
Kenneth J. Turner. Formalising Web Services. In Fern Wang, editor,
Proc. Formal Techniques for Networked and Distributed Systems (FORTE XVIII),
Lecture Notes in Computer Science 3731, pages 473-488,
Copyright Springer, Berlin, October 2005.

Formalising Web Services

Kenneth J. Turner

Computing Science and Mathematics, University of Stirling, Scotland FK9 4LA
Emailkjt@cs.stir.ac.uk

Abstract. Despite the popularity of web services, creating them manually is
an intricate task. Composite web services are defined using the evolving stan-
dard for BPEL (Business Process Execution Logic). It is explained how CRESS

(Chisel Representation Employing Systematic Specification) has been extended
to meet the challenge of graphically and formally describing web services. Sam-
ple CRESSdescriptions are presented of web services. These are automatically
translated into LOTOS, permitting rigorous analysis and automated validation.

1 Introduction

1.1 Background

Web services have become a popular way of providing access todistributed applica-
tions. These may be legacy applications given a web service wrapping, or purpose-
designed applications. This paper describes an unusual application of formal methods
(LOTOS) to modern developments in communications systems (web services).

The interface to a web service is defined in WSDL (Web Services Description Lan-
guage). However this is purely syntactic and does not define the semantics of a web
service. Although WSDL can be manually created and edited, this is an intricate and
error-prone task. For this reason, most commercial solutions aim to create WSDL auto-
matically from the code of an application.

WSDL describes anisolated web service. The current thrust in web service research
is on composing them into what are calledbusiness process. (Other terms used include
business flow and web service choreography.) Assume that thefollowing web services
exist: airlines take flight bookings, hotels reserve rooms,car hire firms book vehicles,
and banks accept electronic payments. A travel agency can then build a business process
that arranges all these aspects of a trip through a single webservice.

Unfortunately, many competing standards emerged for composing web services.
Harmonisation was achieved with the multi-company specification for BPEL4WS (Busi-
ness Process Execution Language for Web Services [1]). Thisis being standardised as
WS-BPEL (Web Services Business Process Execution Language [2]). BPEL4WS is sta-
ble, and has been used for most of the work reported here. However it has shortcomings,
so WS-BPEL has also been used for reference. For brevity, this paper refers to BPEL

and web services with all the interpretations discussed above.
BPEL is a recent and evolving language, so tool support is still developing. It can be

very difficult to understand a complex flow from the XML in BPEL. A graphical view
of composed web services is thus very desirable. BPMN (Business Process Modeling
Notation [3]) has been developed to give a high-level graphical view of such services.

This paper emphasises thecomposition of web services, not the description ofiso-
lated web services. This is partly because web service creation isnow well automated,

and partly because many web services already exist. Composing web services, i.e. defin-
ing web-based business processes, has attracted considerable industrial interest.

The author has previously developed CRESS (Chisel Representation Employing
Structured Specification) as a general-purpose graphical notation for services. CRESS

has been used to specify and analyse voice services from the IN (Intelligent Network)
[6], Internet Telephony [7], and IVR (Interactive Voice Response) [8]. Service descrip-
tions in CRESSare graphical and accessible to non-specialists. A major advantage of
CRESSdescriptions is that they are automatically translated into formal languages for
analysis, as well as into implementation languages for deployment. CRESSoffers bene-
fits of comprehensibility, portability, rigorous analysisand automated implementation.

Essentially, CRESSdescribes the flow of actions in a service. It was therefore natural
to investigate whether CRESSmight be used for describing web service flows. This has
proven to be an appropriate application of CRESS. CRESSis designed to be extensible,
with plug-in modules for each application domain and each target language. Substantial
work has been required because web services are quite distinctive. However, adding
web services as a new CRESSdomain has benefited from much of the existing CRESS

framework. For example, CRESS has explicit support for features that allow a base
service to be extended in a modular manner. The existing CRESSlexical analyser, parser
and code generators have also been reused for web services.

The work described in this paper discusses how composed web services are rep-
resented using CRESS and translated into LOTOS. This automatically creates formal
models of web services, and allows them to be rigorously analysed. Since web develop-
ers are unlikely to be familiar with formal methods, the use of L OTOSis hidden as much
as possible in the approach. CRESSdescriptions can be formally validated without see-
ing or understanding the underlying LOTOS. In additional work not reported here, the
same CRESSdescriptions of web services are automatically translatedinto BPEL and
WSDL for implementation and deployment of web services.

1.2 Relationship to Other Work

Web services are well established and are widely supported by commercial tools; it
would not be sensible to try competing with these. However the focus of this paper
is on web service composition. Due to the relative newness ofBPEL, support is only
now maturing. Major products include IBM’s WebSphere, Microsoft’s BizTalk Server,
Active EndPoint’s ActiveBPEL, and Oracle’s BPEL Process Manager. None of these
provides a formal basis or rigorous analysis.

BPMN can be viewed as a competitor notation to CRESS for describing web ser-
vices. However, BPMN is a very large notation (the standard runs to almost 300 pages).
It also has a single purpose: describing business processes. BPMN is only a front-end
for creating web services; tool support for creating (say) BPEL is only now emerging.
In contrast, CRESSis a compact and general-purpose notation that has now been proven
on services from four different domains. CRESSoffers automated translation to formal
languages (e.g. LOTOS, SDL) as well as to implementations (e.g. BPEL, VoiceXML).
CRESSalso introduces a feature concept that is lacking in other web service approaches.

There has been only limited research on formalising web services. [4] is closest to
the present paper. This work supports automated conversionbetween BPEL and LOTOS.

CRESS differs in using a more abstract, graphical description that is translated into
BPEL and LOTOS; there is no interconversion among these representations.

LTSA-WS (Labelled Transition System Analyzer for Web Services [5]) is also close
in aim to CRESS. LTSA-WS allows composed web services to be described in a BPEL-
like manner. Service compositions and workflow descriptions are automatically trans-
lated into FSP (Finite State Processes) to check safety and liveness properties. CRESS

differs in being a multi-purpose approach that works with many different kinds of ser-
vices and with many different target languages. CRESSmay be used with any analytic
technique using on the formal languages it supports, although it offers its own approach
based on scenario validation.

The CRESSnotation is described and illustrated elsewhere (e.g. [6–8]). Only a brief
overview is therefore given here; the notation is explainedthrough examples. Section 2
illustrates how CRESS is used to describe business processes. Section 3 outlines the
translation of CRESSservice descriptions into LOTOS. Section 4 shows how the result-
ing specifications can be formally analysed in a variety of useful ways.

2 CRESS Description of Business Processes

A brief introduction is given to the concepts of business processes. The CRESSrepre-
sentation of these is then explained, mainly with referenceto some realistic examples.

2.1 CRESS for Business Processes

A composite web service is termed abusiness process. It exchanges messages with
partner web services, considered as service providers. A web service may be invoked
synchronously (a request and immediate response) orasynchronously (a request fol-
lowed by a later response). A business process is itself a webservice with respect to
its users. Web services have communicationports whereoperations are invoked. An
unsuccessful operation gives rise to afault. Compensation applies where work has to
be undone due to a fault (e.g. a partial travel booking has to be cancelled).Correlation
is used to link asynchronous messages to the correct business process instance.

A CRESS diagram is a directed graph that shows the flow of activities.In BPEL

terms, a CRESSdiagram defines an executable business process. Numbered nodes in
a CRESSdiagram correspond to BPEL activities. These are inputs and outputs (com-
munications with other web services) or actions (internal to the web service). A BPEL

activity is considered to terminate successfully or to fail(due to a fault).
In a CRESSdiagram, arcs (BPEL links) join the nodes. CRESSnodes and arcs may

have assignments in the form /variable <− expression. Arcs may be labelled by expres-
sion guards or event guards. Expression guards control alternative choices (switches in
BPEL). Event guards introduce behaviour that is conditional on some event occurring
(handlers in BPEL). The CRESS concept of event encompasses BPEL events, faults,
requests for compensation and correlation requests.

For business processes, CRESS is required to offer sophisticated flow of control.
Branches in a CRESSdiagram normally reflect alternatives. However business processes
need fine-grained control over parallelism. Although BPEL has separate constructs for
sequence, iteration and graph-like flows, CRESSmodels them all in a uniform way.

2.2 CRESS for Business Activities

CRESSnames are given in simple or hierarchic form. Operation names have the format
partner.port.operation. Fault names have the formatfault.variable, the fault variable
being optional. Simple variables have the types defined by XSD (XML Schema Defini-
tion, e.g.Float f, Natural n, String s). CRESScan also define structured types, e.g. the
following that defines twooffer variables:

{Natural referenceString dealerFloat priceNatural delivery} offer, offer2

Such a structured type is named implicitly after the first variable: Offer. Structured
variables accesses have the formoffer.price.

The subset of CRESSactivities appearing in this paper is explained below; CRESS

supports more than is described here. As usual, ‘?’ means optional, ‘*’ means zero or
more times, and ‘|’ denotes choice.

Invoke operation output (input faults*)? An asynchronous (one-way) invocation sends
only an output. A synchronous (two-way) invocation exchanges an output and an
input with a partner web service. CRESSrequires potential faults to be declared stat-
ically, though their occurrence is dynamic. The faults thatmay arise in a business
process are implied byInvoke, Reply andThrow .

Receiveoperation input Typically this is used at the start of a business process to re-
ceive a request for service. An initialReceivecreates a new instance of the process;
a correlation handler is used to match incoming messages to the correct instance.
Each suchReceiveis matched by aReply for the same operation.Receivealso
accepts an asynchronous response to an earlier one-wayInvoke.

Reply operation output | fault Typically this is used at the end of a business process to
provide a response. Alternatively, a fault may be signalled.

Fork strictness? This is used to introduce parallel paths; further forks maybe nested to
any depth. Normally, failure to complete parallel paths as expected leads to a fault.
This is strict parallelism, and may be indicated explicitlyasstrict (the default). If
this is too stringent,loosemay be used instead.

Join condition? EachFork is matched byJoin. By default, only one of the parallel
paths leading toJoin must terminate successfully. However, an explicit join con-
dition may be defined over the termination status of parallelactivities. In CRESS,
the expression uses the node numbers of immediately prior activities. For exam-
ple, 1 && (2 || 3) means that activity 1 and either activity 2 or 3 must terminate
successfully. In turn, this means that activities prior to 1, 2 and 3 must also succeed.

Throw fault This reports a fault as an event to be caught elsewhere by a fault handler.
Compensatescope? This is called after a fault to undo previous work. An explicit

scope (CRESSnode number) indicates which compensation to perform. In the ab-
sence of this, compensation handlers are called in reverse order of completion.

TheThrow andCompensateactions cause a CRESSevent handler to be invoked.
In BPEL these may be defined inside any scope of a process. In CRESS, scopes are
implicit. As a consequence, event handlers may only be global or associated with an
Invoke. (This is a small restriction that accords with common BPEL practice anyway.)
The handlers appearing in this paper are as follows:

Catch fault This defines how to handle the specified fault. If a fault has just a name
and no value, it is handled by aCatch with a matching fault name only. A fault
with name and value is handled by aCatch with matching fault name and variable
type, otherwise by aCatch without a fault name but a matching type of fault value.
(Although not illustrated in this paper,CatchAll handles any fault.) A fault handler
applies where it is defined, and to subsidiary activities. Ifa fault occurs, it is con-
sidered by the current scope; if unmatched, it is consideredby higher-level scopes
until a matching handler is found. No match for a fault terminates the application.

Compensation This defines how to undo work due to a fault. A compensation handler
applies only where it is defined, and is enabled only once the corresponding activity
completes successfully. If a compensation handler is executed, it expects to see the
process state at the time it was enabled. It also cannot alterthe current process state.
In effect, the process must maintain a stack of compensationstates.

2.3 A Lender Web Service

A loan service is a frequent example for business processes;the one here is based on
that in the BPEL standard. LoanStar is alender that offers a loan to an online customer,
who submits aproposal containing name, address and loan amount. If the amount is
10000 or more, LoanStar asks its business partner FirstRateto perform a full assess-
ment. FirstRate is anapprover that thoroughly evaluates a loan proposal. The loan rate
it determines is returned by LoanStar to its customer. FirstRate may cause arefusal fault
(e.g. error message ‘unacceptable’) because a loan cannot be offered.

A full assessment is costly, so a loan for less than 10000 is evaluated more simply.
LoanStar asks its business partner RiskTaker to make a simple assessment. RiskTaker is
anassessor that evaluates the risk of a loan. If the risk is low, LoanStaroffers to lend at
a basic rate of 3.5%. If the risk is not low, LoanStar asks FirstRate for a full assessment.

This example involves multiple web services: two partner web services (assessor,
approver), and the business process itself (lender). The loan customer acts like a web
service, and may be one. The CRESSdescription of the business process is in figure 1.
The concepts needed to understand this have been explained earlier. Nodes (inputs, out-
puts, actions) in ellipses are linked by arcs (plain or guarded). If theapprover invocation
causes arefusal fault (node 2), this is caught by the associated handler (node 3).

The rounded rectangle at the bottom right of figure 1 is a CRESSrule box.Usesde-
clares diagram variables, hereproposal, risk, rate anderror. Rule boxes have other pur-
poses such as defining macros, event-triggered assignmentsand subsidiary diagrams.

An input or output names the partner, port and operation (e.g. lender.loan.quote).
In this example, all the web services happen to communicate via portloan, but the port
names could vary among services. The lender operation isquote, the approver operation
is approve, and the assessor operation isassess.

2.4 A Car Supplier Web Service

As a further example, DoubleQuote is asupplier that offers online customers a good
deal on car orders. A customer provides aneed containing name, address and car model.

1 Receive

lender.loan.quote

proposal

5 Invoke

assessor.loan.assess

proposal risk

2 Invoke

approver.loan.approve

proposal rate refusal.error

Else

Else

Uses

 {String name String address

 Integer amount} proposal

 String risk

 Float rate

 String error

4 Reply

lender.loan.quote

rate

proposal.amount >= 10000

risk = "low"

/ rate <- 3.5

3 Reply

lender.loan.quote

refusal.error

Catch refusal.error

Fig. 1. Lender Business Process

The request for a quotation is passed to two dealers, each of which responds with an
offer giving the dealer reference, name, price and delivery period.

DoubleQuote works with two business partners: BigDeal (acting asdealer1) and
WheelerDealer (acting asdealer2). A dealer indicates that it cannot supply the model
by replying with infinite price. (It would alternatively be possible to signal this by a
fault.) The better offer is selected: the lower price, or theearlier delivery date if equal.
This offer is sent to the appropriate dealer as a definite order. If necessary, the customer
may later cancel the order corresponding to the selected offer.

Again, there are multiple web services: the dealers (dealer1, dealer2), the business
process itself (supplier), and possibly the customer. The CRESSdescription ofsupplier
is in figure 2. All partners happen to have the same port namecar. The supplier opera-
tions areorder andcancel, while the dealer operations arequote, order andcancel.

In figure 2, the supplier obtains dealer quotations in parallel (nodes 2 to 5) in or-
der to save time. Both quotes must be obtained (3 && 4 in node 5)for the quotation
process to terminate successfully. Whichever dealer offeris selected leads to a reply
(node 7 or 9). Since a definite order is placed, it may be necessary to undo this if the
DoubleQuote buyer renegues (or the calling web service faults). DoubleQuote therefore
allows a previous order to be cancelled by the relevant dealer (nodes 10 to 12).

2.5 A Car Broker Web Service

As a final example, CarMen is abroker that provides an online service to negotiate car
purchases and loans for these. A customer provides aneed with name, address and car
model. CarMen first uses its business partner DoubleQuote (section 2.4) to order the
car on the best terms. If the car is unavailable (the price is infinite), CarMen informs its
customer of refusal by causing a fault with error message ‘car unavailable’. Otherwise,
CarMen asks its business partner LoanStar (section 2.3) to arrange a loan for the car
price. If a loan can be provided, the customer receives aschedule containing the dealer

1 Receive

supplier.car.order

need

Uses

 {String name String address String model} need

 {Natural reference String dealer Float price

 Natural delivery} offer, offer2

2 Fork

3 Invoke

dealer1.car.quote

need offer

4 Invoke

dealer2.car.quote

need offer2

5 Join

3 && 4

6 Invoke

dealer1.car.order

offer

8 Invoke

dealer2.car.order

offer2

(offer.price < offer2.price) ||

((offer.price = offer2.price) &&

(offer.delivery < offer2.delivery))

Else

Start

11 Invoke

dealer1.car.cancel

offer

12 Invoke

dealer2.car.cancel

offer

10 Receive

supplier.car.cancel

offer

offer.dealer = dealer1 Else

7 Reply

supplier.car.order

offer

9 Reply

supplier.car.order

offer2

Fig. 2. Car Supplier Business Process

reference, name, price, delivery period and loan rate. If a loan is refused (e.g. because
the customer financial record is bad), a loan refusal fault will occur. Since the car has
already been ordered, compensation requires the order to becancelled. The refusal is
then returned to the customer.

The CRESSdescription of this business process is in figure 3. This time, theUses
clause also references the subsidiary serviceslender andsupplier. If the lender invoca-
tion in node 3 causes arefusal fault, it is intercepted by the global fault handler (nodes 7,
8). This calls the compensation handler in node 6 and returnsthe fault to the customer.

The situation with web services is now very complex. Thebroker (figure 3) invokes
the supplier to order the car (figure 2) and thelender to arrange a loan (figure 1). In
turn, each of these invokes two further web services. A totalof seven web services is
therefore involved. The beauty of web services is that this is all invisible to CarMen’s
customer, who sees a single web service for ordering and financing the purchase of a
car. In fact, the internal details of a business process are intentionally hidden since this
is confidential. This also allows businesses to change theirinternal procedures, e.g. the
supplier may change dealers or may use more than two dealers.

2 Invoke

supplier.car.order

need offer

3 Invoke

lender.loan.quote

proposal rate refusal.error

Uses

 {Natural reference String dealer Float price

 Natural delivery Float rate} schedule

 / LENDER SUPPLIER

4 Reply

broker.carloan.purchase

schedule

7 Compensate

5 Reply

broker.carloan.purchase

refusal.error

offer.price != Infinity

/ proposal.name <- need.name

/ proposal.address <- need.address

/ proposal.amount <- offer.price
Else

/ error <- "car unavailable"

1 Receive

broker.carloan.purchase

need

/ schedule.reference <- offer.reference

/ schedule.dealer <- offer.dealer

/ schedule.price <- offer.price

/ schedule.delivery <- offer.delivery

/ schedule.rate <- rate

Start

6 Invoke

supplier.car.cancel

offer

Catch refusal.error

Compensation

8 Reply

broker.carloan.purchase

refusal.error

Fig. 3. Car Broker Business Process

3 Translating Web Services to LOTOS

The general principles of translating CRESSdiagrams into LOTOSare explained in [6,
8]. The generated code is neatly laid out and well commented.The CRESSframework
is largely reusable for web services. However, web serviceshave distinct characteristics
that require extension to this approach. The translation strategy is illustrated in this
section with extracts from the LOTOSgenerated by the examples in figures 1, 2 and 3.

3.1 Data Handling

BPEL simple types are translated into a limited range of LOTOS types. BPEL boolean
corresponds to LOTOSBool, BPEL natural to LOTOSNat, and variations on BPEL string
to LOTOS Text. Other numeric types in BPEL are mapped to LOTOS type Number.
Numbers are problematic to handle in LOTOSsince floating point numbers are required.
BPEL 1.1 allows floating point variables, but fortunately requires only simple integer
arithmetic. Text strings are also awkward in LOTOS since there is no character type.
LOTOShas no lexical shorthands for numbers or strings, so an ugly syntax is required;
their conventional form is shown in the code extracts that follow.

Expressions are translated into their obvious LOTOSequivalents. BPEL uses XPATH

as its expression language, and so has access to a wide range of functions. The LOTOS

framework has support for those required by BPEL 1.1, i.e. a subset of the arithmetic,
logical and string functions in XPATH 1.0. Expression guards become LOTOSguarded
choices. Assignments are turned into LOTOSLet statements.

BPEL requires use of structured variables. Each structured typeis automatically
translated into a LOTOStype with fields as operations. For example,proposal in figure 1
generates the typeProposal, with field operations such asgetName andsetName.

3.2 Basic Behaviour

Outputs (Reply, Invoke) and inputs (Receive, Invoke) correspond to LOTOS events.
An activity sequence in a CRESSdiagram becomes a sequence in LOTOS. However,
parts of a CRESS diagram often have to be translated as separate LOTOS processes.
This happens, for example, when part of a diagram is reached by different paths or is
invoked as an event handler. A BPEL activity results in successful termination or failure.
LOTOS behaviours therefore exit with stateTrue or False. For simple behaviours, this
is theStates result of a process. It will be seen later that states are generalised when
dealing with compensation handling or with concurrency.

All the aspects considered so far are illustrated in the following code for nodes 1, 2
and 5 in figure 1:

ProcessLENDER 1 [lender,approver,assessor] (* LENDER from 1 *)
(error:Text,proposal:Proposal,rate:Number,risk:Text) : Exit (States):
lender !loan !quote ?proposal:Proposal; (* LENDER receive1 *)
(

[getAmount(proposal) Ge 10000]> (* check proposal.amount>= 10000 *)
LENDER 2 [lender,approver,assessor] (* LENDER invoke 2 (again) *)
(error,proposal,rate,risk)

[Not(getAmount(proposal) Ge 10000)]> (* Else after proposal.amount>= 10000 *)
assessor !loan !assess !proposal; (* LENDER invoke 5 request *)
assessor !loan !assess ?risk:Text; (* LENDER invoke 5 response *)
(

[risk Eq ′′low′′] > (* check risk =′′low′′ *)
(

Let rate:Number = 3.5In (* update local *)
LENDER 4 [lender,approver,assessor] (* LENDER reply 4 (again) *)
(error,proposal,rate,risk)

)

[Not(risk Eq′′low′′)] > (* Else after risk =′′low′′ *)
LENDER 2 [lender,approver,assessor] (* LENDER output 2 (again) *)
(error,proposal,rate,risk)

)
)

EndProc (* end LENDER 1 *)

3.3 Event Handling

For each web service, the CRESS translator statically discovers where event handlers
are defined and the scopes where these apply (global, or associated with anInvoke).
An event dispatcher process is then generated with reference to these handlers accord-
ing to their scopes. If a fault handler does not exist for the current scope, the global
handler (if any) is tried. Faults have to be matched against handlers in a particular or-
der: Catch with a matching fault name,Catch with a matching fault name and type,
Catch with a matching fault type,CatchAll . A fault means unsuccessful termination,
so event handlers always exit with aFalse status.

A Compensateaction, aThrow action or a fault invokes the event dispatcher with
information about the scope, fault name and fault value type. The fault handling rules of
BPEL require fault values to be coerced into a single LOTOS typeValue. This is needed
so that the kind of value can be matched againstCatch. For example, a fault handler
expecting a string must check if the value is indeed a string;another handler for the
same fault name might deal with floating point fault values.

As an example,Invoke in node 2 of figure 1 may generate arefusal fault. This calls
theLENDER EVENT dispatcher for scope 0 associated with node 2; there is just one
event scope in this example. TheMatch operation compares the given fault name and
value type with those in the event (refusal andText in this case). When node 3 is called,
the fault value (error) is set to a string by operationText.

ProcessLENDER 2 [lender,approver,assessor] (* LENDER from 2 *)
(error:Text,proposal:Proposal,rate:Number,risk:Text) : Exit (States):
approver !loan !approve !proposal; (* LENDER invoke 2 request *)
(

approver !loan !approve !refusal ?error:Text; (* LENDER invoke 2 fault *)
LENDER EVENT [lender,approver,assessor] (* call event dispatcher *)
(error,proposal,rate,risk,0Of Nat,refusal,Value(error))

approver !loan !approve ?rate:Number; (* LENDER invoke 2 response *)
LENDER 4 [lender,approver,assessor] (* LENDER reply 4 (again) *)
(error,proposal,rate,risk)

)
EndProc (* end LENDER 2 *)
ProcessLENDER EVENT [lender,approver,assessor] (* event dispatcher *)
(error:Text,proposal:Proposal,rate:Number,risk:Text, scope:Nat,event:Event,value:Value) :

Exit (States):
[scope Eq 0]> (* scope 0 ? *)

(
[Match(event,kind,refusal,TextKind)]> (* match for ′refusal.error′? *)

LENDER 3 [lender,approver,assessor] (* call event handler *)
(Text(value),proposal,rate,risk)

)
EndProc (* end LENDER EVENT *)

Compensation handling is much more complex to translate than fault handling. A
compensation handler becomes available only when its associated scope has terminated
successfully. The state of the process must also be stored for use by the compensation

handler in case it is called later. When compensation is in use, LOTOS processes must
therefore carry astates parameter as the history of compensation states.

As each activity with compensation completes, it prefixes the current state (i.e. the
process parameters) to the previous state list. In this way,a stack of compensation states
is maintained. The following extract is from nodes 1 and 2 of figure 3. The first param-
eter of operationState is aTrue status (all that is used in simple processes), while the
second parameter is the compensation scope (1 in this case, 0being the global scope).

ProcessBROKER 1 [broker,supplier,lender] (* BROKER from start *)
(error:Text,need:Need,offer:Offer,proposal:Proposal,rate:Number,
schedule:Schedule,states:States) :Exit (States):

broker !carloan !purchase ?need:Need; (* BROKER receive 1 *)
supplier !car !order !need; (* BROKER invoke 2 request *)
supplier !car !order ?offer:Offer; (* BROKER invoke 2 response *)
(

Let states:States = (* store state *)
State(True,1,error,need,offer,proposal,rate,schedule) + statesIn ...

)
EndProc (* end BROKER 1 *)

A Compensateaction for a given scope invokes the event dispatcher. This searches
the stored states for a matching compensation state. If found, the handler for this state
is called. If not found (or no scope was specified byCompensate), the default action is
to call all compensation handlers in reverse order of activity completion. The net effect
is that compensation undoes previous work. In figure 3, for example, failure to obtain a
loan causes the car order to be cancelled.

3.4 Concurrency

Parallel execution in BPEL (Fork , Join) is very tricky to render in LOTOS, despite the
fact that LOTOS can readily specify concurrency. This is largely because BPEL has
global variables that are shared among parallel execution paths, whereas LOTOS has
only local state. It is also necessary to deal with the effects of event handlers during
parallel execution, e.g. a fault may prematurely terminateone path and trigger com-
pensation. By default, BPEL allows execution to continue if only one of the preceding
parallel paths terminates successfully. However, an arbitrary combination of path ter-
mination statuses may be used to determine this.

The CRESS translation to LOTOS handles concurrency by collecting an exit state
from each path. The status of each is then evaluated. If theJoin condition is satisfied,
execution can continue. If the condition is not satisfied, aJoinFailure fault is caused.
However if theFork specifiesloose concurrency, the activity followingJoin is simply
considered to have failed. This may allow other parts of the web service to continue.

Concurrency is a second reason for processes to carry their state as a parameter.
Each parallel path exits with the current process state. Thestates from each path are
reconciled, and the current process parameters are computed. In fact, BPEL acknowl-
edges but does not solve the problem that the same variables may be altered in parallel
path. The CRESS toolset performs a data flow analysis of diagrams as they are trans-
lated. This is essential anyway, for example to decide whether variables should be read

(‘?’) or written (‘!’) in L OTOSevents. The same data flow analysis detects variables that
are altered on parallel paths, causing a warning to be issuedduring translation.

The following shows the translation of node 5 in figure 2 wherethe parallel paths
from nodes 3 and 4 converge. As will be seen, the translation has to be very complex.

(
(

SUPPLIER 3 [supplier,dealer1,dealer2] (* SUPPLIER output 3 *)
(need,offer,offer2,states)

>> Acceptstates:StatesIn (* accept fork states *)
Exit (states,Any States) (* fork exit *)

)
|||

(
SUPPLIER 4 [supplier,dealer1,dealer2] (* SUPPLIER output 4 *)
(need,offer,offer2,states)

>> Acceptstates:StatesIn (* accept fork states *)
Exit (Any States,states) (* fork exit *)

)
)

>> Accept states0,states1:StatesIn (* accept join states *)
(

Let state:State = State(AnyBool,need,offer,offer2)In (* get state updates *)
Let state0:State = Head(states0)In (* get SUPPLIER 3 state *)
Let state1:State = Head(states1)In (* get SUPPLIER 4 state *)
Let status0:Bool = getStatus(state0)In (* get SUPPLIER 3 status *)
Let status1:Bool = getStatus(state1)In (* get SUPPLIER 4 status *)
Let state:State = getState(state,state0,state1)In (* reconcile states *)
Let need:Need = getNeed(state)In (* set need from combined state *)
Let offer:Offer = getOffer(state)In (* set offer from combined state *)
Let offer2:Offer = getOffer2(state)In (* set offer2 from combined state *)
Let states:States = getStates(Tail(states0),Tail(states1)) In (* combine states *)

[Not(status0 And status1)]> (* join failed? *)
SUPPLIER EVENT [supplier,dealer1,dealer2] (* call event dispatcher *)
(need,offer,offer2,states,AnyNat,JoinFailure,AnyValue)

[status0 And status1]> (* check join condition *)
SUPPLIER 5 [supplier,dealer1,dealer2] (* SUPPLIER from join 5 *)
(need,offer,offer2,states)

)

3.5 Partner Processes

Partner web services are translated as separate LOTOSprocesses, synchronised in paral-
lel with the main LOTOSprocess. If the partner is an external web service (e.g.approver
or assessor in figure 1), a skeleton specification is generated to match its port/operation
signature. For example, the default specification ofapprover is:

ProcessAPPROVER [approver] :Exit (States): (* APPROVER partner *)
approver !loan !approve ?proposal:Proposal; (* APPROVER′approve′ input *)

(
approver !loan !approve !AnyNumber; (* APPROVER′approve′ output *)
APPROVER [approver] (* repeat APPROVER *)

approver !loan !approve !refusal !AnyText; (* APPROVER′refusal′ fault *)
APPROVER [approver] (* repeat APPROVER *)

)
EndProc (* end APPROVER *)

This is sufficient for basic validation of thelender web service, but does not permit
useful analysis. It is therefore possible to give a more realistic specification of external
partners. If the CRESStranslator finds the file<partner>.lot, it uses this specification
of the partner instead of the default one. In fact these specifications can be arbitrarily
complex. The four external partners in figures 1 and 2 were given realistic specifica-
tions. For example, thedealer partners maintain ‘databases’ (lists) of car information,
customer quotations and customer orders.

3.6 Overall Specification Structure

When the broker service in figure 3 is translated, the services in figures 1 and 2 are also
incorporated. The result is 330 lines of automatically generated LOTOSdata types and
310 lines defining LOTOS processes. To this must be added the 400 lines of manually
specified partner processes. The generated code is embeddedin a specification frame-
work that provides generic support for any web service. Thisconsists of 590 lines of
LOTOS (mostly complex data types). In total, this amounts to just over 1600 lines of
LOTOS– a manageable specification.

The translation of exactly the same services to BPEL makes an interesting compar-
ison. For this, CRESSgenerates 60 source files and 3300 lines of code (mostly BPEL,
WSDL and Java). So whether the translation to LOTOS or BPEL is considered, it is
evident that the CRESSnotation is very compact.

4 Rigorous Analysis of Web Services

4.1 The Value of Formalising Web Services

Developing a formal interpretation of BPEL has been valuable in its own right. For
example, a number of errors, omissions and ambiguities havebeen found in the standard
(mainly in complex areas such as event handling and data handling). A number of these
errors in BPEL4WS have already been corrected in WS-BPEL. The formalisation of
BPEL also provides a precise interpretation of the standard.

More importantly, the formalisation supports a wide variety of analyses. Some of
the investigations have used the TOPO(and LOLA) tools for LOTOS, while others have
used CADP. Both offer distinct capabilities. LOLA has the advantage of using LOTOS

data types as specified; this is beneficial since web servicesare supported by some
rather complex types. LOLA is particularly useful for performing formally-based vali-
dation. CADP complements this through capabilities such as state space minimisation,
equivalence checking and model checking. The penalty in using CADP is that it places

certain requirements on the LOTOS, mainly on the data types. Some of these issues are
addressed by annotations, but actualised data types have tobe expanded manually, and
some data types need manual realisations.

Rigorous analysis aims to find problems with a web service viewed as a black box.
Formal verification indicates where the LOTOSis incorrect; the automatically generated
comments show where the CRESSdescription needs to be improved. Formal validation,
however, is performed at a higher level, so the CRESSchanges are more obvious.

4.2 Formal Checking

When web services are composed, there is a danger that they donot synchronise prop-
erly due to a misunderstanding over the interface. In LOTOS terms, this manifests itself
as a deadlock. (A LOTOSweb service either performsExit or recurses.) This is easily
checked by LOLA using its expansion capabilities. When using BPEL (or more exactly
WSDL), it is difficult to manually check services for compatibility since WSDL interface
descriptions can be written in different ways and yet be consistent.

The internal design of a web service is proprietary. The owner may, however, wish to
publish an abstraction for public use. There is then a question of whether the private and
public specifications are consistent with each other. Essentially the public specification
must be equivalent (e.g. observationally) to the private specification. Web services also
evolve, e.g. the external partners used by a business process may change. Again, there
is an issue of whether an updated web service is equivalent tothe former one. CADP

supports these kind of analyses with the specifications generated from web services.
CADP also allows model checking of web service properties. Safety and liveness

properties can be formulated in ACTL (Action-based Computational Temporal Logic).
For example, thelender service must not fault (safety), and every invocation of the
broker service must eventually receive a response (liveness).

4.3 Rigorous Validation

In practice, web services have to be manually debugged like any other program, though
tools like ActiveBPEL provide visual simulation. The LOTOS generated for web ser-
vices can, of course, be manually simulated – but again this is just debugging.

The author has developed MUSTARD (Multiple-Use Scenario Test and Refusal De-
scription [10]) as a language-independentand tool-independent approach for expressing
use case scenarios. These are translated into the chosen language (LOTOShere) and au-
tomatically validated against the specification (using LOLA). This is useful for initial
validation of a specification, and also for later ‘regression testing’ following a change
in the service description.

There is insufficient space here to explain the MUSTARD notation, so reference to
[10] and to the following example must suffice. Briefly, MUSTARD allows scenarios
with sequences, alternatives, non-determinism and concurrency. The following MUS-
TARD scenario checks simultaneous requests to thesupplier process. The first sequence
requests an Audi A5, and expects to receive a schedule with dealer reference 8, name
WheelerDealer, price 33000, delivery 30 days, loan rate 3.5%. The second requests a
Ford Mondeo, and allows a specified schedule or an unavailable message in return.

test(SimultaneousPurchases, % simultaneous purchases scenario
succeeds(% behaviour must succeed

interleaves(% behaviours are interleaved
sequences(% need request, schedule response

send(broker.carloan.purchase,Need(′Ken Turner,′Stirling Scotland,′Audi A5)),
read(broker.carloan.purchase,Schedule(8,′WheelerDealer,33000,30,3.5))),

sequences(% need request, choice response
send(broker.carloan.purchase,Need(′Kurt Jenner,′London England,′Ford Mondeo)),
offers(% choice of schedule or fault

read(broker.carloan.purchase,Schedule(6,′BigDeal,20000,10,4.1)),
read(broker.carloan.purchase,refusal,′car unavailable))))))

Of course, there is then the issue of where such scenarios come from. The author
has separately developed PCL (Parameter Constraint Language [9]) for this kind of
purpose. Trying to generate useful tests from a complex specification is generally in-
feasible. PCL is therefore used to annotate a specification with constraints on interesting
input values and on useful orderings over inputs. This makestest generation practica-
ble for specifications with complex data types, infinite datasorts or concurrency – all
characteristic of web service specifications.

4.4 Interaction among Services

Scenario-based validation is also a useful way of checking for interference among sup-
posedly independent services. In telecommunications, this is called the feature interac-
tion problem. Interactions may arise for technical reasons(e.g. conflicting services are
activated by the same trigger) or for resource reasons (e.g.the services have a shared re-
source or external partner). One way of interpreting service interaction is that a service
behaves differently in the presence of some other service.

Web services are formally validated by a range of MUSTARD scenarios that address
all the critical characteristics of their behaviour. It then becomes possible to check ser-
vices in isolation as well as in combination. This can effectively and efficiently detect
interactions among services, though failure to detect interactions is not a guarantee that
the services are interaction-free.

Web services are usually viewed as atomic and therefore do not incorporate add-on
features (unlike telecommunications services). However it is useful to have a feature
concept for web services. CRESSreadily supports this in the same way as features can
be added to voice services. A range of generic features has therefore been defined for
web services; space does not allow them to be presented in detail here.

Consider the sample web services discussed earlier. They all make use of a customer
name and address. The services could also perform other operations such as setting up
an account or checking the status of a request. In all cases, it would be useful to validate
the name and address provided. In fact this is a fraught problem, as all maintainers of
mailing lists are aware.

A name feature has therefore been defined for normalising names. This is automat-
ically invoked when a web service receives a given request with a name. It sets the
name into a normal form (e.g. ‘KJ Turner’). Acontact feature has also been defined for
checking whether a name and address are known to be associated. This is automatically
invoked when a given request with name and address is received by a web service.

When services are validated with MUSTARD usingcontact alone or withname as
well, it is found that they behave differently (i.e. featureinteraction occurs). The prob-
lem is obvious: if thename feature normalises a name, this may be inconsistent with
the name recorded for an address. Of course, most feature interactions are obvious with
hindsight. The value of automated analysis is that such problems are detected without
detailed manual investigation when a new feature is added.

5 Conclusions

Business processes can benefit from formal models of their behaviour. A graphical de-
scription is much more understandable than the raw BPEL and WSDL. A high degree
of automation is strongly desirable in the creation of web-based business processes.
CRESSmeets all of these requirements. Compared to commercial tools, CRESSdoes
not support the entirety of web services. It handles nearly everything used in practice,
a lack of timers being the main omission. However CRESSconfers distinctive benefits:
applicability to many domains, human-readable code for translated services, features as
service add-ons, and translation to formal languages for rigorous analysis.

CRESShas now shown its worth in four rather different applicationdomains: IN,
Internet Telephony, IVR and web services. The toolset is portable, having been used on
four different platforms. CRESSaccepts diagrams drawn with three existing graphical
editors, and generates code in five different languages. It is therefore an approach of
wide practical and theoretical benefit.

References

1. T. Andrewset al., editors. Business Process Execution Language for Web Services. Version
1.1. BEA, IBM, Microsoft, SAP, Siebel, May 2003.

2. A. Arkin et al., editors. Web Services Business Process Execution Language. Version 2.0.
OASIS, Billerica, Massachusetts, Feb. 2005.

3. BPMI. Business Process Modeling Notation. Version 1.0. Business Process Management
Initiative, May 2004.

4. A. Ferrara. Web services: A process algebra approach. InProc. 2nd. Intl. Conf. on Service-
Oriented Computing, 242–251. ACM Press, New York, Nov. 2004.

5. H. Foster, S. Uchitel, J. Kramer, and J. Magee. Compatibility verification for web service
choreography. In2nd. Intl. Conf. on Web Services, San Diego, California, July 2004.

6. K. J. Turner. Formalising the CHISEL feature notation. In M. H. Calder and E. H. Magill,
editors,Proc. 6th. Feature Interactions, 241–256. IOS Press, Amsterdam, May 2000.

7. K. J. Turner. Modelling SIP services using CRESS. In D. A. Peled and M. Y. Vardi, editors,
Proc. FORTE XV, LNCS 2529, 162–177. Springer, Berlin, Nov. 2002.

8. K. J. Turner. Analysing interactive voice services.Computer Networks, 45(5):665–685, Aug.
2004.

9. K. J. Turner. Test generation for radiotherapy accelerators. Software Tools for Technology
Transfer, Oct. 2004, in press.

10. K. J. Turner. Validating feature-based specifications.Software Practice and Experience,
May 2005, in press.

