.01 

Table 2. Changes for short terminals. 
 
Conversion Constant 1 (c1) 0.5 
Conversion Constant 2 (c2) 0.2 
Conversion Constant 3 (c3) 0.2 
Conversion Constant 4 (c4) 0.5 
Branching Constant (kB) 0.01 

Table 3. Changes for long terminals 
 

The model is simulated by calculating the 
concentrations of all chemicals in all 
compartments at each time step, and 
performing compartment elongation and 
branching as necessary. All chemical 
concentrations start at 0.  Simple first-order 
Euler approximations over time and space are 
used to discretise the equations.  The model is 
implemented in MATLAB. 
 
 
 
Results 
 
The results in figure 4 show that the model can 
produce several different tree topologies with 
minimal changes to the parameters. These are 
consistent with similar topologies produced by 
Hely’s MAP-2 model (Hely et al, 2001) and 
statistical information from real trees (van Pelt 
and Uylings, 1999). 

             
Figure 4. (a)  Normal Tree, (b) Short 
Terminals,    (c) Long Terminals. 
 
Figure 5 shows the differences in terminal 
segment and intermediate segment lengths, 
with the changes in parameter values. This 
signifies the ease in which the model can be 
adapted to produce different neurite 
topologies. The histograms refer to the type of 
topology shown in figure 4. Trees of the type 
shown in  figure 4a produce histograms similar 
to figure 5a. All segments of these trees have 
the same average length. Trees of type 4b 
produce histograms similar to figure 5b. These 
have long intermediate segments and short 
terminal segments. Trees of type 4c produce 
histograms similar to figure 5c. These have 

short intermediate segments and long terminal 
segments. 
 

              

             

               
Figure 5. (a) Similar intermediate and 
terminal lengths (Normal model), (b) Long 
intermediate and short terminal, (c) Short 
intermediate and long terminal. 
 
 
The differences between the three topologies 
have been generated by the change in rate 
constants that dictate how much MAP-2 
converts to and from its unbound, bound and 
phosphorylated states.  
 
By increasing the rate that bound MAP-2 is 
converted into phosphorylated MAP-2 
(Constant 3) and reducing the rate that 
phosphorylated MAP-2 is turned back into 
Bound MAP-2 (Constant 4), the average 
amount of phosphorylated MAP-2 increases.  
This is accentuated by limiting the amount of 
MAP-2 that becomes bound to microtubules 
(Constants 1 and 2). This raises the probability 
of branching and results in longer intermediate 
segments and shorter terminal segments, as 
can be seen in figures 4b and 5b. 
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Decreasing the rate that bound MAP-2 is 
converted into phosphorylated MAP-2 
(Constant 3) and increasing the rate that 
phosphorylated MAP-2 is turned back into 
Bound MAP-2 (Constant 4), reduces the 
amount of phosphorylated MAP-2 and 
branching decreases. The amount of bound 
MAP-2 is also raised by an increase in the 
binding rate from unbound MAP-2 (Constants 
1 and 2). This promotes elongation and results 
in shorter intermediate segments and longer 
terminal segments, as can be seen in figures 4c 
and 5c.  
 
 
Discussion 
 
Model Successes  
 
Real neurons exhibit a wide range of dendritic 
tree topologies. Particular topologies are 
characteristic of specific neuronal types. The 
initial results from our model suggest the 
differences between the classical neuronal 
topologies may be due to relatively small 
differences in the growth process. Here, 
changes to the rate of binding of MAP-2 to 
microtubules and the rate of 
(de)phosphorylation of MAP-2 are sufficient 
to produce three characteristic classes of tree 
topology. 
 
These changes in rate constants are an elegant 
solution to the problem of generating multiple 
topologies with an essentially similar growth 
process. Many factors may influence these rate 
constants in growing neurons, such as the 
calcium concentration (Hely et al 2001). 
Calcium levels may change in response to 
external signalling molecules or due to 
electrical activity in the neuron. Mechanisms 
that alter calcium levels and the subsequent 
effect on neurite outgrowth remain to be fully 
explored with this model. 
 
The results suggest that the modelled 
interactions between the three chemicals are 
close to what they may actually be in reality. If 
this is the case, then an important and complex 
area of neuronal growth and the effects upon it 
have been made more transparent. 
 
Model Limitations 
 
Our model is a very simplified description of 
neurite outgrowth. Nonetheless, it still contains 
many different parameters and it remains to 
further investigate the possibilities of neuronal 
growth embodied in the model. It will be 

attempted to accurately match tree topologies 
with empirically measured statistical data from 
real neurites (van Pelt and Uylings 1999). This 
should gain us a greater understanding of the 
differences in growth between neuronal types. 
 
Currently the parameter values are not 
necessarily biologically accurate. Some data is 
available on diffusion and active transport 
rates, and this will be used to refine the 
transport parameter values. Some of the 
parameters are not known. The model results 
may shed some light upon expected values for 
parameters such as the rate of change between 
phosphorylated MAP-2 and bound MAP-2 and 
how these may be affected by calcium (Hely et 
al, 2001). 
 
This model can be expanded in several 
directions. A growth cone with its own 
cytoskeleton incorporating actin filaments, 
interacting with an explicit external 
environment, could be added to allow different 
means of growth. Growth due to internal 
pressures, i.e. microtubules pushing the growth 
cone onward, would combine with external 
pressures, such as tension on the growth cone 
due to filopodia sensing attractive cues in 
different directions, to determine elongation 
and branching. 
 
Other chemicals which may affect the growth 
process, and which interact with the chemicals 
already included in the model could be added. 
For example, Notch and the Rho family of 
proteins respond to external signals and are 
know to affect the stability of the neurite 
cytoskeleton, altering elongation and 
branching (Whitford et al, 2002). 
 
 
Concluding Remarks 
 
There are several interesting inferences that 
can be taken from the model. Differences 
between neurons may be genetically encoded 
in addition to being generated by the situation 
the neuron finds itself in. The main changes in 
parameters to produce the different topologies 
are in  the rates of conversion between various 
states of MAP-2. It can be inferred that the 
basic rates of change may be one of the “hard 
coded” elements of the cell’s genetic code. 
Environmental influences may then further 
modify these parameters dynamically during 
growth of a particular neuron. 
 
Control of growth is achieved using only a few 
factors, allowing the production of a wide 
variety of topologies with minimal changes to 
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parameter values.  This would likely lead to 
wide variation in network architecture as well. 
Understanding how to control neuronal growth 
is important for new brain therapies that 
involve regrowing neurons, and new 
technologies that attempt to interface 
biological neurons with silicon-based 
electronics. This indicates how research on 
underlying mechanisms of real neuronal 
growth can benefit those in other fields. 
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