
Recombination and Error Thresholds in FinitePopulationsGabriela Ochoa and Inman HarveyCentre for the Study of EvolutionCentre for Computational Neuroscience and RoboticsSchool of Cognitive and Computing SciencesThe University of SussexFalmer, Brighton BN1 9QH, UKE-mail: fgabro, inmanhg@cogs.susx.ac.ukAbstractThis paper introduces the notions of `quasi-species' and `error threshold' frommolecular evolutionary biology. The error threshold is a critical mutation ratebeyond which the e�ect of selection on the population changes drastically. Wereproduce, using GAs | and hence �nite populations | some interesting resultsobtained with an analytical model | using in�nite populations | from the evo-lutionary biology literature. A reformulation of a previous analytical expression ,which explicitly indicates the extent of the reduction in the error threshold as wemove from in�nite to �nite populations, is derived. Error thresholds are shownto be lower for �nite populations. Moreover, as in the in�nite case, for low muta-tion rates recombination can reduce the diversity of the population and enhanceoverall �tness. For high mutation rates, however, recombination can push the pop-ulation over the error threshold, and thereby cause a loss of genetic information.These results may be relevant to optimizing the exploration-exploitation balancein GAs. Choices for critical GA parameters such as population size, mutation andrecombination rates, should be reconsidered in the light of this new knowledge.1 IntroductionOne of the major issues in genetic algorithms (GAs) is the relative importance of two geneticoperators: mutation and recombination (crossover) [Spe93]. Although there exists a largebody of conventional wisdom concerning the roles of recombination and mutation, these



roles have not been completely characterized. Furthermore, recombination is the primaryoperator distinguishing GAs from other stochastic search methods, much theoretical work inGAs is aimed at depicting the role of recombination in genetic search but precise knowledgeis still lacking [MFH92, MH93, Mit96].We are not alone. Questions on the evolution of sex and the role of sexual reproductionin nature have been among the major unsolved issues in evolutionary biology over manydecades. Several hypotheses and models have been proposed to explain why sexual re-production is maintained in most organisms in spite of the high cost associated with it[Wil75, MS78, ML88]. The GA theory community is beginning to pay attention to resultscoming from evolutionary biology [Boo93, Lev91, Lev95], and in particular from the �eld ofpopulation genetics. There is much more to be learned that is of potential interest to GAtheory.In this paper we reproduce, using GAs | and hence �nite populations | some interestingresults obtained with an analytical model | using in�nite populations | from the evo-lutionary biology literature. These results concern the interaction between recombinationand mutation on evolving populations of the so called `quasi-species' (explained below), andshow some unexpected e�ects of recombination on population evolution and the magnitudeof the `error threshold' . The error threshold is a critical mutation rate at which the pop-ulation evolutionary dynamics change radically. There exists a phase transition betweenand \ordered" (selection-dominated) regime and a \disordered" (mutation-dominated) one.Mutation rates above this critical value cause a loss of the genetic information gained so far.The notion of error threshold, then, seems to be related with the idea of an optimal balancebetween exploitation and exploration in genetic search. Molecular biology research revealsthat real virus populations | which are very e�ciently evolving entities | have mutationrates very close but below their theoretically expected error threshold. In consequence,we argue that the notion of error threshold may well be related to the notion of optimalmutation rates in GAs.Section 2 introduces the theory of quasi-species, and the notion of error-threshold. Section3 reformulates an expression introduced by Nowak and Shuster [NS89]. This new refor-mulation explicitly indicates the reduction in the error threshold as we move from in�niteto �nite populations. Section 3 also discusses the relevance of error threshold to optimalmutation rates. Section 4 gives a detailed recapitulation of an analytical model dealing withrecombination in populations of quasi-species. Section 5 describes the GA implementationtranslating this analytical model. Section 6 presents the main results, and ,�nally, section7 discusses results and their relevance to the theory of GAs.2 Quasi-SpeciesThe concept of a `quasi-species' was developed in the context of polynucleotide replication,and in particular studies of early RNA evolution [Eig71, ES79, EMS88]. A protein space,[MS70] or more generally a sequence space, can be modeled as the space of all possiblesequences of length � drawn from a �nite alphabet of size A. Each sequence has a �tnessvalue which speci�es its replication rate, or expected number of o�spring per unit time. The�tnesses of all A� possible sequences de�ne a `�tness landscape'. When A = 2, a binaryalphabet, the �tness landscape is equivalent to specifying �tness values at each vertex ofa �-dimensional hypercube; with some mathematical imagination (and some caution . . . )



this can be pictured as spread out over a geographical landscape where �tness is analogousto height, and the dynamics of evolution of a population correspond to movement of thepopulation over such a landscape.Given an in�nite population, and a speci�ed mutation rate governing errors in (asexual)replication, one can determine the stationary sequence distribution reached after any tran-sients from some original distribution have died away [EMS88]. Unless the mutation rateis too large or di�erences in �tnesses too small, the population will typically cluster aroundthe �ttest sequence(s), forming a concentrated cloud; the average Hamming distance be-tween two members of such a distribution drawn at random will be relatively small. Such aclustered distribution is called a `quasi-species'.With a large �nite population on the same �tness landscape the sequence distribution aftermany generations will typically be similar to that of the in�nite case. The distribution willbe noisy due to stochastic e�ects of the �nite population size N . N is commonly far less thanthe number of possible sequences A� . With �nite populations we can relax the requirementof waiting for a stationary �nal distribution; a �nite population will cluster very earlier onin an evolutionary run. Even in the absence of selective pressures the convergence time fora population of size N is of order N generations in asexual populations and approximatelyorder N (ln(�))1:1 generations in a sexual population with uniform crossover [AM94].With �nite populations we can also relax the requirement for a signi�cant variation of �t-nesses across the landscape. Even on a completely 
at �tness landscape, where all sequenceshave the same �tness, a �nite population will drift around in a quasi-species cluster or familyof clusters [DP91].These general results are relevant to GAs, with mutation and crossover in a �nite population.Populations will genetically converge to a cluster or quasi-species after a limited number ofgenerations, the `width' of such clusters being largely determined by the balance betweenselection (inward) and mutation (outward) pressures, modi�ed by the e�ects of genetic drift.For long term evolution within a GA, almost all of the run will be with such a clusteredpopulation. This genetic convergence is not a bar to further exploration and increase in�tness, and GAs can be modi�ed to behave appropriately, as in Species Adaptation GeneticAlgorithms [Har92, Har93].2.1 The Error ThresholdWhen there are variations in �tness | the landscape is more or less rugged | and alow mutation rate, then the stationary sequence distribution of an in�nite population willbe focused around the point(s) of highest �tness. The same can be seen with a �nitepopulation centered around point(s) that are locally of highest �tness. As the mutationrate is increased, the local distribution widens and ultimately loses its hold on the localoptima. Genetic Algorithm search can be considered as a balance between exploration (ofthe new) and exploitation (of what has been previously found to be �t). When mutationrates are too high then the search process can no longer exploit its history and it becomesrandom search.This can be seen at its clearest in an extreme form of a �tness landscape which containsa single peak of �tness � > 1, all other sequences having a �tness of 1. With an in�nitepopulation there is a phase transition at a particular error rate p, the mutation rate at each



of the � loci in a sequence. Following [ES79], we can determine analytically this criticalerror rate, which is de�ned as the rate above which the proportion of the in�nite populationon the peak drops to chance levels. The characteristic population distribution above andbelow this phase transition can be observed in �gure 3a.Let q = 1 � p be the per-locus replication accuracy. Then at the phase transition theprobability of accurate replication of the `master sequence' on the peak needs to be balancedby its superior replication rate, so as to equate with the replication of all the other sequences(we are, following Eigen and Shuster model [ES79], ignoring back-mutations from these tothe master sequence). �q� = 1 (1)(1 � p)� = 1� (2)h(1� p) 1p i�p = 1� (3)p is very small, so we can approximate the contents of the square brackets by e�1. Hencee��p = 1� (4)p = ln(�)� (5)For mutation rates lower than this critical value, the error threshold, then the proportion ofmaster sequences in the population will build up, giving the quasi-species centered aroundthe peak.The error threshold is of signi�cance for GAs because it determines a critical balance betweenexploration and exploitation. In general, to maximize exploration the mutation rate shouldbe as high as possible, but it should not be above the error threshold. Thus, the optimalbalance between exploration and exploitation in GAs is assumed to be found with a mutationrate close to the error threshold but below it.The single peak landscape abstraction employed here, is analogous to an scenario morefamiliar to the GA community, that is, a single block in the Royal Road Landscape [MFH92].In the �nal stage of the search in this landscape, the �nal block(s) need to be completedwithout losing those that have been completed already. These spiky landscapes are oneextreme of a continuum, with any less rugged landscape the error threshold would be smallerand the phase transition less sharp.The above calculations are for in�nite populations. For practical applications in GAs wemust consider how the picture changes for �nite populations.3 The Error Threshold in Finite PopulationsIn [NS89] the calculations of an error threshold for in�nite asexually replicating populations(which we will now call p1)are extended to �nite populations (where we shall call the critical



rate pN for a population of size N ). In this latter case it is easier for a population to lose itsgrip on the solitary spike of superior �tness in a single peak landscape because of the addedhazard of natural 
uctuations in a �nite population. The main result is presented as:The error threshold can be expanded in a power series of the reciprocal squareroot of the population size, and this increases with 1=pN in su�ciently largepopulations.More precisely, the reciprocal square root factor applies to the di�erence between the criticalreplication accuracy in an in�nite population qmin(1), and the equivalent qN in a populationsize N . The reference is to the second term in the following expansion, on the assumptionthat the third and subsequent terms are relatively insigni�cant and can be ignored [NS89].qN = q1�1 + 2p� � 1�pN + 2(� � 1)�N + (� � 1)3=2�N3=2 + : : :� (6)where as before � is the genotype length, and � is the selection strength or superiorityparameter of the master sequence. Since in many practical circumstances � may lie between1 and 5, then this implies that for values of N � 100 and of � � 10 then qN should di�erfrom q1 by only of the order of 1% or less. However, error thresholds are usually reckonedin terms of critical error rates p = 1 � q; and it turns out that the proportionate changesin critical values of p are much more signi�cant in �nite populations than the changes in q.Equation 6 was introduced by Nowak and Shuster [NS89]. Here we derive a reformulationof this equation, which makes explicit the reduction in the critical mutation rate as we movefrom an in�nite population to one of size N . In other words, instead of calculating thecritical replication accuracy (qN ), we wish to calculate the critical error rate (pN ):p1 � pNp1 = qN � q1p1 (7)= 2p� � 1(1� p1)�pNp1 (8)ignoring further terms in the expansion. Using (5) to substitute for p1, we have as theproportionate reduction in the error threshold:p1 � pNp1 = 2p� � 1�pN (1� 1� ln(�))1� ln(�) (9)= 2p� � 1pN � 1ln(�) � 1�� (10)For large values of � the second term in the bracket is relatively insigni�cant and we havep1 � pNp1 ' 2p� � 1ln(�)pN (11)



Alternatively, we can present equation (10) as:pN = ln(�)� � 2p� � 1�pN + 2ln(�)p� � 1�2pN (12)In the experiments to be discussed below � = 5=3:5; the genotype length is small at � = 15,making it less easy to ignore in equation (10). We can calculate in this case p1 = 0:023778,p1000 = 0:021084 a reduction of 11.33% and p100 = 0:015257 a reduction of 35.84% (usingthe less accurate equation (11) would give p1000 ' 0:021018 and p100 ' 0:015050).3.1 Relevance of Error Threshold to Optimal Mutation RatesOn a single spike �tness landscape, the error threshold speci�es a maximum mutation rateabove which the population or quasi-species will lose any presence that it may have on thepeak. What relevance does this have to GA problems, where researchers are generally moreinterested in the di�erent problem of �nding the peak in the �rst case? GA researchers maybe more concerned to �nd an optimal mutation rate than the unfamiliar concept of an errorthreshold. In this section we shall brie
y and selectively survey work on optimal mutationrates, and then relate these to the concerns of this paper.Optimal mutation rates can be thought of as those which maintain an ideal balance be-tween exploration and exploitation. Too low a mutation rate implies too little exploration| in the limit of zero mutation, successive generations of selection remove all variety fromthe population, and once the population has converged to a single point in genotype spaceall further exploration ceases. On the other hand, clearly mutation rates can be too ex-cessive; in the limit where mutation places a randomly chosen allele at every locus on ano�spring genotype, then the evolutionary process has degenerated into random search withno exploitation of the information gleaned in preceding generations.Any optimal mutation rate must lie between these two extremes, but its precise positionwill depend on a number of factors including, in particular, the form of the �tness landscapeunder consideration. In conventional GAs, choice of mutation rates tends to be a low �gure,typically 0.01 or 0.001 per bit as a background operator. However, the work on quasi-speciesand error thresholds (section 2) suggest that evolution works e�ciently when mutation ratesare directly below the threshold value above which information is destroyed. This idea issupported by T. B�ack [B�ac91] who suggests that \an optimal mutation rate for a GA isrelatively large and turns mutation into an additional search operator".Moreover, in conventional GAs, mutation rates are usually decided upon without regardto the genotype length. This despite suggestions from experimentation in [SCED89] thatoptimal rates mopt ' 1:829=(N1:0732l0:4867 (where N is population size and l is genotypelength); in [HM91] that earlier higher values should decrease exponentially towards mopt =�0=(Npl), for some constant �; and in [DeJ75] quoted in [HM91] as recommending mopt =1=l. The notion of error threshold con�rms that the choice of an optimal mutation rateshould consider the genotype length. Thus, such formulae point towards the right directionin this respect. However, they cannot be generally applicable, because they ignore at leasttwo factors which are relevant:1. Selection pressure.



2. `Junk' or redundant loci.One can propose simple thought experiments that support these ideas. Considering the �rstpoint, selective pressure, a generational GA can be seen as alternate applications of selectionand then genetic operators. Any given selective pressure SH can be emulated by two succes-sive applications of a lower selective pressure (SL where SLSL = SH ) without genetic opera-tors. If the only genetic operator under consideration is mutation, where application of theoptimal mutation rate is symbolized by M , then one generation of selection (at the originalselective pressure) followed by mutation can be expressed as SHM = SLSLM 6= SLMSLM .Clearly optimal mutation rates cannot be identical under these di�erent selective pressures,so any general formula must take account of this.Turning to the second point, let us consider a di�erent thought experiment where for geno-types of length l the optimal mutation rate under selective pressure S is m mutations pergenotype. We could in principle add an arbitrary number, for instance l, of `junk' or re-dundant loci to the genotypes, without a�ecting the evolutionary dynamics as long as theexpected number of mutations in the l relevant loci remained at M . However, direct appli-cation of the formula `m mutations per genotype' (calculated on the new genotype length of2l) gives a revised, sub-optimal, mutation rate applied to the non-redundant loci. So onceagain, any general formula expressed in terms of mutations-per-genotype must take accountof redundancy.It can be seen from this discussion that general formulae for optimal mutation rates cannotbe along the lines cited above. It can, however, be proposed that a mutation rate justbelow the error threshold is an optimal mutation rate for one extreme form of landscapeunder speci�c conditions. The single peak landscape studied above represents this extremecase, where the limiting behavior of the population as mutation rates increase gives rise toa phase transition at the error threshold. Here there is explicitly no redundancy, and theerror threshold is indeed calculated in terms of selective pressure.Suppose one starts with a population genetically converged at some point on the landscapeother than the peak, and is seeking to (a) �rst �nd and (b) then maintain a presence on thepeak. Then (in the absence of elitism 1) we need a mutation rate which (a) maximizes therate of (in this context) random search and yet (b) lies below the error threshold.So error thresholds can be seen to be related to optimal mutation rates in this one extremespecial case. It should be mentioned here that some authorities suggest that, in the naturalworld, e�ective mutation rates per genotype are generally maintained close to the errorthreshold at something of the order of one per genotype where genotype lengths vary from4500 (bacterial viruses) to 6:109 (humans) [ES79].4 Viral Quasi-Species and RecombinationMost mathematicalmodels describing quasi-species focus on point mutations as the principalsource of variation. However, Boerlijst et al. [BBN96] propose a mathematical model ofquasi-species dynamics which incorporates both mutation and recombination. In particularthey study virus populations. Viruses are infectious agents found in all life forms (plants,1We are here assuming that circumstances do not allow elitism to be a viable option | forinstance there may be some noise in �tness evaluations.



animals, fungi and bacteria). A virus particle consist of a core of nucleic acid, which maybe DNA or RNA, surrounded by a protein coat. Certain viruses named `retro-viruses' (e.g.HIV) can recombine their genetic material. They carry two copies of their genetic materialin every virus particle, thus, recombination may occur when two distinct strains of thesame virus simultaneously infect a single cell. Virus populations are quasi-species. Themodel of Boerlijst and co-workers speci�cally deals with retro-virus recombination. They�rst consider viral quasi-species dynamics without recombination. Distinct viral strainsare represented by bitstrings of length L. A set of di�erential equations (see Appendix)describe the change in uninfected cells x, infected cells yi and free viruses vi. In this modela parameter, p, stands for the mutation rate per bit. Next paragraph describes the analyticalresults obtained in this case.From now on, following Boerlijst et al. notation, we will use p to represent a variablemutation rate and pc to indicate the critical mutation rate (or error threshold).Without mutation (p = 0), the strain with the largest reproductive ratio Ri will outcompeteall other strains. With mutation (p > 0) there is a critical error rate, pc (the error thresholddiscussed in section 2), beyond which the strain with the highest Ri fails to be selected.Boerlijst et al. consider a single peak �tness landscape, where a strain F has the highestreproductive ratio, RF , and all other strains have the same but lower reproductive ratio R.If p < pc the quasi-species will be centered around the �ttest strain F , which will be themost abundant. If p > pc the �ttest strain F will not be selected and each virus strain willhave essentially the same relative abundance.4.1 Bitstring recombination modelIn [BBN96] the mathematical model is then adapted to include recombination (see Ap-pendix), and here we will summarize their results. Variables for double infected cells, andfor viruses produced by these cells are incorporated. Double infected cells Yij , are infectedwith strain i and superinfected by strain j. vij represents the free virus produced by thesesuper-infected cells, of which 25% will be homozygous type i, 25% will be homozygous typej, and 50% will be heterozygous. Due to this characteristic of the model, the recombinationrate, r, has a maximumat r = 0:5, because only heterozygous virus particles can (e�ectively)recombine. To model recombination itself `uniform crossover' [Sys89] is employed.The steady state structure of the new set of equations including recombination is studied.Bitstrings have length 15. The recombination rate has a maximum at r = 0:5, for thereasons exposed above. Two abstract �tness landscapes, (a) Isolated peak landscape, and(b) Plateau landscape, are considered.(a) Isolated peak landscape First, the case where only one strain F has an increased Rivalue, a so-called `isolated peak' landscape, is studied. This single bit string has �tnessRF = 5, all other strings (designed as mutants) have �tness Ri = 3:5. The steadystate mutant distribution for this landscape, produces the following results. For anerror rate of p = 0:07, the recombinant population (compared against the populationwithout recombination) is in some sense more compact: there are less rare mutants,but there is also less of strain F . This distribution is qualitatively similar to thatobtained experimentally for �nite populations (in this paper), thus �gure 1a illustratesthis distribution, although for a distinct mutation rate.



On the other hand, for a slightly increased error rate of p = 0:08, recombination drivesthe population beyond the error threshold, resulting in an almost uniform distributionof mutants (see �gure 1b, again for a qualitatively similar distribution). Thus, for anisolated peak landscape, recombination is always disadvantageous for the virus, becauseit decreases the abundance of F and shifts the error threshold towards lower mutationrates.(b) Plateau landscape In this scenario, the �tness of mutants close by the �ttest strainF is increased to RH1 = 4:8, and RH2 = 4:6 . Where H1 is the set of all mutants witha Hamming distance of 1 from the �ttest string F , and H2 the set of all mutants witha Hamming distance of 2 from F . In this case the steady state distribution of mutantsshows that, before the error threshold at p = 0:011, the recombinant population isagain more compact, and it has more of it mass in the middle of the �tness plateau(�gure 2a mirrors these results, although for a distinct mutation rate). If the error rateis increased, at a certain point (around p = 0:015), and fairly suddenly, recombinationcan no longer keep the population in the middle of the �tness plateau (see �gures2b and 4d). On the other hand, the transition around the error threshold with norecombination is very smooth, and the magnitude of the error threshold itself is larger,acting around p = 0:05 (�gure 4c qualitatively mirrors this behavior). Thus, in thissituation, recombination is advantageous to the virus for small mutation rates.4.1.1 Main conclusions for in�nite recombinant populationsTo summarize, Boerlijst et al. main conclusions are:� For small mutation rates (i.e. below the error threshold), recombination can focus thequasi-species around a �tness optimum.� Recombination shifts the error threshold to lower mutation rates, and make the tran-sition sharper.� Recombination is advantageous (in the sense that it increases average population �t-ness) if �tness is more correlated |as in the plateau landscape (b) | and if the mutationrate is su�ciently small.Finally, the authors claim that they have extensively tested the diploid bit-string model forother �tness distributions such as `smooth' �tness peaks, multiple peaks and random distri-butions; that they have looked to alternatives to uniform crossover, such as one-point andmulti-point crossover; and that in all this cases the main conclusion holds: recombinationshifts the error threshold towards lower mutation rates and makes the transition sharper.5 MethodsNow we have described in detail the analytical model of Boerlijst and co-workers, we canmove to the discrete world of computer simulations. Results obtained using in�nite pop-ulation models, can not be expected to automatically apply to the more realistic case of�nite populations. Thus, we endeavored to develop a genetic algorithm simulation modelto study similar scenarios in the latter case. Moreover, Boerlijst et al. study deals with aparticular type of recombination in viruses. Our study employs a more general scheme of



recombination | that used in GAs. For the GA implementation the following choices weremade. A generational GA with �tness proportionate selection is employed. The geneticoperators utilized are bit mutation and uniform crossover. Chromosomes have length 15.For both abstract �tness landscapes modeled, the isolated peak and plateau landscapes, the�ttest string F is considered to be the string of all zeros | 000000000000000 | with noloss of generality. Any other bitstring or strain is referred to as a `mutant', and belongsto one of the Hamming distance classes Hi, where i is the Hamming distance to F | inthis case the number of ones in the bitstring. To run the experiments, the populations areinitialized as follows. For the single peak landscape, around 50% of the population is set onthe peak and the rest is randomly generated. For the plateau landscape 25% is set on thepeak, 25% on the H1 compartment, 25% on the H2 compartment, and the rest is randomlygenerated. The �tness values, for both landscapes, are those employed by Boerlijst et al.(see section 4.1 above). Population sizes are set to 100 for one group of experiments and to1000 for another. This is intended to study the e�ect of population size on the magnitudeof the error threshold. To be able to compare the results with those of Boerlijst et al., thecrossover rate is set to 0:5 in all experiments for sexual populations. The per bit mutationrate p is the subject of study, thus it is varied from p = 0:005 to p = 0:04, with a step sizeof 0:005. The number of generations per GA run is set to 250. This value was empiricallyselected, the distribution of mutants is fairly stable by this point in all cases. In order tocope with stochastic noise, each GA run is repeated 50 times and the results are averaged.GA parameters are summarized in the following table:Chromosome length 15Population size 100 or 1000Crossover rate 0.0 or 0.5Mutation rate 0.005 to 0.04, Step = 0.005Generations 250Trials per GA run 50Table 1: GA parameters6 ResultsThe experimental results obtained with the GA model described above mirrored quali-tatively those produced by Boerlijst et al. (section 4.1). However, the error-thresholdmagnitudes di�er considerably. In fact, the error threshold for �nite populations is, in allscenarios, signi�cantly smaller than for the in�nite case.Before further discussing the results obtained with the GA model, let us consider \a basicprinciple of recombination", as exposed by Boerlijst et. al. ([BBN96]). This principle holdsfor any type of recombination, and turns out to be an important element for understandingthe e�ects of recombination in population evolution, and the stable distribution of mutants.Consider two sequences i and j with a genetic distance dij (for a bitstring modeldij is the Hamming distance). Assume that these sequences recombine to producean o�spring k. If recombination is the only source of variation, we havedik + djk = dij.



The genetic di�erence between the parents equals the sum of the genetic di�erencebetween o�spring and each of the parents. This relation is important for ourunderstanding of recombination. It shows that in sequence space recombination isalways inwards pointing. ([BBN96], p. 1578)Next subsections discuss in detail the results obtained with the GA model.6.1 Single peak landscapeFigure 1 re
ects the distribution of mutants, above and below the error threshold for therecombinant population in an isolated peak �tness landscape. These plots, using logarithmicscale, are almost mirror images of those shown in ([BBN96], p. 1579).Figure 1a shows mutant distribution for an error rate of p = 0:01, with or without recom-bination. The recombinant population turns out to be more compact | less diverse | insome sense: there are fewer rare mutants, there is also fewer of strain F . This e�ect ofrecombination can be understood as follows ([BBN96], p. 1579). Most of the population isof strain F . If strain F recombines with e.g. a strain in H8, then, according to the principleof recombination discussed above, the o�spring lies anywhere between F and H8.On the other hand, �gure 1b shows that for a slightly increased error rate (p = 0:015) recom-bination drives the population beyond the error threshold, resulting in an almost uniformdistribution of mutants. As it can be seen, the bulk of the recombinant population is in theH7 and H8 compartments, because these contain the most strains. The explanation sug-gested by Boerlijst and co-workers is as follows. Where recombination acts as a convergingoperation when F is involved, it acts as a diverging operation in other cases. If for instancetwo mutants in H4 recombine, the product lies everywhere between F and H8.These distributions are observed at error rates of p = 0:07, and p = 0:08 respectively, forin�nite populations [BBN96].6.2 Plateau landscapeIn the isolated peak landscape, recombination seems to be disadvantageous for the popula-tion, because it decreases the abundance of F and shifts the error threshold towards lowermutation rates. However, recombination can be advantageous for more correlated �tnesslandscapes, as for instance the plateau landscape (see section 4.1). Figure 2a shows thedistribution of mutants in a plateau landscape for an error rate p = 0:02 | now with alinear scale. It can be seen that the bulk of the population is in the H2 compartment.Recombination between two H2 strains generates o�spring anywhere between F and H4.Recombination thus shifts part of the population back to the middle of the �tness plateau.However, for a slightly increased error rate, p = 0:025, recombination drives, again, thepopulation beyond the error threshold (see �gure 2b).6.3 Population size and the magnitude of the error thresholdFigures 3 and 4 show graphically the critical mutation rate in the distinct scenarios for twopopulation sizes | 100 and 1000.It should be mentioned that whereas for in�nite populations on a single peak landscapethe de�nition of the error threshold is straight forward (there is a clear phase transition),



this is not the case for �nite populations (where the transition is less sharp). Moreover, if�tness is more correlated |as in the plateau landscape, the transition is even less noticeable.Nevertheless the error threshold can be identi�ed visually for �nite populations (see �gures3 and 4) with some degree of uncertainty.Table 2 summarize the error thresholds values for �nite populations in the single peak andplateau landscapes, as observed experimentally to the nearest step size of 0.005. Whereastable 3 show the error thresholds for in�nite populations, as calculated in section 3 for anasexual population in a single peak landscape, and as reported by Boerlijst et al. [BBN96]for the other cases.It should be noticed that the error thresholds observed experimentally for �nite asexualpopulations | sizes 100 and 1000 | in the single peak �tness landscape, coincide veryaccurately with the values for these critical error as calculated in section 3 (p1000 = 0:021084and p100 = 0:015257). Single Peak Plateau100 1000 100 1000Asexual 0.015 0.020 0.030 0.035Sexual 0.010 0.010 0.020 0.020Table 2: Error thresholds for �nite populations |sizes 100 and 1000.Single Peak PlateauAsexual 0.023778 ' 0.05Sexual ' 0.075 ' 0.02Table 3: Error thresholds for in�nite populationsIt can be observed that:� Error thresholds for �nite populations are lower in most situations than for the in�nitecase.� The error threshold for an asexually replicating population is in all scenarios smallerthan for a sexually replicating one.� For asexual replication, the error threshold is smaller the smaller the population size.This reduction can not be seen for sexually replicating populations, however, this maynot be conclusive as experiments with a smaller mutation rate step should be realized.� Error thresholds are higher in all situations for the more correlated �tness landscapestudied | the plateau landscape.� The transition in mutant distribution around the error threshold, is sharper in thecase of sexually replicating populations compared to the asexual ones. Moreover, thetransition seems to be sharper the smaller the population in all cases.



7 DiscussionFor �nite populations and in both abstract �tness landscapes studied, the stable mutantdistribution was seen to be qualitatively similar to that for in�nite populations. Thus, themain conclusions of Boerlijst and co-workers, summarized in section 4.1.1 above, hold inthis case. However, the error thresholds are smaller in most scenarios for �nite populations.Moreover, for asexually replicating populations, the smaller the population, the smaller themagnitude of the error threshold (or the greater the extent of the reduction from) comparedto the in�nite case. In the single peak landscape, the experimental results for asexually repli-cating populations were accurately predicted by the analytic expression derived in section3.The relevance of these results to the theory of GAs is twofold. First, in the study of optimalmutation rates, if as mentioned in section 3.1 the notion of error threshold turns out to berelevant in this respect. Secondly, in understanding both th role of recombination, and theinteraction between recombination and mutation in GAs operation.Although we have studied simple �tness landscapes, the isolated �tness landscape is anextreme case in the continuum of less rugged landscapes. The plateau landscape is a lessextreme case that also showed distinct behaviors below and above a critical mutation rate.Further experiments are currently being designed to asses the correlation between errorthresholds and optimal mutation rates in distinct scenarios. Particularly, the `Royal Road'�tness landscape [MFH92] will be employed as it allows for easily representing landscapeswith distinct degrees of �tness correlation and neutrality. If, as we expect, optimalmutationrates are closely related to error thresholds; higher values for mutation rates should generallybe used in GAs for practical applications. Moreover, the following general suggestions, couldbe made:� Given that error thresholds are inversely proportional to chromosome length; the mu-tation rate should be smaller, the longer the chromosome.� Given that error thresholds were shown to be lower for small-sized populations; themutation rate should be smaller, the smaller the population size.� Given that recombination shifts the error threshold to lower mutation rates, the muta-tion rate should be smaller when recombination is used.� Given that recombination was shown to increase the population average �tness in morecorrelated landscapes; the more correlated the �tness landscape is, the more the ad-vantages of using recombination.These suggestion should be tested using more realistic �tness functions. However, simpleabstract �tness landscapes turn out to be very useful tools to explore evolutionary dynamics,and to test hypotheses regarding the roles of genetic operations in population evolution.Finally a computational `microanalytical' or `agent-based' model | in this case the GA |could o�er some advantages over an analytical model for evolutionary biology studies. Inparticular, there is the possibility of modifying the general assumption of random mating,allowing instead more biologically inspired patterns of sexual selection. Preliminary studiesshow that assortative mating can enlarge considerably the critical error rate. This allows, in
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AppendixBoerlijst et al. model [BBN96] describes the change in uninfected cells x, infected cells yi,and free virus vi without recombination:dxdt = � � �x� xXi �ivi (1)dyidt = xXj Qij�jvj � aiyi (2)dvidt = kiyi � uivi (3)In this model � is the in
ux rate of uninfected cells; �, ai and ui are the death rates of,respectively, uninfected cells, infected cells, and free virus; �i is the infection rate; ki theproduction rate of new free virus; and Qij is the probability of strain j mutating to straini. The mutation matrix is given by:Qij = pHij (1 � p)L�Hij (4)Here p is the mutation rate per bit, L is the bitstring length, and Hij is the Hammingdistance between strings i and j. Error free replication is given by Qij = (1 � p)L.Equations (1)-(3) are adapted to include recombination. Double infected cells Yij are added,which are infected with strain i and superinfected with strain j. vij is the free virus producedby this super-infected cells, of which 25%will be homozygous type i, 25% will be homozygoustype j, and 50% will be heterozygous. The new set of equations becomes:dxdt = � � �x� xV (5)dyidt = xVi � aiyi � syiV (6)dyijdt = syiVj � aijyij (7)dvidt = kiyi � uivi (8)dvijdt = kijyij � uijvij (9)Here s is the rate of super-infection, V = Pi �ivi +Pij �ijvij is the sum of all infectiousvirus and Vi = Pj Qij�jvj +Pj QijPklMjkl�klvkl is the sum of infectious virus of typei, after mutation and recombination, with Mjkl being the probability of strain k and lrecombining to strain j. All other variables and parameters are as described in equations(1)-(3).
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Figure 1: The e�ect of recombination on mutant distribution in a single peak �tness land-scape for a population size of 1000 | logarithmic scale. (a) Below the error threshold(p = 0:01) the recombinant population is more compact. (b) For a slightly increased mu-tation rate p = 0:015, recombination can push the population over the error threshold. Hidenotes the sum of all mutants with a Hamming distance i to F (the �ttest string)



(a)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14

Hamming distance class

fr
ac

tio
n S exual

As exual

(b)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14

Hamming distance class

fr
ac

tio
n S exual

As exual

Figure 2: The e�ect of recombination on mutant distribution in a plateau �tness landscapefor a population size of 1000 | linear scale. (a) Below the error threshold (p = 0:02) therecombinant population is again more compact, and it has more of its mass in the middleof the �tness plateau. (b) For a slightly increased mutation rate p = 0:025, recombinationcan no longer keep the population in the middle of the �tness plateau.
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Figure 3: Mutant distribution for a population of size 100 | asexual and sexual populationsin the two abstract landscapes studied. The mutation rate varies from 0.005 to 0.04 with astep of 0.005. The error threshold can be identi�ed visually as the mutation rate just beforethe error classes become equally distributed (the lines become parallel). The vertical axisshows the fraction of the population, and the horizontal axis the mutation rate. The �tteststring (F) and the error classes H1 and H2 are indicated in all cases.
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Figure 4: Mutant distribution, now for a population of size 1000 |asexual and sexualpopulations in the two abstract landscapes studied. The mutation rate varies from 0.005 to0.04 with a step of 0.005. The vertical axis shows the fraction of the population, and thehorizontal axis the mutation rate.


