
Contrasting meta-learning and hyper-heuristic
research: the role of evolutionary algorithms

Gisele L. Pappa • Gabriela Ochoa •

Matthew R. Hyde • Alex A. Freitas •

John Woodward • Jerry Swan

Received: 10 December 2012 / Revised: 28 March 2013

� Springer Science+Business Media New York 2013

Abstract The fields of machine meta-learning and hyper-heuristic optimisation

have developed mostly independently of each other, although evolutionary algo-

rithms (particularly genetic programming) have recently played an important role in

the development of both fields. Recent work in both fields shares a common goal,

that of automating as much of the algorithm design process as possible. In this paper

we first provide a historical perspective on automated algorithm design, and then we

discuss similarities and differences between meta-learning in the field of supervised

machine learning (classification) and hyper-heuristics in the field of optimisation.

This discussion focuses on the dimensions of the problem space, the algorithm space

and the performance measure, as well as clarifying important issues related to

different levels of automation and generality in both fields. We also discuss

important research directions, challenges and foundational issues in meta-learning

and hyper-heuristic research. It is important to emphasize that this paper is not a

survey, as several surveys on the areas of meta-learning and hyper-heuristics

(separately) have been previously published. The main contribution of the paper is

to contrast meta-learning and hyper-heuristics methods and concepts, in order to

G. L. Pappa (&)

Computer Science Department, Universidade Federal de Minas Gerais,

Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte 31270-010, Brazil

e-mail: glpappa@dcc.ufmg.br

G. Ochoa � J. Woodward � J. Swan

Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA,

Scotland, UK

M. R. Hyde

School of Environmental Sciences, University of East Anglia, Norwich Research Park,

Norwich NR4 7TJ, UK

A. A. Freitas

School of Computing, University of Kent, Canterbury, Kent CT2 7NF, UK

123

Genet Program Evolvable Mach

DOI 10.1007/s10710-013-9186-9

promote awareness and cross-fertilisation of ideas across the (by and large, non-

overlapping) different communities of meta-learning and hyper-heuristic research-

ers. We hope that this cross-fertilisation of ideas can inspire interesting new

research in both fields and in the new emerging research area which consists of

integrating those fields.

Keywords Hyper-heuristics � Meta-learning � Genetic programming �
Automated algorithm design

1 Introduction

Despite the success of heuristic optimisation and machine learning algorithms in

solving real-world computational problems, their application to newly encountered

problems, or even new instances of known problems, remains difficult; not only for

practitioners or scientists and engineers in other areas, but also for experienced

researchers in the field. The difficulties arise mainly from the significant range of

algorithm design choices involved, and the lack of guidance as to how to proceed

when choosing or combining them. This motivates the renewed and growing

research interest in techniques for automating the design of algorithms in

optimisation, machine learning and other areas of computer science, in order to

remove or reduce the role of the human expert in the design process.1

Automating the design of algorithms is not a new idea, and what has changed is

the algorithmic level at which the automation is performed. Consider the area of

evolutionary computation, for example. Initially, researchers concentrated on

optimizing algorithm parameters automatically, which gives rise to adaptive and

self-adaptive parameter control methods [7]. With time, the definition of parameters

was broadened to include not only continuous variables, such as crossover and

mutation rates, but also include ‘categorical’ parameters, i.e. evolutionary

algorithms components, such as the selection mechanism and crossover and

mutation operators [65]. After that, evolutionary algorithms were first used in the

meta-level, i.e. to generated a complete evolutionary algorithm, as showed in the

works of Oltean [83].

In the area of machine learning, automated algorithm design appeared as a

natural extension of the first works focusing on automated algorithm selection. As

discussed in [106], the algorithm selection problem was formally defined by John

Rice in 1976 [94], and the big question posed was: Which algorithm is likely to
perform best for my problem? The area of meta-learning [11] took the challenge and

started to take shape in the late eighties, but was formally introduced in 1992 with

the MLT project [63]. The MLT project created a specialist system (named

Consultant-2) to help in selecting or recommending the best algorithm for a given

problem. This first project was followed by two others, namely Statlog [73] and

1 Note that when we talk about algorithms, we mean any sequence of steps that is followed to solve a

particular problem, regardless of whether these steps describe a heuristic, a neural network or a genetic

algorithm.

Genet Program Evolvable Mach

123

METAL [12]. In all three projects, the main difference between meta-learning and

the traditional base-learning approach was in their level of adaptation. While

learning at the base level focused on accumulating experience on a specific learning

task, learning at the meta level accumulated experience in the performance of

multiple applications of a learning system [11]. Later, meta-learning developed

other research branches, such as model combination and, more recently, automated
algorithm generation [87].

Within combinatorial optimisation, the term hyper-heuristics was first used in

2000 [30] to describe heuristics to choose heuristics. In this case, a hyper-heuristic

was defined as a high-level approach that, given a particular problem instance and a

number of atomic heuristics, selects and applies an appropriate heuristic at each

decision point [14, 96]. This definition of hyper-heuristics was also expanded later

to refer to an automated methodology for selecting or generating heuristics to solve

hard computational search problems [16].

Note that the original definitions of both meta-learning and hyper-heuristics were

expanded to move from heuristic/algorithm selection to heuristic/algorithm

generation. In both areas, the turning point from selecting to generating

heuristics/algorithms had the same cause: the expressive power of genetic

programming as a tool for algorithm design (see [15, 87] for an overview). In

this new context, hyper-heuristics aimed to generate new heuristics from a set of

known heuristic components given to a framework. Similarly, in meta-learning, the

idea was to generate new learning algorithms by combining algorithm primitives

(such as loops and conditionals) with components of well-established learning

methods to generate new learning algorithms. In both cases, the distinguishing

feature of search methods in the meta/hyper level is that they operate on a search

space of algorithm components rather than on a search space of solutions of the

underlying problem. Therefore, they search for a good method to solve the problem

rather than for a good solution [27].

One issue when migrating from heuristic/algorithm selection to generation was

the need for generalization. In typical applications of heuristic optimisation

methods, the quality of a candidate solution returned by the fitness function is

evaluated with respect to a single instance of the target problem. In such

applications, the generality of the method applied does not matter (for a further

discussion of this point, the reader is referred to [87] pp. 97–100)). By contrast, in

machine learning tasks such as classification, the algorithm learns a classification

model from the training set, which is later applied to classify instances in the test

set. The goal of a classification algorithm is to discover a classification model with

high generalisation ability, i.e. a model that has a high predictive accuracy on the

test set, containing data instances not observed during the training of the algorithm.

Hence, the work previously done in this area can be of great help for the hyper-

heuristic community.

Given the historical resemblance between the evolution of automated design in

both the learning and optimisation communities, the main objective of this paper is

to bring together the supervised machine learning (classification) and heuristic

optimisation communities to contrast their work, which both seek to: (i) automate

Genet Program Evolvable Mach

123

the process of designing or selecting computational problem solving methodologies;

and (ii) raise the level of generality of these methodologies.

It is important to emphasize that this paper does not intend to be a survey, as several

surveys in the areas of meta-learning and hyper-heuristics (separately) have being

previously published [16, 85, 115]. The main contribution of the paper is rather to

contrast meta-learning and hyper-heuristics methods and concepts, in order to promote

awareness and cross-fertilisation of ideas across the (by and large, non-overlapping)

different research communities of meta-learning and hyper-heuristics. We hope that

this cross-fertilisation can inspire interesting new research in both fields and in the new

emerging research area which consists of integrating those fields.

The remainder of this paper is organized as follows. Section 2 brings a historical

perspective of the idea of automatic algorithm design. Section 3 introduces the areas

of meta-learning and hyper-heuristics, and contrasts them according to three points:

(i) the problem space; (ii) the algorithm space, and (iii) the performance measure.

Section 4 presents various examples of automatic algorithm design in different

levels of generalization, emphasizing the differences between algorithm selection

and generation. Finally, Sect. 5 discusses the differences between current machine

learning and optimisation approaches for automatic algorithm design, and presents

directions for future research mainly in foundation studies, generalization of the

algorithms generated and the evaluation process.

2 A historical perspective on automated algorithm design

As previously discussed, the idea of automatic algorithm design is not new: it has

been investigated by different areas for the past 50 years, from different

perspectives. The desire to automatically create computer programs for machine
learning tasks, for example, dates back to the pioneering work of Samuel in the

1950s, when the term machine learning was first coined meaning ‘‘computers

programming themselves’’ [75]. Given its original difficulty, this definition was

revised with time, being redefined as the system’s capability of learning from

experience. Later, based on this same idea, the area of meta-learning was the first to

deal with selecting/building algorithms tailored to the problem at hand, as detailed

in Sect. 3.1.

In evolutionary computation, this problem was studied in different algorithms

and at various abstraction levels. For instance, the popularity of genetic

programming in the early 1990s for the automatic evolution of computer programs

[64] was the first step towards current efforts to evolve programs using knowledge

from the user (such as those based on grammars [86]) or evolving code in a

particular language, such as C or Java [53, 77, 84]. In parallel, the first studies on

adaptive and self-adaptive evolutionary algorithms appeared, in which the

algorithms were dynamically adapted to the problem being solved.

Initially, Angeline [6] grouped the latter methods according to the level of

adaptation they employed. Three different levels were defined: population-level

(global parameters), individual-level (parameters to particular individuals) and

component-level (different components of a single individual). Different strategies

Genet Program Evolvable Mach

123

were proposed according to the desired adaptation level, and the same is true for

automatic algorithm design. Later, Back [7] summarized the strategies of parameter

control in three groups: (i) dynamic, where the parameters were modified according

to a deterministic strategy defined by the user; (ii) adaptive, where a feedback

mechanism monitors evolution and changes parameters according to their impact on

the fitness function; and (iii) self-adaptive, where the parameter values are inserted

into the individual representation or in a new cooperative population, and suffer the

same types of variations as the solutions themselves.

Summarizing the previous works in this area, Eiben et al. [40] proposed a

taxonomy for parameter setting methods, which were divided into two main types:

parameter tuning and parameter control. The main difference between the two is that

parameters are tuned before the evolution starts, and controlled during evolution.

While Eiben et al. focused on reviewing parameter control, Kramer [65] extended

the taxonomy to include different types of parameter tuning, including meta-

evolution. Meta-evolutionary algorithms (such as meta-genetic algorithms and meta-

genetic programming) use evolutionary algorithms in a nested fashion, which occurs

on two levels. The outer level evolutionary algorithm is used to tune the parameters

of the inner level evolutionary algorithm (i.e. the one solving the problem).

The initial works in meta-evolutionary algorithms also focused on optimizing

continuous parameters, although in 1986 Grefenstette took six parameters into

account, including population size, crossover and mutation rates and the type of

selection to be followed by the algorithm (which was a discrete parameter) [58].

However, works in this area were criticized for bringing a problem similar to the one

being solved: optimising the parameters of the outer loop evolutionary algorithms,

which made the problems of parameter optimisation recursive. Other works chose to

use two co-evolving populations to solve this same type of problem, where the main

population used crossover and mutation operators evolved by the second population

during evolution [38]. Methods based on meta-approaches also evolved with time, and

the parameters were replaced by high levels of components that, in the ultimate case,

can generate complete evolutionary algorithms [83]. In [83], the authors proposed to

evolve an evolutionary algorithm for families of problems using a steady-state linear

genetic programming (LGP), as detailed in Sect. 4.4.1. Another type of system worthy

of note is the autoconstructive evolution system proposed by [107], named Pushpop,

where the methods for reproduction and diversification are encoded in the individual

programs themselves, and are subject to variation and evolution.

In the area of artificial life, in contrast with the efforts for automatic program

generation, computer simulations such as Tierra and Avida appeared in the early 90s

to create digital creatures or organisms. In Tierra, computer programs (digital

organisms) competed for CPU time and memory, and could self-replicate, mutate

and recombine. The main purpose of the system was to understand the process of

evolution, rather than solve computational problems. Avida, in turn, was an

extension of Tierra that guided evolution to solve simple problems [82]. Avida has

been largely used to simulate biological and chemical systems [1], but was also

extended to other interesting problems that need robust and adaptive solutions.

Georgiou and Teahan [56], for example, developed Avida-MDE, which generates

behavior models for software (represented by a set of finite state machines) that

Genet Program Evolvable Mach

123

capture autonomic system behavior that is potentially resilient to a variety of

environmental conditions.

3 Contrasting meta-learning and hyper-heuristic optimisation methods

One of the objectives of this paper is to contrast automated methods for selecting/

generating new heuristics/algorithms for a given problem. This section starts by

summarizing how the meta-learning and hyper-heuristics fields developed to

automatically select or build algorithms/heuristics, and then contrasts the two

approaches.

3.1 Meta-learning

Meta-learners were first developed to help users choose which algorithm to apply to

new application domains. The area does that by benefitting from previous runs of

each algorithm on different datasets. Hence, while a traditional (or base) learner

accumulates experience over a specific problem, meta-learners accumulate expe-

rience from the performance of the learner in different applications [11].

The most common types of meta-learning are algorithm selection/recommenda-

tion and model combination. Algorithm selection/recommendation is based on the

use of meta-features, which can be expressed using: (i) dataset statistics, such as

number of features, class entropy, attributes and classes correlations, etc; (ii)

properties of an induced hypothesis (e.g. for a rule induction model, features such as

the number of rules, number of conditions per rule using numerical and categorial

attributes, etc); and (iii) performance information of learning systems with different

learning biases and processes. Hence, algorithm selection/recommendation helps

the user to choose the learner by generating a ranking of algorithms or indicating a

single algorithm according to their predictive performance. The ranking/selection is

created using the meta-data aforementioned, which combines dataset characteristics

with algorithms performance.

Model combination, in turn, combines the results of different inductive models,

based on the idea that sets of learners may present better generalization than the

learners by themselves. The models are generated based on two main approaches. In

the first case, different dataset samples are used to train the same learner. In the

second case, different learners are used to learn from the same dataset. In both

approaches, the final results are given by the combination of the outputs of the

single learners. Two well-known algorithms that follow the first approach are

bagging and boosting.

Bagging extracts n samples from the dataset with replacement, and learns a

model from each of them [13]. Given a new instance to be classified, the method

performs a majority voting, assigning the class given by the majority of the

n learners to the example. Boosting also works with a single learner, but is based on

the assumption that combining weak learners (i.e. those with predictive performance

just above random) is easier than finding a single learner with high predictive

accuracy [102]. Based on this idea, boosting runs a learner repeatedly over different

Genet Program Evolvable Mach

123

data distributions, and combines their final results. However, boosting algorithms

change the data distribution according to the errors made by the first learners.

Initially, each example is assigned a constant weight w. On each iteration, the

weights of misclassified instances are increased, so that the next model built gives

more importance to them.

Stacking [117] is an example of an algorithm that works with different learners

instead of different data samples. It runs a set of base-learners on the dataset being

considered, and generates a new dataset M replacing (or appending) the instance

features with the learner results. A meta-learner is then used to associate predictions

of the base-learners with the real class of the examples. When new examples arrive,

they are first run in the set of base-learners, and the results given to the meta-learner.

Examples of other algorithms combining different datasets and multiple base-

learners are cascading and delegating.

In addition to the two approaches of meta-learning just described, a third type,

called algorithm generation, is discussed in this paper. Instead of selecting the best

learner, this approach builds a learner based on its low-level components, such as

search mechanism, evaluation function, pruning method, etc. In this case, the

method working at the meta-level is usually an evolutionary algorithm. In particular,

genetic programming, which is intrinsically a machine learning approach [8], is the

most explored method.

The first approaches based on algorithm generation focused on evolving neural

networks [119]. There are still many efforts in this direction, as described in Sect.

4.3. In the case of evolutionary artificial neural networks, researchers have gone one

step further, and are using evolutionary algorithms to create ensembles of these

networks [28], which is categorized as a combination method in meta-learning.

After neural networks, approaches for building rule induction algorithms [87] and

decision trees [9] were also proposed. These approaches resemble work in meta-

evolutionary algorithms, and in this case the outer loop algorithm is an evolutionary

approach and the inner loop is essentially a learning algorithm, which can be, again,

an evolutionary one.

To summarize this section, Fig. 1 presents a classification of the most common

approaches for meta-learning. This paper covers the approaches for selection and

Fig. 1 Classification of meta-learning methods

Genet Program Evolvable Mach

123

generation of heuristics, although their combination is out of the scope of the paper.

For more details on this, the reader is referred to [95]. The numbers adjacent to

some categories indicate the section of this paper in which an example of that

approach can be found. Note that in both selection and generation methods, one can

work at the level of algorithmic components or algorithms. Although the idea of

meta-learning refers to the choice of algorithms (see Sect. 4.1), methods for

component selection have also been proposed (see Sect. 4.3 for an example of

decision-tree split functions). Additionally, the generation of algorithms and

algorithm components is a more recent development, as shown in the examples in

Sect. 4.4.

3.2 Hyper-heuristics

The term hyper-heuristic is relatively new—it first appeared in a peer-reviewed

conference paper in 2000 [30], to describe heuristics to choose heuristics in the

context of combinatorial optimisation, and the first journal paper to use the term in

this sense was [22]. However, the idea of automating the design of heuristic methods

is not new; it can be traced back to the 1960s, and can be found across Operational

Research, Computer Science and Artificial Intelligence. Fisher and Thompson [45],

showed that combining scheduling rules (also known as priority or dispatching rules)

in production scheduling was superior to using any of these rules separately. This

pioneering work should be credited with laying the foundations of the current body of

research into hyper-heuristic methods. Another body of work that inspired the

concept of hyper-heuristics came from the Artificial Intelligence community. In

particular, from work on automated planning systems and the problem of learning

control knowledge [57]. The early approaches to automatically set the parameters of

evolutionary algorithms can also be considered as antecedents of hyper-heuristics.

The notion of ‘self-adaptation’, first introduced within evolution strategies for

varying the mutation parameters [93, 103], is an example of an algorithm that is able

to tune itself to a given problem whilst solving it. Another idea is to use two

evolutionary algorithms: one for problem solving and another one (a so-called meta-

evolutionary algorithm) to tune the first one [59]. Finally, a pioneering approach to

the automated generation of heuristics can be found in the domain of constraint

satisfaction [74]; where a system for generating reusable heuristics is presented.

Hyper-heuristics are related to metaheuristics [55, 110] but there is a key

distinction between them. Hyper-heuristics are search methods that operate on a

search space of heuristics (or algorithms or their components), whereas most

implementations of metaheuristics search on a space of solutions to a given

problem. However, metaheuristics are often used as the search methodology in a

hyper-heuristic approach (i.e. a metaheuristics is used to search a space of

heuristics). Other approaches, not considered as metaheuristics, can and have been

used as the high-level strategy in hyper-heuristics such as reinforcement learning

[31, 37, 81, 88], case-based reasoning [24] and learning classifier systems [98, 112].

In a recent book chapter [16], the authors extended the definition of hyper-

heuristics and provided a unified classification which captures the work that is being

undertaken in this field. A hyper-heuristic is defined as a search method or learning

Genet Program Evolvable Mach

123

mechanism for selecting or generating heuristics to solve computational search
problems. The classification of approaches considers two dimensions: (i) the nature

of the heuristics’ search space, and (ii) the different sources of feedback information

from the search space. According to the nature of the search space, we have;

• Heuristic selection: methodologies for choosing or selecting existing heuristics

• Heuristic generation: methodologies for generating new heuristics from the

components of existing heuristics.

A second level in this first dimension (the nature of the search space) corresponds

to the distinction between constructive and perturbative (or improvement) heuristic

search paradigms. Constructive hyper-heuristic approaches build a solution

incrementally: starting with an empty solution, the goal is to intelligently select

and use constructive heuristics to gradually build a complete solution. In selection

hyper-heuristics, the framework is provided with a set of pre-existing (generally

problem-specific) constructive heuristics, and the challenge is to select the heuristic

that is somehow the most suitable for the current problem state. This type of

approach has been successfully applied to hard combinatorial optimisation problems

such as cutting and packing [98, 112], educational timetabling [23, 24, 97] and

production scheduling [25, 43]. In the case of generation hyper-heuristics, the idea

is to combine sub-components of previously existing constructive heuristics to

produce new constructive heuristic. Examples can be found in bin packing [19, 20]

and production scheduling [35, 111]. This classification is illustrated in Fig. 2.

In contrast, improvement hyper-heuristic methods start with a complete solution,

generated either randomly or using simple constructive heuristics, and thereafter try

to iteratively improve the current solution. In selection hyper-heuristics, the

framework is provided with a set of neighborhood structures and/or simple local

searchers, and the goal is to iteratively select and apply them to improve the current

complete solution. This type of approach has been applied to problems such as

personnel scheduling [22, 31], timetabling [22], packing [37] and vehicle routing

[51, 88]. Improvement heuristics can also be automatically generated. Examples can

be found for both producing a complete improvement search method or some of its

algorithmic components; in domains such as boolean satisfiability, [49], bin packing

[18], and traveling salesman problem [83].

The second dimension in the classification considers the source of the feedback

during learning: we can distinguish between online and offline learning. In online

learning hyper-heuristics, the learning takes place while the algorithm is solving an

instance of a problem. Therefore, task-dependent properties can be used by the

Fig. 2 Classification of hyper-
heuristics methods

Genet Program Evolvable Mach

123

high-level strategy to determine the appropriate low-level heuristic to apply.

Examples of online learning approaches within hyper-heuristics are: the use of

reinforcement learning for heuristic selection [31, 37, 81, 88] and generally, the use

of metaheuristics as high-level search strategies across a search space of heuristics

[22, 23, 25, 43, 97]. In offline learning hyper-heuristics, the idea is to gather

knowledge in the form of rules or programs, from a set of training instances, that

will hopefully generalize to the process of solving unseen instances. Examples of

offline learning approaches within hyper-heuristics are: learning classifier systems

[98], case-based reasoning [24] and genetic programming [18–20, 35, 49, 111].

These categories reflect current research trends. However, there are methodol-

ogies that can cut across categories. For example, we can see hybrid methodologies

that combine constructive with perturbation heuristics [51], or heuristic selection

with heuristic generation [42, 60, 66, 71].

3.3 A framework to contrast meta-learning and hyper-heuristics

A first attempt to contrast meta-learning and hyper-heuristics was done by [32],

which focused on the main applications of algorithm selection for real-world

problems. The idea of this paper, however, is to review methods for selection and

generation of algorithms in both areas and contrast them. In order to make this

comparison easier, we will borrow Rice’s framework for algorithm selection and

(without loss of generality) extend it to a framework that encompasses algorithm

generation. According to Rice [94], there are three important dimensions to be taken

into account when tackling algorithm selection problems: (i) the problem space; (ii)

the algorithm space, and (iii) the performance measure. These three dimensions are

essential for both hyper-heuristics and meta-learning.

The problem space defines the set of all possible instances of the problem. In both

hyper-heuristics and meta-learning, the problem space can be seen from three different

perspectives. In the first case, one might want to create a general heuristic/algorithm,

which has a robust, good performance across a very wide range of instances of the

target problem. In the second case, one can generate heuristics/algorithms for datasets/

problem instances with similar characteristics (or families of problems). In the third

case, the heuristic/algorithm can be developed to solve a specific instance of a

problem, without the need to generalize to different problem instances.

The algorithm space can be explored at different levels, considering either all

available algorithms/heuristics to solve the problem or components of the former at

different abstraction levels. The variety of each of these algorithms/components is

defined by the user, and ultimately determines the size of the search space. Finally,

the performance measure defines which criteria will be used to evaluate an

algorithm in a specific problem. Different algorithms might be appropriate to

different problems according to this measure.

3.3.1 Problem space

This section discusses the three aforementioned levels at which heuristics or

algorithms can be generated: creating a general heuristic/algorithm, generating

Genet Program Evolvable Mach

123

heuristics/algorithms for datasets/problem instances with similar characteristics, and

solving a specific instance of a problem.

Research in meta-learning has already shown that one can customize rule

induction algorithms using both selection and generation approaches for a single
dataset [86], and obtaining success in this case is more likely than when competing

with more general algorithms, fine-tuned to generalize well in the great majority of

problems. In the optimisation field, genetic programming hyper-heuristics have also

been shown to operate on single problem domains. Examples of single domains

where generative hyper-heuristics have been applied are 2D bin packing [19], and

job shop scheduling [52]. Note that here we refer to the term hyper-heuristics in the

context of heuristic generation rather than heuristic selection. Heuristic selection has

been shown to be able to operate over multiple problem domains, but the domains

must have pre-existing human-generated heuristics. Therefore, the operation of the

selection hyper-heuristic over multiple problem domains is not completely

automated.

Regarding the second case (building algorithms/heuristics for problem instances

with similar characteristics), it is demonstrably possible in the field of optimisation

to automatically design heuristics for certain families of problem instances having

shared characteristics. In particular, [17] study the trade-off between generalization

and performance which is associated with evolving generic heuristics (which work

reasonably well across a very broad class of problem instances) or evolving

specialised heuristics (which work very well in a sub-class of problem instances, but

not well in a very different sub-class of problem instances). Their results are

consistent with the ‘no free lunch’ theorem [118], which suggests that a heuristic

that performs well over a large set of problem instances can be beaten on any

particular subset by a specialised heuristic. A computer system which can

automatically design specialised heuristics can be much more successful over a

targeted subset of problem instances than a fixed, hand-crafted, general heuristic.

For meta-learning, this second approach was tried with algorithm selection, but

not generation. One of the main problems here is how to characterise datasets as

similar. Dataset characterisation is still an open research question [11], but simple

attributes such as number of attributes, classes by distribution of attribute values,

number of classes, among others, have already been tried for algorithm selection.

The generation of algorithms which can generalise to any other instances (the

first of the three problem spaces mentioned above) has already been tackled in meta-

learning, but is probably the case where one can expect fewer advantages of the

built method regarding the other algorithms in the literature. This is because it is

easier to generate a better algorithm for a target domain than one that performs well

in a wide range of datasets. In supervised machine learning (in particular, for the

classification task addressed in this paper), even the simplest models generated from

data must be generalisable, and methods to prevent data overfitting have been

studied for quite some time [76]. The automatic design of algorithms gives a new

context to the problem, considering now the algorithms should generalise well to

many new datasets. So far, this problem was tackled by training an algorithm with

many datasets, and then testing its performance in a different set of non-overlapping

datasets (from different application domains than the datasets used to train the

Genet Program Evolvable Mach

123

system). According to previous results, this approach is capable of generating

algorithms that generalise well, and have comparative accuracy with state of the art

algorithms [87]. However, a motivation for automatic algorithm design is to

generate an algorithm which is better than others already proposed in the literature,

given the specificity and computational cost of the task.

In this direction, and taking into account the Law of Conservation of

Generalisation Performance [92, 101], which states that two different algorithms

have on average exactly the same performance over all possible classification

problems, maybe the best approach is to focus first on automatically designing

algorithms for ‘families’ of datasets or single datasets. After this problem is well-

understood, we may move on to more complicated and general domains. The

principle here is the same as discussed above for the case of hyper-heuristics in

optimisation, namely the trade-off between generalization and performance. This

trade-off suggests that, all other things being equal, a classification algorithm

automatically designed for a specific class of classification problems is expected to

be more effective in problems of that class than another classification algorithm

automatically designed to be robust across a much larger class of problems.

In summary, a problem domain in classification is a set of data points having

different features, such as cancer patient medical data, large scale bioinformatics

data, or financial data. It has been shown that algorithms can be automatically

generated for different classification domains, but it remains to be seen if the same

can be done for different optimisation domains. The challenge is different in

optimisation, since optimisation problems are represented with different data

structures, rather than a different set of feature-value pairs. The higher levels of

generality recently reached by machine learning research may not be possible in

optimisation systems, given the different problem formulations and (most impor-

tantly) modeling required in optimisation problems. This is an important point for

future research.

Still related to the point of generalisation is the idea of problem class hierarchies,

which can be defined based on certain characteristics of the problems, or how they

have been generated. Algorithms do not have to be evolved for any possible future

instance, and in real world problems we do not expect them to. For example, an

organisation’s algorithm may be trained on real instances from the past year. Such

an algorithm would not need to operate well on instances from another organisation,

and has been implicitly trained on the ‘class’ of problems that the organisation

expects to see in the future. It has been shown in the one-dimensional bin packing

domain that optimisation heuristics can be specialised to progressively more narrow

classes of instances in a hierarchy [17]. Further studies on how problem class

hierarchies relate to the generalisation of hyper-heuristics are also an interesting

direction of future work.

3.3.2 Algorithm space

As already discussed in Sects. 3.1 and 3.2, both hyper-heuristics and meta-learning

can explore the algorithm space using a selection or a generation approach. In the

case of meta-learning, there is also a third scenario, in which one can combine the

Genet Program Evolvable Mach

123

results of different machine learning approaches. Both selection and generation

approaches are well defined, as illustrated in Figs. 1 and 2. Regardless of the

approach followed, it can work at the component or algorithm level.

One of the aspects we want to emphasize in this paper is the use of GP to explore

this algorithm space, possibly due mainly to the ease with which heuristics/

algorithms can be represented. GP is able to evolve heuristics/algorithms by virtue

of its expressive power (defined by a function and terminal set), rather than because

of its search operators (e.g. crossover/mutation). Hence, the search in the space of

heuristics or algorithms can be performed by any other type of search method, given

a suitable equivalent of GP’s function set with sufficient expressive power. Some

interesting alternatives to GP to construct programs include the use of a variation of

Estimation of Distribution Algorithms called Estimation of Distribution Program-

ming [104] and a variation of Ant Colony Optimisation called Ant Programming

[99, 100]. Although ant algorithms have been used as a hyper-heuristic to select
heuristics [21, 29, 33, 62], to the best of our knowledge neither technique has been

used as a hyper-heuristic to generate heuristics, and this could be an interesting

research direction.

The best method of searching the space of heuristics or algorithms is still an open

research question, with very little research done on this topic so far. One such

example is a comparison between grammar-based GP and grammar-based greedy

hill-climbing hyper-heuristics to generate a full data mining (rule induction)

algorithm, using the same grammar (defining the same data mining algorithm space)

in both methods. Pappa and Freitas [86, 87] reported that GP was more effective

than hill-climbing. In contrast, on a different set of problem domains, [61] suggests

that a grammar based local search methodology can outperform GP in the task of

automatically generating heuristics. In any case, given the large diversity of search

methods available in the literature, we would argue that the current popularity of

population-based methods does not necessarily mean that they are the best choice to

automatically design algorithms, compared to single point stochastic local search

methods.

At present, the majority of the computational methods produced by GP are not

algorithms in the sense of the term considered in this paper. They do not have loops

nor nested If-Then-Else statements, and they do not consist of multiple heuristic

procedures. In most GP applications, the entity being evolved is better described as

a mathematical expression, consisting of mathematical operators applied to

variables and randomly generated constants. This is highly applicable in many

cases, especially in optimisation, where mathematical expressions can be used as

heuristics to choose between different options. However, GP does have the potential

to evolve full algorithms, as long as the function set and the terminal set are

carefully defined to allow the representation of loops, nested If-Then-Else

statements, instructions for integrating the results of multiple heuristic procedures,

etc. In the following section on case studies, we discuss some examples of GP

systems that evolve full algorithms for optimisation and classification problems.

One of the goals of this paper is precisely to draw the attention of the GP research

community to this more challenging and arguably more interesting usage of GP,

closer to the original spirit of GP as an automatic programming tool, although our

Genet Program Evolvable Mach

123

interest is mainly on automatic algorithm design rather than on the details of any

particular programming language.

3.3.3 Evaluation measure

The evaluation measure is a dimension in which, at first glance, there is a large

difference between meta-learning for classification and hyper-heuristics for

optimisation. The reason for this apparently great difference is the differing nature

of optimisation and classification problems, as follows. First, note that there are

many different types of optimisation problems (e.g. Travelling Salesman Problem

and Bin Packing Problem), each with its specific evaluation measure (e.g. tour

length or some function of the bins required to pack all items, respectively). Note

also that, in a conventional optimisation framework, a candidate solution is

evaluated with respect to a single instance of the target problem, e.g. the quality of a

candidate solution for the Travelling Salesman Problem typically refers to the length

of a tour for one predefined set of cities and corresponding pairwise distances. That

problem instance is just one instance out of the infinite number of possible problem

instances that can be obtained by varying the number of cities and the real values of

the distances between cities.

In contrast, in a conventional classification framework, a candidate solution must

be evaluated with respected to its generalization ability across many different data

instances of the same application domain (e.g. different customers of the same

credit-scoring domain, or different patients of the same medical-diagnosis domain).

Furthermore, the training and testing instances must be drawn independently from

the same distribution. The need for this generalization is not present in a

conventional optimisation framework.

However, the interesting point is that the use of hyper-heuristics in optimisation

blurs the aforementioned distinction between evaluation measures for classification

and optimisation. When using hyper-heuristics to select or construct a heuristic for

optimisation, a candidate heuristic is typically evaluated in terms of how well it

performs on a set of problem instances, not just a single problem instance. It is also

possible and desirable to use the notion of training and testing sets in this context,

i.e. once a hyper-heuristic has selected or constructed a heuristic by using a training

set of problem instances, it is interesting to measure the performance of that

heuristic on a different set of testing problem instances, unused during the training

of the hyper-heuristic.

In the case of meta-learning for classification, the same basic principle of

generalization still applies, but now the generalization issue is further extended to an

even higher level of abstraction. More precisely, when a meta-learning system

selects or constructs a classification algorithm, we can measure generalization

performance at two levels. At the base level, we measure the generalization ability

(predictive accuracy) of the classification model built by the (automatically selected

or constructed) classification algorithm in a set of testing data instances from a

specific dataset (from a specific application domain, like medicine or finance). In

addition, at the meta-level, we can measure the generalization ability of the meta-

learning system itself across different types of datasets or application domains. In

Genet Program Evolvable Mach

123

other words, we can measure a kind of average predictive accuracy associated with

application of the classification algorithm produced by the meta-learning system to

different types of datasets or application domains.

4 Automating the design of algorithms: different levels, different approaches

This section focuses on automatic algorithm design at different levels. We start with

methods that follow meta-learning approaches in classification and optimisation to

solve the algorithm selection problem. We then consider the selection and

generation of algorithm components, contrasting the similarities and differences

between these approaches in the same problem domain. We next give two examples

of complete heuristic/algorithm design, where sets of components were combined,

both with and without algorithm primitives. Finally, we discuss and contrast the

approaches followed in meta-learning and hyper-heuristics.

4.1 Algorithm selection: what researchers did before automatic algorithm

generation

As previously explained, the areas of meta-learning and hyper-heuristics, in their

early days, focused on algorithm selection. Meta-learning ideas have traditionally

been applied to learning algorithms to solve classification problems, where the goal

is to relate performance of algorithms to characteristics or measures of classification

datasets. Smith-Miles [106] presented a framework for the generalisation of

algorithm selection and meta-learning ideas to algorithms focused on other tasks

such as sorting, forecasting, constraint satisfaction and optimisation. However,

classification is still the most studied task in meta-learning. Hence, the next sections

discuss examples of algorithm selection in classification, and then show how an

optimisation task is solved using the same type of approach.

4.1.1 Algorithm selection for classification problems

For quite some time, the machine learning community has been interested in meta-

learning for selecting the best learning algorithm to solve a classification problem

using performance measures related to classification accuracy. Different studies

over the years have increased the sophistication of both the features used to

characterise the datasets, and the learning algorithms to learn the mapping from the

features to the algorithms. We discuss here one of the earliest attempts to

characterise a classification problem and examine its impact on algorithm behavior,

using features related to the size and concentration of the classes [2]. The approach

used rule based learning algorithms to develop rules like:

If the given dataset has characteristics C1, C2, ..., Cn

then use algorithm A1

else use algorithm A2

Genet Program Evolvable Mach

123

In this particular problem, the three algorithms used to learn the association

between the attributes describing the classification problems and the learning

algorithms were the following: (i) IB1: nearest neighbour classifier, (ii) CN2: set

covering rule learner, and (iii) C4: decision tree learner.

The classification problems being addressed considered datasets from the Frey

and Slate letter recognition problem [48]. The features which described the

classification problems included the number of instances, number of classes,

number of prototypes per class, number of relevant and irrelevant attributes, and the

distribution range of the instances and prototypes. Note that the number of relevant

and irrelevant attributes is not usually known a priori, but in this case the datasets

were artificially generated to study the behavior of the learning algorithms. Figure 3

illustrates an example of the kind of rules produced by this algorithm selection

approach.

The study found that despite some constraints, the rules derived from the

proposed method yielded valuable characterisations describing when to prefer using

specific learning algorithms over others.

4.1.2 Algorithm selection for optimisation problems

There has been surprisingly few attempts to generalize the relevant meta-learning

ideas to optimisation, although several approaches can be found in the related area

of constraint satisfaction [70]. We discuss here the approach proposed in [105] to

use meta-learning ideas for modeling the relationship between instance character-

istics and algorithm performance for the Quadratic Assignment Problem (QAP).

The study considered a set of 28 problem instances taken from [109], and three

metaheuristic algorithms were considered for selection: (i) robust tabu search, (ii)

iterated local search, and (iii) min-max ant system. The performance of each

algorithm for each dataset was measured by the percentage difference between the

objective function value obtained by the algorithm and the known optimal solution.

Each problem instance was characterized using 9 meta-features, which included

four measures of problem size (dimensionality, dominance of distance, flow

matrices, and sparsity of matrices) and five measures based on iterated local search

runs, namely: the number of pseudo-optimal solutions, average distance of local

optima to closest global optima using two different local search procedures, the

empirical fitness distance correlation coefficient based on the local search

experiments; and the empirical fitness distance correlation coefficient based on

the iterated local search experiments.

Both unsupervised and supervised neural network models were used to learn the

relationships in the meta-dataset and automate the algorithm selection process. Two

supervised neural network architectures were tested. The first model used as input

Fig. 3 Example of the rules
produced by the algorithm
selection approach in [2]

Genet Program Evolvable Mach

123

the 9 features discussed above, and 3 outputs corresponding to each of the meta-

heuristic performances. The neural network was able to successfully predict meta-

heuristic performance, measured as the percentage deviation from the optimal

solution.

The second supervised neural network explored another form of performance

prediction: the goal was to predict which algorithm would perform best. This was

modeled as a classification problem: given the 9 inputs, learn to classify each

example according to the known classification (the best performing of the 3

available meta-heuristics). After training, the model was used on unclassified data

(i.e. QAP instances where it was not known which algorithm was best). Again, the

neural network was found to successfully predict the best algorithm with 94%

accuracy. The study also considered an unsupervised model, self-organizing maps,

to select the best algorithm by creating visual explorations of the performance of

different algorithms under various conditions describing the complexity of the

problem instances. Given the limited size of the data, this is a preliminary study, but

it demonstrates the relevance of meta-learning ideas to the optimisation field.

4.2 Hyper-heuristics for 2D packing: selecting versus generating components

This section presents two hyper-heuristics for the 2D strip packing problem, one

based on the selection approach and the other in the generation approach, and its

main objective is to make clear the differences between the two approaches. While

the selection approach chooses two components according to the item at hand, the

generation approach evolves a single algorithm component which scores the best

position to place an item.

There are many types of cutting and packing problems in one, two and three

dimensions. A typology of these problems is presented by Wascher et al. [116],

which explains the two dimensional strip packing problem in the context of other

such problems. In the 2D packing problem, a set of items of various shapes must be

placed onto a sheet with the objective of minimising the length of sheet that is

required to accommodate the items. The sheet has a fixed width, and the required

length of the sheet is measured as the distance from the base of the sheet to the item

edge furthest from the base. The items may be rectangular or non-rectangular, and

this characteristic classifies the problem as a regular or irregular 2D packing

problem. This problem is known to be NP hard [50], and has many industrial

applications as there are many situations where a set of items of different sizes must

be cut from a sheet of material (for example, glass or metal) while minimising

waste.

We first describe the work of [113], where the hyper-heuristic selects heuristics

for the regular and irregular two dimensional strip packing problems. In this study,

the solutions are constructed by packing one item at a time. A packing heuristic

decides which item to pack next, and where to place it in the partial solution. Ten

item selection heuristics and four placement heuristics are combined to produce 40

heuristics in total.

The main motivation to model that problem that way is that different heuristics

perform well in different situations. For example, one heuristic may be good at

Genet Program Evolvable Mach

123

packing small items, one heuristic may be good at the start of the packing process,

and another heuristic may perform well when there are a variety of items to pack.

The hyper-heuristic aims to select the best heuristic from those available, at each

decision point.

After each item has been packed, the state of the remaining item list is

determined, by calculating eight values, such as the fraction of large, medium and

small items remaining. The hyper-heuristic represents a set of mappings from states

to one of the 40 heuristics. This mapping is evolved with a genetic algorithm [113].

An interesting point here is the way the fitness of the GA is calculated. Each

individual receives a set of five different instances to evaluate, and their fitness takes

into account the difference between the hyper-heuristic being evolved and the

results given by the single best heuristic (i.e. the percentage of usage for each

object) and how many instances the individual has seen so far.

In contrast with the work just described, [19] uses a hyper-heuristic to generate

heuristics for the regular 2D strip packing problem. Here, instead of pre-selecting

item selection and placement heuristics, a single heuristic is generated and evolved

with genetic programming. This heuristic is represented by a function, used to

assign a score to all of the candidate positions of placement at each decision point,

as shown in Fig. 4. This is useful as, when faced with multiple options of which

item to pack next and where to put it in the partial solution, the optimal function to

score those options is not obvious. Moreover, 2D packing problem instances can be

separated into classes with different characteristics, and different scoring function

heuristics will perform well on different instances. Given a problem class, it is not

easy to manually generate a specialised heuristic for that class.

The terminals and functions used to generate these heuristics include the width

and length of the items, the bin dimensions, and various metrics that calculate the

Fig. 4 The locations where item ‘‘1’’ can be placed. The heuristic must decide where to place the piece
by assigning a score to each

Genet Program Evolvable Mach

123

differences between the bin and item sizes. Note that only the score function is

evolved. The other basic algorithm elements, such as the loop which specifies that

all of the items must be packed, are kept constant to ensure a feasible solution.

The literature on human-created heuristics for this problem focusses on scoring

functions which are good over many different problem instances, with many

different characteristics. The ‘‘best-fit’’ heuristic is shown to perform well over all

benchmark instances. To manually create a heuristic for each different instance

class would require a prohibitive amount of effort. Automating this creative process

makes generating specialised heuristics viable, as no additional human intervention

is necessary. All that is needed is a large enough set of representative training

instances of the problem class and rich enough function and terminal sets.

4.3 Selecting/generating algorithm components for classification

While the previous section showed an example of hyper-heuristics using selection

and generation of algorithm components, here we give an example of evolving an

algorithm component through selection in the learning context. Two works are

discussed: the first shows the use of an evolutionary algorithm to evolve a

component of a decision tree induction algorithm: the heuristic for selecting the best

attribute to split the tree [114]. The second discusses the evolution of (sets of)

components of neural networks [119].

Decision tree algorithms build models by adding attributes to the tree, one at a

time, according to their capabilities of discriminating examples belonging to

different classes. Each value (in the case of categorical attributes) or range (in the

case of numerical attributes) of the selected attribute is used to generate a new

branch (split) in the tree. The discrimination power of each attribute is measured by

a heuristic, and there are many in the literature that have already been explored,

such as information gain and gain ratio. The method described here selects this

heuristic.

The problem solving strategies (or hyper-heuristics) are represented by rules.

These rules select the most appropriate splitting heuristic according to the degree of

entropy of data attributes. An example of a rule is: IF (x% [high) and
(y% \ low) THEN use heuristic H, where x and y are both percentage values

ranging from 0 to 100, and high and low are thresholds for the entropy value H. The

meaning of the previous rule is: if x% of the attributes have entropy values above

high, and if y% of attributes have entropy values below low, then use heuristic H to

choose the splitting attribute at the current node.

Individuals represent rule sets of size n, and a set of 12 heuristics can be

recommended. In order to ensure valid solutions, each individual is associated with

a default heuristic. When a new split needs to be created, the conditions of the

n rules are checked, and zero or more rules can hold. If no rule is selected, the

default heuristic is applied. If one rule is selected, the heuristic that appears in its

consequent is applied. Finally, if more than one rule holds, a majority voting is

performed.

A few years after this first work, [9] proposed to generate a complete algorithm to

create a decision tree induction algorithm from sub-components of well-known

Genet Program Evolvable Mach

123

algorithms. This was achieved using a genetic algorithm with a linear individual

representation where each gene value represents a specific choice in the design of

one component of a decision tree algorithm. Different genes refer to different design

choices for decision tree components like the criterion used to select attributes,

parameters related to pruning, the stopping criteria for the tree-construction process,

etc. Hence, the combination of values for all genes of an individual specify a unique

complete decision tree induction algorithm.

Considering other classification models apart from decision trees, research on

neural networks has invested a lot of effort on algorithm component selection and

generation. Here we describe the main aspects of neuroevolution [46] (i.e. evolution

of artificial neural networks). As pointed out by Yao [119], neural networks can be

evolved at three different levels: synaptic weights choice, topology design and

learning rule selection. Initially, neuroevolution followed mainly an algorithm

selection approach but, nowadays, it is moving in the direction of algorithm

generation [26]. The first use of the term neuroevolution was to evolve the

connection weights of a population of neural networks. This basic idea grew and

researchers started to evolve, together with the weights, the topology of the

networks. In the past decade, research on learning algorithms has advanced

significantly.

Here we focus on a specific example of Neuroevolution: NEAT (Neuroevo-

lution of Augmenting Topologies) [108]. This system is well suited to

reinforcement learning tasks, and evolves network topologies along with weights.

As in all evolutionary systems, choosing how to represent the networks in the

evolutionary process is one of the key design issues. In NEAT, each individual

(neural network) is a linear representation of connecting genes, which specify the

input node, output node, weight of the connection, whether or not the gene is

expressed and an innovation number, used to mark genes belonging to the same

‘evolution line’. Crossover and mutation operations may add perturbations to

weights or add new connections or nodes, but they use the innovation numbers for

historical tracking. During crossover, only genes with the same innovation number

can be exchanged. The innovation number is assigned to a gene the first time it is

created, and is kept unchanged during evolution. Hence, genes with the same

innovation number must represent the same structure, maybe with different

weights. The system also uses speciation to evolve different network structures

simultaneously.

4.4 Generating complete heuristics/algorithms

This section presents two case studies of the generation of algorithms. In the same

fashion as when generating heuristics, this approach is appropriate where there is a

basic sequence of steps to generate an algorithm; a range of components that can be

used to implement each step, and a set of variations of this sequence that can be

tested, modified or extended (automatically or by hand). Here we describe case

studies regarding the automatic creation of evolutionary algorithms and rule

induction algorithms, both using genetic programming.

Genet Program Evolvable Mach

123

4.4.1 Evolving evolutionary algorithms with genetic programming

There have been many attempts to make evolutionary algorithms more self-

adaptive, avoiding necessity for choosing from many types of operators and

parameters. Initially, many self-adaptive systems focused on parameters [40], and

others were created to evolve the operators of the evolutionary algorithm [39].

Going one step further, Spector [107] and Oltean [83] employ genetic programming

to evolve the algorithms themselves.

This section discusses in detail the LGP proposed by Oltean [83], as it also has one

particularly interesting characteristic: it generalizes for families of problems. Each

individual in the LGP (the macro-level algorithm) corresponds to an evolutionary

algorithm (the micro-level algorithm), where individuals differ from each other

according to the order that the selection, crossover and mutation operations are

performed. Figure 5 shows an example of an individual. Only the commands in the

body of the for loop are evolved. Pop [8] represents a population with 8 individuals,

and the first command of the body of the for loop mutates the individual in position 5

of the population and saves the result in position 0. In the second for loop line, the

select acts as a binary tournament selection, choosing the best individual among

those in positions 3 and 6 and storing it in position 7. The third command crosses over

the individuals in positions 0 and 2, saving the result in position 2.

The fitness of LGP is calculated by running the micro-level evolutionary

algorithm. However, given the stochastic nature of the method being evolved, the

micro-level algorithm was run a predetermined number of times on a set of training

problems. The average fitness of the micro-level algorithm was used to set its fitness

in the macro-level algorithm.

This work was later extended [36], with the LGP replaced by a genetic algorithm.

The main modification in this system is that now the algorithm evolves not only the

evolutionary algorithm, but also their parameters, such as crossover and mutation

probabilities.

Fig. 5 LGP individual representing an Evolutionary Algorithm, adapted from [83]

Genet Program Evolvable Mach

123

4.4.2 Automatically evolving rule induction algorithms

In [86, 87], the authors proposed a grammar-based genetic programming algorithm

to evolve rule induction algorithms. The process of automatically evolving

algorithms first requires a study of manually-designed algorithms. In the case of

[87], the literature concerning rule induction algorithms was surveyed, and a set of

algorithm components, such as rule search, evaluation and pruning, were identified.

Different implementations of these components were found and added to the

grammar, including methods which had not previously appeared in the literature.

Loop and conditional statements were also added when appropriate, resulting in a

grammar with 26 production rules.

Based on this grammar, a grammar-based genetic programming algorithm was

used to generate, evaluate and evolve the rule induction algorithms (individuals). As

the algorithm was being designed to work with any given dataset, the research

challenge was to implement a fitness function that would facilitate the generaliza-

tion of the produced algorithms. This problem was tackled using a set of datasets,

termed the meta-training set to calculate the fitness of the individual. Hence, for

each individual of the population, its corresponding rule induction algorithm was

translated into Java code, and then run on the meta-training set. For each dataset in

the meta-training set, a classification model was generated and its respective

accuracy on the test set was calculated. The average accuracy in all datasets in the

meta-training set was used as the fitness of the GP individual.

Figure 6 shows an example of the conversion from individual to Java code. Note

that the individuals are trees, where each leaf node is associated with a portion of

code that implements the respective function. These functions are combined with a

set of core classes that implement the basics of any classifier.

The results showed that GP could generate rule induction algorithms different

from those already proposed in the literature, and with competitive accuracy.

Following another approach, the authors also proposed the use of the algorithm to

generate algorithms targeted to a specific dataset [86] or datasets with similar

characteristics.

Fig. 6 Example of the method used to convert GGP individuals in Java code [87]

Genet Program Evolvable Mach

123

4.5 Summary

This section summarizes and compares the methods previously described according

to the three dimensions introduced in Sect. 3.3, namely problem space, algorithm

space and evaluation metrics. To facilitate this comparison, Table 1 lists the

methods according to the problem being tackled, the approach followed to generate

the hyper-heuristic (selection or generation, components or algorithm/heuristic) and

the search method used.

Recall that the problem space is defined according to the problem being solved

and the level of abstraction at which one is working: components or algorithms/

heuristics. Furtheremore, it considers if a hyper-heuristic is being developed for a

set of datasets or for a specific dataset. Table 1 shows a sample of learning and

optimisation problems solved so far considering both components and algorithms/

heuristics. Note that all types of approaches have been previously explored. In terms

of developing heuristics/algorithms for specific problems or sets of problems, all the

work referenced in Table 1 uses multiple problem instances, divided into training

and test sets.

The algorithm space, in turn, refers to whether we use a selection or a generation

approach. This space can be explored by different search methods. In Table 1, we

observe that initially machine learning methods, such as rule induction algorithms

and neural networks were explored for selection. However, they do not offer enough

expressive power to generate algorithms. Most of the methods created for

generation are evolutionary algorithms, with a special emphasis on different types

of genetic programming.

Finally, regarding the evaluation metric, the quality of the produced algorithms is

measured with the average of a well-known problem-specific metric over different

test instances. In optimisation, this is often translated as the error between the

optimal hand-designed solution (when one is available) and the one found by the

search method, or using some other measure of optimisation performance. In

classification (supervised machine learning), any metric estimating the predictive

accuracy of the results in the test set (containing only problem instances not present

Table 1 Comparison of the methods described in Sect. 4 considering the problem being tackled, the

approach followed and the search method

Ref. Problem Approach followed Search Method

Aha [2] Data classification Alg. selection Rule induction alg.

Smith-Miles [105] QAP problem Heuristic selection Neural networks

Terashima-Marin et al.[113] 2D packing Heuristic selection Genetic algorithm

Vella et al.[114] Decision tree split Component selection Rule induction alg.

Stanley and Miikkulainen [108] Neural networks Component selection Evolutionary algorithm

Burke et al.[19] 2D packing Component generation Genetic programming

Barros et al.[9] Decision tree alg. Alg. generation Genetic algorithm

Oltean [83] EA for 3 problems Alg. generation Linear GP

Pappa and Freitas [87] Rule induction alg. Alg. generation Grammar-based GP

Genet Program Evolvable Mach

123

in the training set) can be used. Hence, generalization ability is always measured

when evaluating a classification model’s predictive performance. The only approach

which differs from this, and an interesting research direction to be further

investigated, is the one presented in [113], where different individuals evaluate

different instances, and the fitness considers how many instances the individuals

have seen so far, trying to improve generalization and prevent overfitting.

5 Discussion and conclusions

The previous sections reviewed the work done in optimisation and machine learning

for automatic algorithm design, and identified that both areas work with two main

approaches: those for selecting and those for generating heuristics and algorithms.

Examples of systems following the two approaches in both domains were presented

and compared.

Despite similarities, the issue of generalisation is the most different between

automated approaches to machine learning and optimisation. This section empha-

sizes and discusses the differences between the current approaches for generalisa-

tion and asks how much further we can go. It also discusses some theoretical

foundations and concludes with some final remarks.

5.1 Differences between current machine learning and optimisation approaches

In this paper we have explored the similarities and differences between recent

research undertaken in supervised machine learning (classification) and optimisa-

tion. The first significant observation is regarding the levels of generalisation in the

algorithms in the respective communities. The ability of algorithms to generalise to

new datasets has long been a concern of the classification community. Within the

context of optimization, starting in the 1970s, the application of machine-learning to

planning has seen the emergence of increasingly sophisticated domain-independent

planners [3–5, 10, 68, 69]. However, the wider optimisation community has only

recently begun to seriously focus on automatically designing heuristic systems

(hyper-heuristic research) which can adapt to new problem instance data without

further human intervention.

In this section, we want to draw attention to these differences in levels of

generalisation. Figure 7 shows the different levels of generality at which machine

learning and optimisation systems can operate. Level A is the least general, and

level C is the most general. In level A, also known as the executable level, the

optimisation heuristic produced by the heuristic generator and the classifier

(classification model) produced by the classification algorithm are directly executed

on the training instance, and their performance is evaluated on the test instances. In

level B, also called generator level, the methods generate a heuristic for

optimisation or a classifier for supervised machine learning. Finally, when operating

in level C, also named meta-generator level, machine learning methods act as meta-

learning systems, generating a classifier generator. The meta-generator level is a

Genet Program Evolvable Mach

123

recent development, and we are aware of only two meta-generator level systems [9,

86, 87].

In optimisation, a level A heuristic operates on problem instances to produce

solutions. This is analogous to the case in supervised machine learning, where a

classification model operates on a dataset specific to a data domain. Note that,

although level A is the least general and involves both optimisation and

classification, the latter requires that the model works well on new data coming

from the same data domain (i.e. represented by the same set of features), which is

not always required in optimisation. In level B, hyper-heuristics for optimisation

automatically design heuristics, which can then operate on similar problem

instances. The hyper-heuristic operates at a higher level of generality—it is a system

which can automatically design specialised heuristics.

Most current classification algorithms are expected to work well over a variety of

domains, and one would not generally hand-craft a classifier for a given dataset. For

example, a neural network classifier would typically be automatically trained using

an algorithm such as back-propagation on the target dataset, since hand-crafting a

neural network is well-understood to be inefficient. This automatic training of ‘level

A’ entities (using a classifier generator at the ‘level B’) has been a feature of

machine learning approaches for decades. The same is not true in the optimisation

community, where hyper-heuristic approaches which generate heuristics have only

recently become successful, mainly due to the application of genetic programming.

Recent application of genetic programming in classification has resulted in a

meta-learning system which can automatically generate new classification algo-

rithms [9, 87], which are in turn used to generate classifiers (classification models

for the input data). This system operates at level C in Fig. 7. For example, the

system can produce an algorithm for one dataset with a certain set of features, and

then also produce a different algorithm for a second dataset with a different set of

features. This process of algorithm generation is automated, and allows one system

to operate over different problem domains.

Fig. 7 The levels of generality at which methods for automating the design of optimisation and machine
learning algorithms operate

Genet Program Evolvable Mach

123

5.2 Generalisation: future research directions

The fact that the latest machine learning research can operate at level C (in Fig. 7)

means that it can operate over different datasets, from different problem domains,

and even with different features. Genetic programming-based hyper-heuristics for

optimisation have so far only been shown to operate at level B, meaning that one

system can generate heuristics for one problem domain. We can generate a human-

competitive heuristic for 2D packing, but the same system cannot generate a

heuristic for the traveling salesman problem, or for vehicle routing. To do so would

require a fundamentally different set of functions and terminals, or (in the case of

grammar-based genetic programming) a different grammar. Recognising this

current level of generality is a key contribution of this paper, and we argue that

removing this limitation on optimisation systems should be a focus of current and

future research. One possible way forward is adopt one or more of the domain

description languages (e.g. [54, 72]) (many of which have evolved from the well-

known STRIPS solver [44]) that have enjoyed success in the wider Artificial

Intelligence community. This would also have the added advantage of making

optimization problems amenable to processing by a wider variety of problem-

solving architectures than is currently the case.

If we instead consider heuristic selection (as opposed to heuristic generation), the

winning algorithm of the Cross-domain Heuristic Search Challenge (CHeSC) did in

fact show high generality across problem domains. It was shown that it was possible

to design one hyper-heuristic that could provide good solutions to instances of six

different problem domains, including two that were not seen by the hyper-heuristic

designers (travelling salesman and vehicle routing). For each problem domain, a

problem representation, fitness function and a set of low-level heuristics,

encapsulating the domain specific components, was provided. The task of the

hyper-heuristic was to intelligently select the sequence of heuristics to apply, based

on their performance and characteristics. This is very different to the related goal of

automatically generating the heuristics themselves, but the results of CHeSC

represent the state of the art in automatic selection of algorithms for optimisation

problems. Details of the challenge and the results can be found at http://www.asap.

cs.nott.ac.uk/external/chesc2011/, and the challenge was made possible by the use

of the HyFlex framework [78] through which the participants developed their hyper-

heuristics. HyFlex is available for future research at the CHeSC website, allowing

comparison with the competition results.

Another point that needs to be explored is how to make the algorithm even less

dependent on the human designer, making him/her less responsible for the definition

of a set of pre-defined functions, increasing even more the level of generality.

5.3 Challenges relating to datasets and training

When we talk about using various datasets for training and testing in the context of

the automatic design of classification algorithms, there are a lot of public

repositories to be explored, such as the one maintained by the University of

California Irvine (UCI) [47], or the huge amounts of bioinformatics data freely

Genet Program Evolvable Mach

123

http://www.asap.cs.nott.ac.uk/external/chesc2011/
http://www.asap.cs.nott.ac.uk/external/chesc2011/

available on the Web. The same is not always true in optimisation tasks. In order to

obtain a number of instances large enough for training and test purposes, the use of

problem-instance generators might be necessary.

The use of many datasets as a training set also raises problems of performance, as

each individual in the population must be tested on the training data. This problem is

related to both the number and size of the training data. In the case of machine

learning, research on intelligent sampling methods [34, 67] might be necessary to

enable the use of the methods. This problem has been already explored in other

contexts, such as selecting a subset of instances for the user to label or reducing data

sets for evolutionary algorithms fitness computation, and some such well-

understood methods could certainly be applied.

Alternative strategies can be used to reduce the time spent on fitness computation

while improving the generalization of the solutions. In [42], for example, the

available instances are divided into groups according to their level of difficulty.

Initially, solutions are evaluated using easy instances and, as the solutions get better,

the initial instances are replaced by harder ones. Terashima-Marin et al. [113], in

contrast, evaluates different solutions using different subsets of instances, and the

fitness of individuals take into account how many instances they have seen so far.

However, even if algorithm generators take a considerable amount of time to run,

it is important to remember that this time would probably still be a small fraction of

the time taken by the human-designer of a new algorithm. Furthermore, when the

focus is on automatically designing heuristics/algorithms that are robust across

many different types of datasets, constructing new heuristics or algorithms would

not be a task frequently performed, as the intention is that the generated algorithms

will be reused.

5.4 Foundational studies

Thus far, little progress has been made in enhancing our theoretical understanding

of hyper-heuristics and the automated design of algorithms. The theoretical study of

the run-time and convergence properties of algorithms that explore the complex

search spaces of algorithms/heuristics seems far from feasible. One direction that

does seem promising is to study the structure of the search space of heuristics/

algorithms. The approaches explored in this article generally involve searching in

multiple spaces simultaneously. An additional question is then how the different

search spaces interact.

Analysis of the heuristic search spaces in hyper-heuristics for educational

timetabling and production scheduling [79, 80] revealed common features, viz. (i) a

‘big-valley’ structure in which the cost of local optima and their distances to the

global optimum (best-known solution) are correlated; (ii) the presence of a large

number of distinct local optima, many of them of low quality; and (iii) the existence

of plateaus (neutrality): many different local optima are located at the same level in

the search (i.e. have the same value). It remains to be seen whether such features

occur in other heuristic search spaces. In these studies, the heuristic search space is

generally smaller in size (when compared to the solution space). With respect to the

Genet Program Evolvable Mach

123

mapping between the two spaces; the heuristic search space seems to cover only a

subset of the solution search space (but well distributed areas) [91].

Finally, since genetic programming is an important technique in the approaches

explored in this article, the theoretical studies in this area are of relevance [89].

5.5 Final remarks

This paper focused on the automatic design of optimisation and supervised machine

learning (classification) methods. Many real-world problems can be modeled as

optimisation or classification problems, so the issues discussed here are widely

relevant. However, other domains, such as bioinformatics, control, constraint

programming and games have already investigated forms of both automated

algorithm/heuristic selection and generation [5, 41, 74, 90]. We argue that

algorithm/heuristics selection and generation are crucial for all types of domains in

which many methods and/or parameters are available, but no clear methodology or

criteria for choosing them are available.

Our discussion concentrated on the role of genetic programming and evolution-

ary algorithms as a methodology for designing algorithms/heuristics, although some

of the case studies discussed involved other methods such as neural networks and

other metaheuristics. We believe that the representation power offered by different

types of genetic programming system makes them a suitable methodology.

However, the exploration of other techniques is also a direction worth pursuing.

Optimisation and classification are generally considered as to be distinct.

However, while the problem types and methods are different, the meta-learning and

hyper-heuristic methodologies discussed in this paper share a focus on automatic

design of heuristic methods. Comparing and contrasting the various approaches in

this paper will hopefully lead to closer collaboration and significant research

progress.

Acknowledgments G. L. Pappa, A. A. Freitas, J. Woodward and J. Swan would like to thank the 2011

GECCO’s workshop organizers for putting them in contact. G. L. Pappa was partially supported by

CNPq, CAPES and FAPEMIG, all Brazilian Research Agencies. G. Ochoa and J. Swan were supported

by UK Research Council EPSRC, grants EP/F033214/1 and EP/D061571/1. J. Wooward was supported

by UK Research Council EPSRC, grant EP/J017515/1. A.A. Freitas was partially supported by UK

Research Council EPSRC, grant EP/H020217/1.

References

1. C. Adami, T.C. Brown, Evolutionary learning in the 2d artificial life system avida. in Artificial Life
IV, ed. by R.A. Brooks, P. Maes (MIT Press, Cambridge, 1994), pp. 377–381

2. D.W. Aha, Generalizing from case studies: A case study. in Proceedings of the Ninth International
Conference on Machine Learning. (Morgan Kaufmann, Burlington, 1992), pp. 1–10

3. R. Aler, D. Borrajo, P. Isasi, Evolving heuristics for planning. in Lecture Notes in Computer
Science. (1998)

4. R. Aler, D. Borrajo, P. Isasi, Learning to solve planning problems efficiently by means of genetic

programming. Evol. Comput. 9(4), 387–420 (2001)

5. R. Aler, D. Borrajo, P. Isasi, Using genetic programming to learn and improve control knowledge.

Artif. Intell. 141(1-2), 2956 (2002)

Genet Program Evolvable Mach

123

6. P.J. Angeline, Adaptive and self-adaptive evolutionary computations. in Computational Intelli-
gence: A Dynamic Systems Perspective. (IEEE Press, New York, 1995), pp. 152–163

7. T. Bäck, An overview of parameter control methods by self-adaption in evolutionary algorithms.

Fundam. Inf. 35(1-4), 51–66 (1998)

8. W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, Genetic Programming: An Introduction; On the
Automatic Evolution of Computer Programs and its Applications. (Morgan Kaufmann, San Francisco,

1998)

9. R.C. Barros, M.P. Basgalupp, A.C. de Carvalho, A.A. Freitas, A hyper-heuristic evolutionary

algorithm for automatically designing decision-tree algorithms. in Proceedings of the fourteenth
international conference on Genetic and evolutionary computation conference, GECCO ’12.

(2012), pp. 1237–1244

10. D. Borrajo, M. Veloso, Lazy incremental learning of control knowledge for efficiently obtaining

quality plans. AI Rev. J. Spec. Issue Lazy Learn. 11, 371–405 (1996)

11. P. Brazdil, C. Giraud-Carrier, C. Soares, R. Vilalta, Metalearning: Applications to Data Mining.

(Springer, Berlin, 2008)

12. P.B. Brazdil, C. Soares, J.P. Da Costa, Ranking learning algorithms: using ibl and meta-learning on

accuracy and time results. Mach. Learn. 50(3), 251–277 (2003)

13. L. Breiman, Bagging predictors. Mach. Learn. 24, 123–140 (1996)

14. E.K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, S. Schulenburg, Hyper-heuristics: an emerging

direction in modern search technology. in Handbook of Metaheuristics, ed. by F. Glover, G.

Kochenberger (Kluwer, Dordrecht, 2003), pp. 457–474

15. E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, J. Woodward, Exploring hyper-heuristic

methodologies with genetic programming. in Computational Intelligence: Collaboration, Fusion
and Emergence, Intelligent Systems Reference Library. ed. by C. Mumford, L. Jain (Springer,

Berlin, 2009), pp. 177–201

16. E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, J. Woodward, Handbook of Metaheuristics,
International Series in Operations Research & Management Science, vol. 146, chap. A Classifica-
tion of Hyper-heuristic Approaches. (Springer 2010), Chapter 15, pp. 449–468

17. E.K. Burke, M. Hyde, G. Kendall, J. Woodward, Automatic heuristic generation with genetic

programming: evolving a jack-of-all-trades or a master of one. in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2007). (London, UK 2007), pp. 1559–1565

18. E.K. Burke, M.R. Hyde, G. Kendall, Grammatical evolution of local search heuristics. IEEE

Transactions on Evolutionary Computation 16(3), 406–417 (2012)

19. E.K. Burke, M.R. Hyde, G. Kendall, J. Woodward, A genetic programming hyper-heuristic

approach for evolving two dimensional strip packing heuristics. IEEE Transactions on Evolutionary

Computation 14(6), 942–958 (2010)

20. E.K. Burke, M.R. Hyde, G. Kendall, J. Woodward, Automating the packing heuristic design process

with genetic programming. Evol. Comput. 20(1), 63–89 (2012)

21. E.K. Burke, G. Kendall, J.D. Landa-Silva, R. O’Brien, E. Soubeiga, An ant algorithm hyperheuristic

for the project presentation scheduling problem. in Proceedings of the 2005 IEEE Congress on
Evolutionary Computation, vol. 3. (2005), pp. 2263–2270

22. E.K. Burke, G. Kendall, E. Soubeiga, A tabu-search hyperheuristic for timetabling and rostering.

J. Heuristics 9(6), 451–470 (2003)

23. E.K. Burke, B. McCollum, A. Meisels, S. Petrovic, R. Qu, A graph-based hyper-heuristic for

educational timetabling problems. Eur. J. Oper. Res. 176, 177–192 (2007)

24. E.K. Burke, S. Petrovic, R. Qu, Case based heuristic selection for timetabling problems. J. Sched.

9(2), 115–132 (2006)

25. J. Cano-Belmán, R. Rı́os-Mercado, J. Bautista, A scatter search based hyper-heuristic for

sequencing a mixed-model assembly line. J. Heuristics 16, 749–770 (2010)

26. E. Cantu-Paz, C. Kamath, An empirical comparison of combinations of evolutionary algorithms and

neural networks for classification problems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 35(5),

915–927 (2005)

27. K. Chakhlevitch, P.I. Cowling, Hyperheuristics: Recent developments. in Adaptive and Multilevel
Metaheuristics Studies in Computational Intelligence, vol. 136, ed. by C. Cotta, M. Sevaux, K.

Sörensen (Springer, Berlin, 2008), pp. 3–29

28. A. Chandra, X. Yao, Ensemble learning using multi-objective evolutionary algorithms. J Math.

Model. Algorithms 5, 417–445 (2006)

Genet Program Evolvable Mach

123

29. P.C. Chen, G. Kendall, G. Vanden Berghe, An ant based hyper-heuristic for the travelling tour-

nament problem. in Proceedings of IEEE Symposium of Computational Intelligence in Scheduling
(CISched 2007), (2007), pp. 19–26

30. P. Cowling, G. Kendall, E. Soubeiga, A hyperheuristic approach for scheduling a sales summit. in

Selected Papers of the Third International Conference on the Practice And Theory of Automated
Timetabling, PATAT 2000, LNCS (Springer, Konstanz, Germany, 2000), pp. 176–190

31. P. Cowling, G. Kendall, E. Soubeiga, A hyperheuristic approach for scheduling a sales summit. in

Selected Papers of the Third International Conference on the Practice And Theory of Automated
Timetabling, PATAT 2000 (Springer, Berlin, 2001), pp. 176–190

32. L. Cruz-Reyes, C. Gómez-Santillán, J. Pérez-Ortega, V. Landero, M. Quiroz, A. Ochoa, Intelligent
Systems, chap. Algorithm Selection: From Meta-Learning to Hyper-Heuristics. (InTech, 2012),

pp. 77–102

33. A. Cuesta-Cañada, L. Garrido, H. Terashima-Marin, Building hyper-heuristics through ant colony

optimization for the 2d bin packing problem. in Knowledge-Based Intelligent Information and
Engineering Systems. ed. by R. Khosla, R. Howlett, L. Jain (Springer, Berlin, 2005), p. 907

34. R. Curry, P. Lichodzijewski, M. Heywood, Scaling genetic programming to large datasets using

hierarchical dynamic subset selection. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(4),

1065–1073 (2007)

35. C. Dimopoulos, A.M.S. Zalzala, Investigating the use of genetic programming for a classic one-

machine scheduling problem. Adv. Eng. Softw. 32(6), 489–498 (2001)

36. L.S. Diosan, M. Oltean, Evolving evolutionary algorithms using evolutionary algorithms. in Pro-
ceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation,
GECCO ’07. (New York, NY, USA, 2007), pp. 2442–2449

37. K.A. Dowsland, E. Soubeiga, E.K. Burke, A simulated annealing hyper-heuristic for determining

shipper sizes. Eur. J. Oper. Res. 179(3), 759–774 (2007)

38. B. Edmonds, Meta-genetic programming: Co-evolving the operators of variation. Tech. rep., Centre

for Policy Modelling, Manchester Metropolitan University (1998)

39. B. Edmonds, Meta-genetic programming: Co-evolving the operators of variation. Turk. J. Elec.

Engin. 9(1), 13–29 (2001)

40. A.E. Eiben, Z. Michalewicz, M. Schoenauer, J.E. Smith, Parameter control in evolutionary algo-

rithms. IEEE Trans. Evol. Comput. 2(3), 124–141 (1999)

41. A. Elyasaf, A. Hauptman, M. Sipper, Ga-freecell: evolving solvers for the game of freecell. in

Proceedings of the 13th annual conference on Genetic and evolutionary computation, GECCO ’11.

(ACM, New York, NY, USA, 2011), pp. 1931–1938

42. A. Elyasaf, A. Hauptman, M. Sipper, Evolutionary design of freecell solvers. IEEE Trans. Comput.

Intell. AI Games 4(4), 270–281 (2012)

43. H.L. Fang, P. Ross, D. Corne, A promising genetic algorithm approach to job shop scheduling,

rescheduling, and open-shop scheduling problems. in 5th International Conference on Genetic
Algorithms ed. by S. Forrest (Morgan Kaufmann, San Mateo, 1993), pp. 375–382

44. R. Fikes, N.J. Nilsson, Strips: a new approach to the application of theorem proving to problem

solving. in IJCAI. (1971), pp. 608–620

45. H. Fisher, G.L. Thompson, Probabilistic learning combinations of local job-shop scheduling rules.

in Industrial Scheduling, ed. by J.F. Muth, G.L. Thompson (Prentice-Hall, Inc, New Jersey, 1963),

pp. 225–251

46. D. Floreano, P. Durr, C. Mattiussi, Neuroevolution: from architectures to learning. Evol. Intel. 1,

47–62 (2008)

47. A. Frank, A. Asuncion, UCI machine learning repository (2010). http://archive.ics.uci.edu/ml

48. P.W. Frey, D.J. Slate, Letter recognition using holland-style adaptive classifiers. Mach. Learn. 6,

161–182 (1991)

49. A.S. Fukunaga, Automated discovery of local search heuristics for satisfiability testing. Evol.

Comput. 16(1), 31–61 (2008)

50. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the theory of NP-Complete-
ness. (W.H. Freeman and Company, San Fransisco, 1979)

51. P. Garrido, M. Riff, Dvrp: A hard dynamic combinatorial optimisation problem tackled by an

evolutionary hyper-heuristic. J. Heuristics 16, 795–834 (2010)

52. C.D. Geiger, R. Uzsoy, H. Aytug, Rapid modeling and discovery of priority dispatching rules: An

autonomous learning approach. J. Sched. 9(1), 7–34 (2006)

Genet Program Evolvable Mach

123

http://archive.ics.uci.edu/ml

53. L. Georgiou, W.J. Teahan, jGE: a java implementation of grammatical evolution. in Proceedings of
the 10th WSEAS International Conference on Systems. (World Scientific and Engineering Academy

and Society (WSEAS), 2006), pp. 410–415

54. M. Ghallab, C.K. Isi, S. Penberthy, D.E. Smith, Y. Sun, D. Weld, PDDL - The Planning Domain
Definition Language. Tech. Rep. CVC TR-98-003/DCS TR-1165, Yale Center for Computational

Vision and Control (1998)

55. F. Glover, Future paths for integer programming and links to artificial intelligence. Comput. Opert.

Res. 13(5), 533–549 (1986)

56. H.J. Goldsby, B.H. Cheng, Avida-mde: a digital evolution approach to generating models of

adaptive software behavior. in Proceedings of the 10th Annual Conference on Genetic and Evo-
lutionary Computation, GECCO ’08 (2008), pp. 1751–1758

57. J. Gratch, S. Chien, Adaptive problem-solving for large-scale scheduling problems: a case study.

J. Artif. Intel. Res. 4, 365–396 (1996)

58. J. Grefenstette, Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man

Cybern. 16(1), 122–128 (1986)

59. J.J. Grefenstette, Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man

Cybern. SMC-16(1), 122–128 (1986)

60. A. Hauptman, A. Elyasaf, M. Sipper, A. Karmon, Gp-rush: using genetic programming to evolve

solversforthe rushhour puzzle. in Genetic and evolutionary computation (GECCO 2009). (ACM,

2009), pp. 955–962

61. M.R. Hyde, E.K. Burke, G. Kendall, Automated code generation by local search. J. Oper. Res. Soc.

(2012). doi:10.1057/jors.2012.149

62. A. Keleş, A. Yayimli, A.C. Uyar, Ant based hyper heuristic for physical impairment aware routing

and wavelength assignment. in Proceedings of the 33rd IEEE conference on Sarnoff. (Piscataway,

NJ, USA, 2010), pp. 90–94

63. Y. Kodratoff, D. Sleeman, M. Uszynski, K. Causse, S. Craw, Building a machine learning toolbox.

in Enhancing the Knowledge Engineering Process, ed. by Steels L., Lepape (1992), pp. 81–108

64. J.R. Koza, Genetic Programming: On the Programming of Computers by the Means of Natural
Selection. (The MIT Press, Massachusetts, 1992)

65. O. Kramer, Evolutionary self-adaptation: a survey of operators and strategy parameters. Evol. Intel.

3, 51–65 (2010)

66. N. Krasnogor, S. Gustafson, A study on the use of ‘‘self-generation’’ in memetic algorithms. Nat.

Comput. 3(1), 53–76 (2004)

67. C.W.G. Lasarczyk, P. Dittrich, J.C.F. Bioinformatics, W. Banzhaf, Dynamic subset selection based

on a fitness case topology. Evol. Comput. 12, 223–242 (2004)

68. J. Levine, D. Humphreys (2003) Learning action strategies for planning domains using genetic

programming. in EvoWorkshops. (2003), pp. 684–695

69. J. Levine, H. Westerberg, M. Galea, D. Humphreys, Evolutionary-based learning of generalised

policies for ai planning domains. in Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’09. (ACM, New York, 2009), pp. 1195–1202

70. K. Leyton-Brown, E. Nudelman, Y. Shoham, Learning the empirical hardness of optimization

problems: The case of combinatorial auctions. in Principles and Practice of Constraint Pro-
gramming - CP 2002, Lecture Notes in Computer Science, vol. 2470, ed. by P. Van Hentenryck

(Springer, Berlin, 2002), pp. 91–100

71. J. Maturana, F. Lardeux, F. Saubion, Autonomous operator management for evolutionary algo-

rithms. J. Heuristics 16, 881–909 (2010)

72. D.V. McDermott, Pddl2.1 - the art of the possible? commentary on fox and long. J. Artif. Intell.

Res. (JAIR) 20, 145–148 (2003)

73. D. Michie, D. Spiegelhalter, C. Taylor (eds), Machine Learning, Neural and Statistical Classifi-
cation. (Ellis Horwood, Chichester, 1994)

74. S. Minton, Automatically configuring constraint satisfaction problems: a case study. Constraints

1(1), 7–43 (1996)

75. T. Mitchell, Machine Learning (Mcgraw-Hill International Edit), 1st edn. (McGraw-Hill Education,

New York, (ISE Editions), 1997)

76. A.Y. Ng, Preventing overfitting of cross-validation data. in Proceedings of the Fourteenth Inter-
national Conference on Machine Learning, ICML ’97. (Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1997), pp. 245–253

Genet Program Evolvable Mach

123

http://dx.doi.org/10.1057/jors.2012.149

77. M. Nicolau, libGE: Grammatical evolution library for c??. Available from: http://waldo.

csisdmz.ul.ie/libGE (2006)

78. G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez, J. Walker, M. Gendreau, G. Kendall, B.

McCollum, A. Parkes, S. Petrovic, E. Burke, HyFlex: A Benchmark Framework for Cross-domain

Heuristic Search 7245, 136–147 (2012)

79. G. Ochoa, R. Qu, E.K. Burke, Analyzing the landscape of a graph based hyper-heuristic for

timetabling problems. in Proceedings of Genetic and Evolutionary Computation Conference
(GECCO 2009). (Montreal, Canada, 2009)

80. G. Ochoa, J.A. Váquez-Rodrı́guez, S. Petrovic, E.K. Burke, Dispatching rules for production

scheduling: a hyper-heuristic landscape analysis. in Proceedings of the IEEE Congress on Evolu-
tionary Computation (CEC 2009). (Montreal, Norway, 2009)

81. G. Ochoa, J. Walker, M. Hyde, T. Curtois, Adaptive evolutionary algorithms and extensions to the

hyflex hyper-heuristic framework. in Parallel Problem Solving from Nature - PPSN 2012, vol.
7492. (Springer, Berlin, 2012), pp. 418–427

82. C. Ofria, C.O. Wilke, Avida: A software platform for research in computational evolutionary

biology. Artif. Life 10(2), 191–229 (2004)

83. M. Oltean, Evolving evolutionary algorithms using linear genetic programming. Evol. Comput. 13,

387–410 (2005)

84. M. O’Neill, E. Hemberg, C. Gilligan, E. Bartley, J. McDermott, A. Brabazon, GEVA: Grammatical

evolution in Java. SIGEVOlution 3(2), (2008)

85. E. Özcan, B. Bilgin, E.E. Korkmaz, A comprehensive analysis of hyper-heuristics. Intell. Data

Anal. 12(1), 3–23 (2008)

86. G.L. Pappa, A.A. Freitas, Automatically evolving rule induction algorithms tailored to the pre-

diction of postsynaptic activity in proteins. Intell. Data Anal. 13(2), 243–259 (2009)

87. G.L. Pappa, A.A. Freitas, Automating the Design of Data Mining Algorithms: An Evolutionary
Computation Approach. (Springer, Berlin, 2009)

88. D. Pisinger, S. Ropke, A general heuristic for vehicle routing problems. Comput. Oper. Res. 34,

2403–2435 (2007)

89. R. Poli, L. Vanneschi, W.B. Langdon, N.F. McPhee, Theoretical results in genetic programming:

the next ten years? Genet. Program. Evolvable Mach. 11(3-4), 285–320 (2010)

90. D. Posada, K.A. Crandall, Modeltest: testing the model of dna substitution. Bioinformatics 14(9),

817–818 (1998)

91. R. Qu, E.K. Burke, Hybridisations within a graph based hyper-heuristic framework for university

timetabling problems. J. Oper. Res. Soc. 60, 1273–1285 (2009)

92. R.B. Rao, D. Gordon, W. Spears, For every generalization action, is there really an equal and

opposite reaction? Analysis of the conservation law for generalization performance. in Proc. of the
12th International Conference on Machine Learning. (Morgan Kaufmann, 1995), pp. 471–479

93. I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biolog-
ischen Evolution. (Frommann-Holzboog, Stuttgart, 1973)

94. J.R. Rice, The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

95. L. Rokach, Taxonomy for characterizing ensemble methods in classification tasks: A review and

annotated bibliography. Comput. Stat. Data Anal. 53(12), 4046–4072 (2009)

96. P. Ross, Hyper-heuristics. in Search Methodologies: Introductory Tutorials in Optimization and
Decision Support Techniques, chap. 17, ed. by E.K. Burke, G. Kendall (Springer, Berlin, 2005),

pp. 529–556

97. P. Ross, J.G. Marı́n-Blázquez, Constructive hyper-heuristics in class timetabling. in IEEE Congress
on Evolutionary Computation. (2005), pp. 1493–1500

98. P. Ross, S. Schulenburg, J.G. Marin-Blazquez, E. Hart, Hyper-heuristics: learning to combine

simple heuristics in bin-packing problem. in Proceedings of the Genetic and Evolutionary Com-
putation Conference, GECCO’02 (2002)

99. O. Roux, C. Fonlupt, Ant programming: or how to use ants for automatic programming. in Pro-
ceedings of ANTS’2000, ed. by M. Dorigo, E. Al (Brussels, Belgium, 2000), pp. 121–129

100. A. Salehi-Abari, T. White, Enhanced generalized ant programming. in Proceedings of the 2008
Genetic and Evolutionary Computation Conference GECCO. (ACM Press, 2008), pp. 111–118

101. C. Schaffer, A conservation law for generalization performance. in Proc. of the 11th International
Conference on Machine Learning. (Morgan Kaufmann, 1994), pp. 259–265

102. R. Schapire, The strength of weak learnability. Mach. Learn. 5, 197–227 (1990)

Genet Program Evolvable Mach

123

http://waldo.csisdmz.ul.ie/libGE
http://waldo.csisdmz.ul.ie/libGE

103. H.P. Schwefel, Numerische Optimierung von Computer-Modellen Mittels der Evolutionstrategie,
ISR, vol. 26. (Birkhaeuser, Basel/Stuttgart, 1977)

104. Y. Shan, R. McKay, D. Essam, H. Abbass, A survey of probabilistic model building genetic

programming. in Scalable Optimization via Probabilistic Modeling: From Algorithms to Applica-
tions, ed. by M. Pelikan, K. Sastry, E. Cantu-Paz (Springer, Berlin, UK, 2006), pp. 121–160

105. K. Smith-Miles, Towards insightful algorithm selection for optimisation using meta-learning con-

cepts. in Proc. of IEEE International Joint Conference on Neural Networks IJCNN 2008. (2008),

pp. 4118–4124

106. K.A. Smith-Miles, Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM

Comput. Surv. 41, 6:1–6:25 (2008)

107. L. Spector, Towards Practical Autoconstructive Evolution: Self-Evolution of Problem-Solving
Genetic Programming Systems, vol. 8 (Springer, Berlin, 2010), pp. 17–33

108. K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol.

Comput. 10, 99–127 (2002)

109. T. Stutzle, S. Fernandes, New Benchmark Instances for the QAP and the Experimental Analysis of
Algorithms, Lecture Notes in Computer Science, vol. 3004. (Springer, Berlin/Heidelberg, 2004),

pp. 199–209

110. E.G. Talbi, Metaheuristics: From Design to Implementation. (Wiley, London, 2009)

111. J.C. Tay, N.B. Ho, Evolving dispatching rules using genetic programming for solving multi-

objective flexible job-shop problems. Comput. Ind. Eng. 54, 453–473 (2008)

112. H. Terashima-Marin, E.J. Flores-Alvarez, P. Ross, Hyper-heuristics and classifier systems for

solving 2D-regular cutting stock problems. in Proceedings of the Genetic and Evolutionary Com-
putation Conference GECCO 2005. (2005), pp. 637–643

113. H. Terashima-Marin, P. Ross, C.J. Farias Zarate, E. Lopez-Camacho, M. Valenzuela-Rendon,

Generalized hyper-heuristics for solving 2D regular and irregular packing problems. Ann. Oper.

Res. 179(1), 369–392 (2010)

114. A. Vella, D. Corne, C. Murphy, Hyper-heuristic decision tree induction. in Nature Biologically
Inspired Computing, 2009. NaBIC 2009. (World Congress on, 2009), pp. 409 – 414

115. R. Vilalta, Y. Drissi, A perspective view and survey of meta-learning. Artif. Intell. Rev. 18, 77–95

(2002)

116. G. Wäscher, H. Haußner, H. Schumann, An improved typology of cutting and packing problems.

European Journal of Operational Research 183(3), 1109–1130 (2007)

117. D.H. Wolpert, Stacked generalization. Neural Netw. 5, 241–259 (1992)

118. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol.

Comput. 1(1), 67–82 (1997)

119. X. Yao, Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

Genet Program Evolvable Mach

123

	Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms
	Abstract
	Introduction
	A historical perspective on automated algorithm design
	Contrasting meta-learning and hyper-heuristic optimisation methods
	Meta-learning
	Hyper-heuristics
	A framework to contrast meta-learning and hyper-heuristics
	Problem space
	Algorithm space
	Evaluation measure

	Automating the design of algorithms: different levels, different approaches
	Algorithm selection: what researchers did before automatic algorithm generation
	Algorithm selection for classification problems
	Algorithm selection for optimisation problems

	Hyper-heuristics for 2D packing: selecting versus generating components
	Selecting/generating algorithm components for classification
	Generating complete heuristics/algorithms
	Evolving evolutionary algorithms with genetic programming
	Automatically evolving rule induction algorithms

	Summary

	Discussion and conclusions
	Differences between current machine learning and optimisation approaches
	Generalisation: future research directions
	Foundational studies
	Final remarks

	Acknowledgments
	References

