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ABSTRACT

We justify the usage of onsets in sound processing by ap-
pealing to an ecological view of auditory processing. The
biological basis for onset processing is briefly discussed,
and we describe our biologically motivated approach for
a spike-based system for onset detection. This is based
on a auditory-nerve like representation (with multiple spike
trains per filter-bank band) followed by a leaky integrate-
and-fire neuron with depressing synapses. Onsets are de-
tected with essentially zero latency relative to the filter-bank.
We show how this can be used to find the starts of certain
phonemes in the TIMIT database, and how, by a small vari-
ation in the parameters, it can be used to detect amplitude
modulation.

1. ECOLOGICAL SOUND INTERPRETATION AND
ONSETS

Ecological sound interpretation is direct interpretation of
sound in terms of characteristics (affordances, in the sense
of [1]) that matter to the perceiver of the sound. For the
perceiver, questions such as “do I run away or towards this
sound source?” or “does this sound source mean I am about
to fall into a river?” need answered. For some specialised
animals, there are other questions as well: “should I eat
what is in front of me” (for animals with biosonar, such as
bats), or “where is my prey going”, for night hunting owls.
Additionally, for animals that communicate using sound,
questions of the meaning of the sound arise as well. (One
can argue that meaning (or at least significance) is often
present in other, non-animal sounds: indeed sounds with no
significance can safely be ignored!) For humans, thewhat
andwheretasks (what are the sound sources, and where are
they located) are often believed to underlie such questions.

From the animal’s point of view, ecological sound per-
ception is direct: certainly humans are not normally aware
of rationalisations intervening between the sensation and the
perception. Granted, in some circumstances, such rationali-
sation may occur (e.g. listening to an unfamiliar foreign lan-
guage, or trying to decide if the fan in the computer really
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is more noisy than it should be). Yet perception is clearly
not direct in a physiological sense. Sound is reflected and
refracted by the head and outer ear, passes through the au-
ditory canal, is transduced into a wave in the fluid-filled
cochlea, detected (in the sense of being turned into a neu-
ral signal) in the organ of Corti, passed to the cochlear nu-
cleus and then transferred to the other nuclei of the auditory
brainstem and midbrain before arriving at the auditory cor-
tex where we might expect the perception to actually arise.
From a computational viewpoint, we would like to emulate
the apparent easy directness of ecological sound perception.
How can this be achieved?

Truly direct perception, answering questions such as those
in the first paragraph entails knowledge of motivation of the
perceiver, and will be different for each perceiver, and pos-
sibly even different for the same sound at different times.
What we are more interested in supplying is something that
can underlie such direct perception, something that can per-
form thewhatandwheretasks. Like light, sound interacts
with all the surfaces it comes into contact with. Vision sys-
tems are generally concerned with surfaces that reflect light.
Much of the visual system is concerned with providing in-
variant percepts independent of the illumination of these
surfaces. We suggest that the auditory system is also con-
cerned with providing invariant percepts: however, in this
case, the system’s interest is in the sound sources, rather
than in the surfaces sound reflects from. Further, sound
from most sources reaches the perceiver both directly and
by reflections: we suggest that a suitable goal for a com-
putational auditory system would be to provide answers to
the what and where questions which are invariant over the
surfaces that the sound has reflected from.

This brings us directly to onsets: the onset of a sound
at the perceiver will arrive from the most direct source: i.e.
the path without reflections. Further onsets caused by reflec-
tions will be smaller than the initial onset. Thus, in terms
of the where task, onsets provide information that may be
masked by reflections later in the signal. Other cues such as
offsets are severely smeared out in time in reverberant envi-
ronments. Onsets are also interesting because, being at the
start of (or at the start of some change in) a sound emitted
from a source they can provide information rapidly. Fur-
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ther, the nature of the start of a sound (voicing onset time
in particular) has been found to be important in character-
ising certain phonemes. In addition, as discussed below,
onsets are detected in the auditory system, making the use
of onsets not only ecologically relevant but also biologically
inspired.

Onset detection systems have been used in music tran-
scription (e.g. [2]), sound segmentation [3], lip synchroni-
sation [4], monaural sound source streaming (e.g. [5]), and
determining when to measure ITDs for sound direction find-
ing [6]. The last of these aims to answer thewhereques-
tion: here we are more concerned with material that under-
lies thewhat question. After describing onsets and onset
detection, we show how onsets can be used for detecting
certain phonemes in continuous speech, and how a similar
technique can alternatively detect amplitude modulation.

2. ONSETS, AND ONSET (CHOPPER) CELLS

Auditory onsets are rapid increases in energy in some part
of the audible spectrum. Different sound sources have dif-
ferent types of onsets. Some are wideband, with sudden
co-occurring increases in intensity (e.g. percussive sounds).
Others are narrowband, with the increase in energy in some
small area(s) of the spectrum (e.g. a note played on a flute).
Some sound onsets are very rapid, (e.g. a glass falling on
to a stone floor), and others less so (e.g. a note played on a
flute). Every sound that starts has an onset, and many have
internal onsets (e.g. animal vocalisations, such as human
speech, or sequences of musical notes). The energy increase
may be anything above the just perceptible, and there may
be any pre-onset sound level.

Mammalian auditory systems are strongly attuned to on-
sets. The AN responds more strongly, with many neurons
(stellate, bushy and octopus cells) in the cochlear nucleus
also spiking strongly, at stimulus start [7]. Onsets are a form
of signal envelope modulation. Some multipolar cochlear
nucleus neurons sensitive to onsets are also sensitive to other
forms of envelope modulation, such as amplitude modula-
tion (AM) [7, 8]. By altering the parameters used, the sys-
tem described here can alternatively detect AM.

2.1. Onset detection

In this work onset detection starts by bandpassing the sound
signal into many bands. This stops onsets in some small part
of the spectrum from being overwhelmed by the overall sig-
nal strength, unless it is in an adjacent part of the spectrum.
In this way, onsets which occur during other sounds can be
detected. Further, it allows onsets found to be characterised,
by annotating them with the bands in which they have been
detected. This is important for transcription, streaming, and
direction finding applications.

The simplest onset detection techniques are based di-
rectly on signal energy, and were used to segment hummed
or sung notes [9] to improve note differentiation in early
music transcription systems. An alternative is to use first
order difference based estimates, (e.g. [10]), which take the
maximum of the rising slope of the amplitude envelope as
an index of onset. [2] uses the relative difference, calculat-
ing ∆I/I. Another variant is [11] which uses troughs in
loudness to segment sung notes. A different approach uses
optimal filter based techniques: [4] uses a wavelet based fil-
ter and [3, 12] use the difference between a long-term and
a short-term average. A related approach uses expectation
based techniques [13] to detect sudden increases in inten-
sity. Simple techniques tend to find only the most prominent
onsets, while techniques which rely on finding troughs have
a longer latency. Filter techniques can be optimised for par-
ticular source types and reverberation characteristics, and
can perform well, but require a convolution, and can have
long latency. On-line applications (e.g. real-time speech
segmentation, source streaming, sound direction finding, or
music transcription), may use the sound only up to the time
of onset, and the detector latency may become important.
Long latency is a serious drawback if knowledge of onsets is
required instantly (for example, to trigger other processing).
In addition, the absence of latency variation (for example
due to overall signal strength) is important in applications
requiring precise timing, such as direction finding.

3. THE MODEL

The model we use is illustrated in figure 1. Sound from
a microphone (or sound file) is bandpass filtered, using a
Gammatone filterbank [5]. The filterbank response is simi-
lar to that of the basilar membrane in the Organ of Corti in
the cochlea: that is, the 6dB down point bandwidth is ap-
proximately 20% of the centre frequency. The filter density
provides considerable overlap between adjacent filters. An
important issue in filter design is delay: since we will be
using the output of each filter in conjunction with adjacent
filters, we would like the insertion delay to be similar for all
the filters. However, the Gammatone filter delay is propor-
tional to the reciprocal of the bandwidth [5]. Other filters,
such as OTA [14] have a more constant delay.

The spike based representation enables the system to
work over a wide dynamic range by using multiple spike
trains coding the output of each channel. (There are four
such levels in figure 1.) Each spike codes a positive-going
zero crossing. Each spike trainSi, for i = 1 . . . N , (where
N is the number of spike trains generated from a single
bandpass channel) has a minimum mean voltage levelEi

that the signal must have reached prior to crossing zero dur-
ing the previous quarter cycle. If there areN spike trains,
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Fig. 1. Onset spike generation system. AN-like spike gen-
eration is shown only for three bands. Depressing synapses
and onset generation are shown for a single sensitivity level
for these three bands.

theseEi are set by

Ei = DiE0 (1)

for i = 1 . . . N , for someE0 fixed for all bands.D was
set to 1.414 (

√
2), providing a 3dB difference between the

energies required in each band. Note that if a spike is gen-
erated in bandk, then a spike will be generated in all bands
k′ for 0 ≤ k′ ≤ k. This technique is similar to that used
by in [15], where Ghitza noted that it improved automatic
speech recognition in a noisy environment. This auditory
nerve-like representation enhances neither onsets, (unlike
the real mammalian auditory nerve) nor amplitude modu-
lation. However, the way in which it codes the signal can
be used to build a neurally inspired onset detection system,
and can be used to enhance amplitude modulation as shown
in section 4.

The AN-like spikes are applied to depressing synapses
on onset neurons which are leaky integrate-and-fire (LIF)
neurons (figure 1). LIF neurons are the simplest model
neurons which maintain any semblance of the temporal be-
haviour of real neurons: see [16], chapter 14 for a review.
The neurons used here are characterised by their leakiness
and refractory period. Each onset cell is innervated by a
number of auditory nerve-like spike trains. These arrive
from a number of adjacent bandpass channels, but all have
the same sensitivity (i.e. value ofi in equation 1). Each
single post-synaptic potential is insufficient to make the on-
set neuron fire: a spike on more than one AN-like input is
required. The neurons used are leaky, so that these spikes
need to be nearly co-incident in time. This tends to reduce
the effects of noise (which might result in occasional but
uncorrelated firing in auditory nerve-like inputs in adjacent
channels). However, as the number of innervating channels
is increased, the post onset evoked post-synaptic potential
(EPSP) level can result in the onset cell firing.

A number of different models for depressing synapses

have been put forward (e.g. [17]). The primary effect is that
the first few spikes to arrive have a much larger effect than
those that follow soon after. Where the signal from a contin-
uous input is a train of evenly spaced spikes, this provides
a form of onset enhancement. Hewitt and Meddis [18] sug-
gested a form of depressing synapse at the inner hair cell to
spiral ganglion dendrite synapse. We are not aware of work
suggesting depressing synapses in the cochlear nucleus, but
depressing synapses are very common in mammalian neu-
ral systems. We use a three reservoir model [17, 18], and
this enhances the onsets in each spike train. The three reser-
voirs are pre-synaptic (available), cleft (in use), and reup-
take (used, but not yet available again). The model param-
eters (the rates of transfer between each reservoir) are set
so that the first few spikes result in near total depletion of
the presynaptic reservoir. For a strong enough signal, spikes
will arrive at approximatelyFc spikes per second, whereFc

is the centre frequency of the bandpass channel. However,
an EPSP will only be generated for the first few spikes. The
recovery time is set by the rate of transfer from the cleft to
the reuptake reservoir (which we keep constant), and from
the reuptake reservoir to the pre-synaptic reservoir. If this
last rate is low, then there will need to be a considerable
gap in AN signals before a new onset is marked. By adjust-
ing this parameter, we can change cells from being sensitive
purely to onsets to being sensitive to AM as well, like on-
set chopper cells [7]. If it is set too high, the post onset
EPSP (i.e. the EPSP produced by an indefinite train of AN
spikes) will be relatively high, resulting in unwanted onset
firing. For simplicity, we set the maximal weight on each
depressing synapse to the same level.

4. RESULTS

We first present results from a brief section of a TIMIT ut-
terance [19]. We then investigate the relationship between
onsets found and the phoneme structure using the TIMIT
dataset. Lastly we briefly discuss how the parameters of the
system, can be altered to allow AM to be detected.

In figure 2 we show the effect of processing a section of
a TIMIT utterance. The speech was filtered into 72 bands
between 100 and 4000Hz, with 20 AN-like spike trains for
each band, with a 3dB energy difference between each. Some
of these spike trains are shown in figure 2a. Onsets occur at
different times in different bands (see figure 2b). From this
image it is also clear that the onset is generally found later in
lower sensitivity bands (tracing the spikes in a single chan-
nel generally results in a line with positive gradient). This
is due to the finite length of actual onsets (from the start of
the sound to maximum intensity), rather than to onset la-
tency being a function of signal strength. Figure 2c shows
a summary of these onsets. This was produced by merg-
ing together those onsets from the same channel but from
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different sensitivity bands which were judged to come from
the same source by virtue of occurring at approximately the
same time. This results in a considerable reduction in the to-
tal number of onset spikes, and is easier to use for analysing
what in the signal is causing the onsets.

The TIMIT database [19] is a database of short read ut-
terances in many US English dialects, and includes phonetic
transcriptions. We have correlated the onset times found
with the starts of the phonemes, and the results are shown
in table 1. There is a clear correlation between the types of

Phoneme type uttered identified % correct

affricative 2066 1972 95.4
fricative 21469 16664 77.6
nasal 14122 3789 26.8
semivowel 20179 11123 55.1
vowel 57379 41886 73.0
stop 25377 19312 76.1
total events 140592

Table 1. Phoneme types in the 4620 TIMIT utterances pro-
cessed (3260 male and 1360 female), and those detected
(within 28ms of recorded onset) by the onset detecting sys-
tem. Selectivity is defined as (correct)/(correct + false posi-
tives).

phoneme and the onsets found, and very little variation be-
tween male and female. Phoneme onsets may be missed be-
cause the onset of this phoneme and the previous one over-
lap, or because that phoneme does not start with, or con-
tain an onset. Many of the vowel, semivowel and nasals
that are missed follow other voiced sounds, but sharper fil-
tering (as suggested recently [20]) may allow these to be
recovered. We note that 87% of the starts of sequences of
voiced sounds (vowel, nasal and semivowel) are found. The
fricatives missed are either just missed by a few millisec-
onds, or occur just beside a stop. Non-existent onsets may
be found because a true onset is broken into multiple on-
sets. Envelope variations inside a phoneme are sometimes
misidentified as onsets. This happens most frequently for
vowels and results at least partly from the onset detector
being confused by slow envelope modulation inside single
vowels. The bulk of false positives, 83%, occur within vow-
els, with 12% inside sibilances. The remaining 5% occur in
stops or at the beginning of the recording (due to extraneous
recorded noise). Turning to stops, two particular stops, ’dx’
and ’q’ account for 75% of the missed stops: we believe that
these stops are largely not associated with an increase in en-
ergy. If we consider the stop consonants (’b’, ’d’, ’g’, ’p’,
’t’, and ’k’) as in [21] the sensitivity of the system is 0.97,
compared to their result of 0.93 at 30dB SNR. The overall
selectivity (the ratio of useful to total detections) is defined
as (true positives)/(true positives + false positives). Here it

        
0

10
20

        
0

10
20

        
0

10
20

        
0

10
20

        
0

10
20

        
0

10
20

        
0

10
20

        
0

10
20

        
0

10
20

        
0

10
20

        
0

10
20

        
0

10
20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10
20

(a) AN-like spike output for 13 selected channels logarithmi-
cally spaced between 100 and 4000Hz (lowest in bottom sub-
graph). Each subgraph contains 20 horizontal traces, with a dot
for each AN spike.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

20
40
60 1        

20
40
60 2        

20
40
60 3        

20
40
60 4        

20
40
60 5        

20
40
60 6        

20
40
60 7        

20
40
60 8        

20
40
60 9        

20
40
60 10

(b) Onset cell firings (one dot per spike). Here, each subgraph
shows all the onsets found in a single sensitivity level, with low
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(c) Summary onsets (see text): Y axis is band number.
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(d) AM detected by onset-like neurons (same format as (b)) for
20 frequency bands from 2000 to 4000Hz only.

Fig. 2. Effect of processing a 0.7 second long extract from
male utterance MJWT0SA1 from TIMIT dataset (2.57-
3.27seconds).
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has the value 0.75.
Amplitude modulation can be detected by allowing the

depressing synapse in the onset LIF neuron to recover more
rapidly (that is, by increasing the rate of transfer from the re-
uptake reservoir to the pre-synaptic reservoir). In addition,
we reduce the refractory period to less than the minimum
period for the AM frequencies of interest (here we reduce
it to 3ms). The results of this processing, for 20 bands be-
tween 2 and 4 Khz, is shown in figure 2d: It is clear that the
AM has been amplified considerably. The signal detecting
the AM is now a pulse train at the frequency of then AM,
rather like an onset chopper response.

5. CONCLUSIONS AND FURTHER WORK

The system modelled resembles the biological system, and
has some of the qualities of that system. The spiking AN-
like representation provides an effective early representa-
tion over a wide dynamic range, enabling onset and AM de-
tection over this range. Because of the spiking nature of the
system, the latency is essentially that of the filterbank: in-
deed, the onset pulses are essentially phase locked (see [6]).
The onsets detected fit with an informal definition of an on-
set.

Real sounds are complex, and often require rapid reac-
tions from the perceiver. Multiple concurrent sounds are the
rule, rather than the exception. Yet reactions are necessarily
to a single sound source, implying an initial step of group-
ing the different elements of the sound from the foreground
source prior to reacting to it. We suggest that common on-
set time and common amplitude modulation frequency are
features suitable for use in this grouping process [22], and
that the form on onset and AM detection here could partially
underlie such grouping. We are working on developing this
further.

We have investigated how this model’s onsets correspond
to phonemes in the TIMIT dataset: fricatives and affrica-
tives are largely detected, as are the starts of voiced se-
quences. We believe that by using both onset and AM-onset
together neurons we can improve on the detection of vowel
onsets in [23] in terms of level dependence: this requires
further investigation. Further, using the spectro-temporal
onsets structure, and the AM-onset information we believe
we will be able to characterise fricative, voiced and stop on-
sets. The model is currently implemented entirely in soft-
ware: work on VLSI implementation is ongoing [14]. We
aim to incorporate this system in a larger real-time system
for sound (including speech) detection and interpretation.

Do the features used here also contribute to ecological
perception? This is hard to prove or disprove. However,
it is the case that the nature of the onset (which bands it
occurs in, what the tonotopic and temporal pattern of these
onsets), and of the AM (which bands it occurs in, what is its

frequency and modulation depth) are available almost in-
stantly. If they are used in grouping, then it would seem
reasonable to suggest that they would also be used in inter-
pretation.
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