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Abstract This chapter overviews a recently introduced network-based model of
combinatorial landscapes: Local Optima Networks (LON). The model compresses
the information given by the whole search space into a smaller mathematical ob-
ject that is a graph having as vertices the local optima and as edges the possible
weighted transitions between them. Two definitions of edges have been proposed:
basin-transition and escape-edges, which capture relevant topological features of the
underlying search spaces. This network model brings a new set of metrics to char-
acterize the structure of combinatorial landscapes, those associated with the science
of complex networks. These metrics are described, and results are presented of local
optima network extraction and analysis for two selected combinatorial landscapes:
NK landscapes and the quadratic assignment problem. Network features are found
to correlate with and even predict the performance of heuristic search algorithms
operating on these problems.
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1.1 Introduction

The fitness landscape metaphor appears most commonly when describing the dy-
namics of evolutionary algorithms, and its origins are attributed to the population
geneticist Sewall Wright [50]. However, the metaphor can be used for computational
search in general; the search space can be regarded as a spacial structure where each
point (candidate solution) has a height (objective function value) forming a land-
scape surface. In this scenario, the search process would be an adaptive-walk over
a landscape that can range from having many peaks of high fitness boarding deep
cliffs to valleys of low fitness, to being smooth, with low hills and gentle valleys.

Identifying the landscape features affecting the effectiveness of heuristic search
algorithms is relevant for both predicting their performance and improving their de-
sign. Some properties of landscapes that are known to have a strong influence on
heuristic search are the number of local optima or peaks in the landscape, the distri-
bution of the local optima in the search space, the correlation between fitness values
of neighboring points in the landscape, the topology of the basins of attraction of
the local optima, and the presence of neutrality (different search points having the
same objective value). Statistical methods have been proposed to measure some of
these properties, for example, fitness-distance correlation [19], distributions of so-
lutions density [37], landscape correlation functions [47], and the negative slope co-
efficient [42]. These metrics work by sampling the landscape surface to provide an
approximation of its shape. An alternative view, first introduced in chemical physics
in the study of energy landscapes [39], is to construct a network formed by the
landscape local optima (minima or maxima). In this view of energy surfaces, the
network’s vertices are energy minima and there is an edge between two minima if
the system can jump from one to the other with an energy cost of the order of the
thermal energies. Usually this “transition state” goes through a low energy barrier
such as a saddle point in the surface. The resulting graph has been referred to as an
inherent network. Recent work by Doye and coworkers and by Caflish and cowork-
ers [13, 14, 34] has shown the benefits of this approach: it provides a synthetic view
of the energy landscape and the network can be studied using appropriate statistical
methods to characterize it in various ways [30]. For example, Doye et al. [13, 14]
found that the inherent networks of the energy landscapes of small atomic clusters
are often of the scale-free type with a power-law degree distribution function, fea-
turing a kind of single or multiple “funnel” structure. The global energy minimum
is the most highly connected node at the bottom of the funnel. This means that the
path to the global energy minimum is easy to follow starting anywhere in the en-
ergy landscape. The concept of community structure of a network, introduced first
for social networks [30], has also been applied, showing that in some cases energy
minima split into almost separate groups or communities [27]. This effect is even
more spectacular for polypeptides [17]. This kind of information is invaluable for
understanding the dynamics induced on the energy landscape such as cluster rear-
rangements or protein folding.

The local optima networks fitness landscape model, described in this chapter,
adapts the notion of the inherent network of energy surfaces to the realm of combi-
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natorial (discrete) search spaces. As for energy surfaces (which exist in continuous
space), the vertices correspond to solutions that are minima or maxima of the asso-
ciated combinatorial problem, but edges are defined differently. The combinatorial
counterpart considers oriented and weighted edges. In a first version, the weights
represent an approximation to the probability of transition between the respective
basins in a given direction [32, 33, 41, 44, 45]. This definition, although informa-
tive, produced densely connected networks and required exhaustive sampling of the
basins of attraction. A second version, escape edges was proposed in [43], which
does not require a full computation of the basins. Instead, these edges account for
the chances of escaping a local optimum after a controlled mutation (e.g. 1 or 2
bit-flips in binary space) followed by hill-climbing. As a first benchmark case in
the study of local optima networks, the well studied family of abstract landscapes,
the Kauffman’s NK model, was selected [20, 21]. In this model the ruggedness,
and hence the difficulty of the landscape, can be tuned from easy to hard. Two
NK models incorporating neutrality (i.e. extended regions of equal or quasi-equal
fitness) were considered: the NKp (‘probabilistic’ NK) [3], and NKq (‘quantized’
NK) [29] families. Subsequently, a more complex and realistic search space was
studied. Specifically, the quadratic assignment problem (QAP) introduced by Koop-
mans and Beckmann [24], which is known to be NP-hard [38].

The local optima network model captures in detail the number and distribution of
local optima in the search space; features which are known to be of utmost impor-
tance for understanding the search difficulty of the corresponding landscape. This
understanding may be exploited when designing efficient search algorithms. For ex-
ample, it has been observed in many combinatorial landscapes that local optima
are not randomly distributed, rather they tend to be clustered in a “central massif”
(or “big valley” if we are minimizing). This globally convex landscape structure
has been observed in the NK family of landscapes [20, 21], and in many combi-
natorial optimization problems, such as the traveling salesman problem [6], graph
bipartitioning [28], and flowshop scheduling [35]. Search algorithms exploiting this
global structure have been proposed [6, 35]. For the travelling salesman problem,
the big-valley structure holds in much of the search space. However, it has been re-
cently found that the big-valley structure disappears, giving rise to multiple funnels,
around local optima that are very close to the global optimum [18]. A specialized
crossover operator has been proposed to exploit and overcome this multi-funnel
structure [49].

The analysis of local optima networks so far has shown interesting correlations
between network features and known search difficulty on the studied combinato-
rial problems. This chapter overviews the conception and analysis of local optima
networks. A brief account of the science of complex networks is given before de-
scribing the combinatorial landscapes, relevant definitions and methods employed.
A summary of the most relevant results of the analysis is presented, and finally, the
prospects of this research effort are discussed.
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1.2 The Science of Complex Networks

The last few years have seen an increased interest in the structure of the big networks
that form part of our daily environment such as the World Wide Web, the Internet,
transportation and electrical power networks, web-based social networks such as
Facebook, and many others. These networks have properties that are unparalleled in
simple graphs such as lattices, properties that are akin to those of complex systems
in general. In these systems, it is difficult or even impossible to infer global behav-
iors given the rules that are obeyed by the system components and their interactions.
For this reason, these big networks are called complex networks and their structure
gives rise to a wide range of dynamical behaviors. Since this chapter draws heav-
ily on complex network nomenclature and methods, to make it self-contained to a
large extent, we give a brief introduction to the field. There exist many references
on complex networks: a technical but still very readable introductory book is [12],
while [31] is a comprehensive reference.

Mathematically, networks are just graphs G(V,E) where V is the set of vertices
and E is the set of edges that join pairs of vertices. A complex network class that
enjoys a precise mathematical description is random graphs which are introduced
below. Random graphs are a useful abstraction that can sometimes be used to model
real networks or, at least, to compare with actual complex networks.

1.2.1 Random graphs

The random-graph model was formally defined by Erdös and Rényi at the end of
the 1950s. In its simplest form, the model consists of N vertices joined by edges
that are placed between pairs of vertices uniformly at random. In other words, each
of the possible N(N − 1)/2 edges is present with probability p and absent with
probability 1− p. The model is often referred to as GN,p to point out that, rigorously
speaking, there is no such thing as a random graph, but rather an ensemble GN,p of
equiprobable graphs.

Another closely related model of a random graph considers the family of graphs
GN,M with N vertices and exactly M edges. For 0 ≤ M ≤

(N
2

)
, there are s =(N(N−1)/2

M

)
graphs with M edges. If the probability of selecting any one of them

is 1/s, then the ensemble GN,M is called the family of uniform random graphs. For
M ' pN, the two models are very similar, but we shall use GN,p in what follows.

A few simple facts are worth noting about random graphs. The average degree
k̄ of a graph G is the average of all the vertex degrees in G: k̄ = (1/N)

∑N
j=1 k j,

where k j is the degree of vertex j. If |E| = M is the number of edges in G, then
M = (Nk̄)/2, since

∑N
j=1 k j = 2M (each edge is counted twice).

The expected number of edges of a random graph belonging to GN,p is clearly
(1/2)N(N−1)p, but since each edge has two ends, the average number of edge ends
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is N(N−1)p, which in turn means that the average degree of a vertex in a random
graph is

k̄ =
N(N−1)p

N
= (N−1)p' N p (1.1)

for sufficiently large N.
An important property of a connected random graph is that the average path

length, i.e the mean distance between nodes, is of the order of logN, which means
that any two nodes are only a short distance apart since logN grows very slowly
with increasing N.

1.2.2 Other network topologies

Random graphs are interesting objects as they obey, in a probabilistic sense, gen-
eral mathematical properties. They are also a useful model for generating problem
instances for testing network algorithms, and they are used in other ways too. But
are random graphs a useful model of the networks that permeate society? Actually,
social scientists felt qualitatively as early as the 1950s that social and professional
links and acquaintances did not follow a random structure. For example, if a person
has some relationship with two others, then the latter two are more likely to know
each other than are two arbitrary persons. This does not fit the random-graph model,
however, where the likelihood that two given nodes are connected is the same in-
dependent of any other consideration. In a ground-breaking paper, Watts and Stro-
gatz [46] proposed a simple network construction algorithm that gives rise to graphs
having the following properties: the path length from any node to any other node is
short, as in random graphs; but, unlike random graphs, there is local structure in the
network. Watts and Strogatz called their networks small-world networks, a term that
has been in use for a long time in the field of social games to indicate that there is a
small separation between any two persons in a large social network.

The discovery of these new properties was made possible by the abundance of
online network data and the computer power to analyze these data; something that
was not available to social scientists at earlier times. Many networks have been stud-
ied since, both man-made and natural: the Internet, the World Wide Web, scientific
collaboration and coauthorship networks, metabolic and neural networks, air traffic,
telephone calls, e-mail exchanges, and many others [31]. Most of these studies have
confirmed that, indeed, real networks are not random in the sense of random-graph
theory, and they possess a number of quite interesting properties.

Some definitions of global and local network properties that will be used in the
rest of the chapter are described below.
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1.2.3 Some graph statistics

Drawing and visualizing a network with up to a few tens of nodes may help in
understanding its structure. However, when there are thousands of nodes, this is
no longer possible. For this reason, a number of statistics have been proposed to
describe the main features of a graph. Taken together, these statistics characterize
the nature of a network.

Four statistics are particularly useful: the average degree, already defined in Sec-
tion 1.2.1, the clustering coefficient, the average path length, and the degree dis-
tribution function. We shall now briefly describe these graph measures. A fuller
treatment can be found in [31].

1.2.3.1 Clustering coefficient

Here we use the following definition of clustering: consider a particular node j in a
graph, and let us assume that it has degree k, i.e. it has k edges connecting it to its k
neighboring nodes. If all k vertices in the neighborhood were completely connected
to each other, forming a clique, then the number of edges would be equal to

(k
2

)
. The

clustering coefficient C j of node j is defined as the ratio between the e edges that
actually exist between the k neighbors and the number of possible edges between
these nodes

C j =
e(k
2

) = 2e
k(k−1)

(1.2)

Thus C j is a measure of the “cliquishness” of a neighborhood: the higher the value
of C j, the more likely it is that two vertices that are adjacent to a third one are also
neighbors of each other.

For example, in Figure 1.1, the leftmost case has C j = 0 since none of the links
between node j’s neighbors is present. In the middle figure, three out of the possi-
ble six links are present and thus C j = (2× 3)/(4× 3) = 6/12 = 0.5, while in the
rightmost case C j = 1 since all six links between j’s neighbors are present.

The average clustering coefficient C̄ is the average of Ci over all N vertices i ∈
V (G): C̄ = (1/N)

∑N
i=1 Ci. The clustering coefficient of a graph G thus expresses

the degree of locality of the connections.
The clustering coefficient of a random graph is simply k̄/N ' p = C̄, where N is

the total number of vertices and p is the probability that there is an edge between
any two vertices since all edges are equiprobable and uncorrelated. One thus sees
that the clustering coefficient of a random graph decreases with the graph size N and
approaches 0 for N→ ∞. The clustering coefficient of a complete graph is 1, since
each of a node’s neighbors are connected to each other by definition.
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Fig. 1.1 In the left image the clustering coefficient of node j, C j = 0 since there are no links among
j’s neighbors. In the middle image C j = 0.5 because three out of the possible six edges among the
neighbors of j are present. In the right image C j = 1 as all the edges that could be there are actually
present (it is a clique).

1.2.3.2 Average path length

The distance between two nodes i and j is defined as the number of edges between
i and j. We denote the shortest path between nodes i, j ∈ V (G) by li j as being the
path with the shortest distance. The average, or mean, path length L̄ of G is then
defined as

L̄ =
2

N(N−1)

N∑
i=1

∑
j>i

li j (1.3)

The normalizing constant 2/N(N−1) is the inverse of the total number of pairs of
vertices. If there is no path between any two nodes, their distance is conventionally
set to ∞ (note that Equation 1.3 does not hold in this case).

The mean path length gives an idea of “how long” it takes to navigate a connected
network. Random graphs and small-world networks share the property that L̄ scales
as logN and thus most vertices in these networks are connected by a short path. This
is not the case in d-dimensional regular lattice graphs, where L̄ scales as N1/d . For
instance, in a ring L̄ scales linearly with N and is inversely proportional to k, the
number of neighbors.

1.2.3.3 Degree distribution function

The degree distribution P(k) of an undirected graph G is a function that gives the
probability that a randomly selected vertex has degree k. P(k) can also be seen
as the fraction of vertices in the graph that have degree k. Similar definitions also
apply for the in-links and out-links of the vertices in a directed graph for which one
can define a degree distribution function for both the outgoing Pout(k) and the the
incoming Pin(k) links.
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For a random graph with connection probability p, the probability P(k) that a
random node has degree k is given by

P(k) =
(

N−1
k

)
pk(1− p)N−1−k (1.4)

This is the number of ways in which k edges can be selected from a certain node
out of the N− 1 possible edges, given that the edges can be chosen independently
of each other and have the same probability p. Thus P(k) is a binomial distribution
peaked at P(k̄)' N p, as already found in Equation (1.1). Since this distribution has
a rapidly diminishing tail, most nodes will have similar degrees. Low- and high-
degree nodes, say a few standard deviations away from the mean, have a negligible
probability, since the tails fall off very rapidly. Networks having this degree distri-
bution will thus be rather homogeneous as far as the connectivity is concerned. For
large N and for pN constant, the binomial distribution can be well approximated by
the Poisson distribution of mean k̄ = N p:

P(k) = e−k̄ k̄k

k!
(1.5)

Another rapidly-decaying degree distribution function that appears in model graphs
is the exponential distribution:

P(k) ∝ e−k/k̄ (1.6)

This degree distribution results when nodes are progressively added to a growing
network such that a new node has the same probability of forming a link with any
of the already existing nodes. Most real networks, however, do not show this kind
of behavior. Instead, the so called scale-free networks, a model of which was first
proposed by Barabásis and Albert [2], seem to be closer to real life networks. In
these networks, P(k) follows a power-law distribution:

P(k) = ck−γ , (1.7)

where c and γ are positive constants.
In scale-free networks, while most nodes have a low degree, there is a small but

non-negligible number of highly connected nodes. This structure has a profound
influence on the dynamics of processes taking place on those networks. It is worth
mentioning that this model has been recently criticized [8] as it turns out that, upon
close inspection, many empirical data-sets in the literature that were previously as-
sumed to have a power-low distribution are better modeled by alternative distribu-
tions.

Poisson, exponential, and power-law distributions are characteristic of model
random and scale-free graphs respectively. The empirical distribution functions
found for real-life graphs are seldom of this type though, because it is almost im-
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possible to find such “pure” networks among finite sampled ones. However, most
real networks have degree distributions that are fat-tailed, i.e. the right part of the
distribution extends to regions that would have negligible probability for a Poisson
distribution; in other words, nodes with high degree exist with non-negligible prob-
ability. Two distributions that have been useful to fit real data are the power-law
with exponential cutoff and the stretched exponential. Both forms take into account
that in a finite network there must be a maximum finite degree. As an example, the
following is an exponentially-truncated power-law:

P(k) ∝ k−γ exp(−k/kc), (1.8)

where kc is a “critical connectivity”. When k approaches kc the exponential term
tends to 0 and P(k) decreases faster than a power-law due to the exponential cutoff.

To conclude, we can say that the degree distribution function, together with the
other statistics, are a kind of rough “signature” of the type of network and can be
helpful in predicting the main aspects of the properties of the network. The reader
should be aware that there are other measures beyond those described here, such as
those that say which are the most “central” actors. Likewise, the picture has been
one of static networks: their dynamical properties, have been neglected here. A good
source for advanced material is [31].

1.2.4 Weighted networks

Weighted networks are a useful extension of the network model. Weights w(e) are
assigned to edges e ∈ E and could represent, for instance, the bandwidth of a com-
munication line, the number of passengers transported on a given air route, the dis-
tance between two metro stations, and many other real-life aspects of networks.
Here, weights represent transition probabilities among optima and their basins in
fitness landscapes. We denote wi j as the transition probability between local optima
i and j, which in our model is generally different than the transition from j to i,
denoted by w ji (see Section 1.4.2 for more details).

Statistics for weighted networks are more or less straightforward extensions of
those used for unweighted networks. Those that will be used in the rest of the chapter
are briefly outlined below. The reader is refereed to [4] for more details.

Suitable distribution functions can also be defined for weighted networks. For
example, it can be of interest to know the function P(we) which indicates the fre-
quency of weight w among the edges e in a given weighted network. Since our
networks are directed, we use Pin(we) and Pout(we) which give the probability that
any given edge e has incoming or outgoing weight w.
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1.2.4.1 Strength

The vertex strength, si, is defined as si =
∑

j∈V (i)−{i}wi j, where the sum is over the
set V (i)−{i} of neighbors of vertex i. This metric is, therefore, a generalization of
the node’s degree giving information about the number and importance of the edges.

1.2.4.2 Weighted clustering coefficient

The standard clustering coefficient (described in Section 1.2.3) does not consider
weighted edges. We thus use the weighted clustering measure proposed by [4],
which combines the topological information with the weight distribution of the net-
work:

cw(i) =
1

si(ki−1)

∑
j,h

wi j +wih

2
ai ja jhahi

where si is the vertex strength, si =
∑

j∈V (i)−{i}wi j, anm = 1 if wnm > 0, anm = 0 if
wnm = 0 and ki =

∑
j 6=i ai j.

This metric cw(i) counts, for each triple formed in the neighborhood of vertex i
(indicated in the equation by ai ja jhahi), the weight of the two participating edges of
vertex i. The normalization factor si(ki− 1), ensures that the metric is in the range
[0,1]. It is customary to define Cw as the weighted clustering coefficient averaged
over all vertices of the network.

1.2.4.3 Disparity

The disparity measure Y2(i), gauges the heterogeneity of the contributions of the
edges of node i to the total weight (strength):

Y2(i) =
∑
j 6=i

(
wi j

si

)2

1.2.4.4 Shortest paths

For weighted graphs, computing the shortest paths depends on the meaning of the
edge weights. For example, if the weight represents e.g. a frequency of interaction,
an electrical load, the number of passengers transported or a probability of transi-
tion, then the higher the weight, the “nearer” the two end points. In this case the path
length between any two connected vertices is taken as the sum of the reciprocal of
the weights

∑
1/wi j where the sum is over all edges {i j} traversed along the path

from the start node to the end node. On the other hand, if weights represent “costs”
of some kind and the aim is to have low total cost, then the length is simply the sum



1 Local Optima Networks 11

of the costs of all edges along the path and the minimal length is that of the path
with minimum cost.

In the local optima network model, we measure the shortest distance between two
nodes as the expected number of operator moves to go from one node to the other.
Given that the transition probability between two nodes i and j is given by wi j, we
calculate the distance between them as di j = 1/wi j. The length of a path between two
arbitrary connected nodes is, therefore, the sum of these distances along the edges
connecting them. The average path length of the whole network is the average value
of all the possible shortest paths.

1.2.5 Community structure in networks

A last theme in this section that we want to treat briefly is the “intermediate” struc-
ture of large networks since it will play a role in the following and is an important
feature of complex networks. Model networks grown according to the Barabási–
Albert recipe [2] or randomly generated have little structure in the sense that there
are few or no recognizable sub-networks. That is, if one looks at a picture of the
network it appears to be rather homogeneous on a global scale.

On the contrary, many observed networks, especially those arising from social
interactions, show the presence of clusters of nodes. These clusters are called com-
munities. It is difficult, if not impossible, to give a precise and unique mathematical
definition of a community. An intuitive definition of a community is the following:
nodes belonging to a community are more strongly associated with each other than
they are with the rest of the network. In other words, the intra-community connec-
tivity is higher than the inter-community connectivity. Of course, the definition is
somewhat circular but in the last few years several algorithms have been proposed
for community detection. Since this task is a hard computational problem, machine
learning algorithms and heuristics have been used and in practice these work satis-
factorily.

1.3 Example Combinatorial Landscapes

1.3.1 The NK model

The idea of an NK landscape is to have N “spins“or “loci”, each with two possible
values, 0 or 1. The model is a real stochastic function Φ defined on binary strings
s ∈ {0,1}N of length N, Φ : s→ R+. The value of K determines how many other
gene values in the string influence a given gene si, i = 1, . . . ,N. The value of Φ is
the average of the contributions φi of all the loci:
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Φ(s) =
1
N

N∑
i=1

φi(si,si1 , . . . ,siK )

By increasing the value of K from 0 to N−1, NK landscapes can be tuned from
smooth to rugged. For K = 0 all contributions can be optimized independently which
makes Φ a simple additive function with a single maximum. At the other extreme,
when K = N − 1, the landscape becomes completely random. The probability of
any given configuration being the optimum is 1/(N +1), and the expected number
of local optima is 2N/(N + 1). Intermediate values of K interpolate between these
two extremes and have a variable degree of “epistasis”, i.e. of gene interaction [21,
22, 25].

The K variables that form the context of the fitness contribution of gene si can
be chosen according to different models. The two most widely studied models are
the random neighborhood model, where the K variables are chosen randomly ac-
cording to a uniform distribution among the N− 1 variables other than si, and the
adjacent neighborhood model, in which the K variables are closest to si in a total or-
dering s1,s2, . . . ,sN (using periodic boundaries). No significant differences between
the two models were found in terms of global properties of the respective families of
landscapes, such as mean number of local optima or autocorrelation length [21, 48].
Similarly, our preliminary studies on the characteristics of the NK landscape optima
networks did not show noticeable differences between the two neighborhood mod-
els. Therefore, the study in this chapter considers the more general random model.

1.3.2 The quadratic assignment problem

The quadratic assignment problem (QAP) is a combinatorial problem in which a set
of facilities with given flows has to be assigned to a set of locations with given dis-
tances in such a way that the sum of the product of flows and distances is minimized.
A solution to the QAP is generally written as a permutation π of the set {1,2, ...,n}.
The cost associated with a permutation π is given by:

C(π) =

n∑
i=1

n∑
j=1

ai jbπiπ j

where n denotes the number of facilities/locations and A = {ai j} and B = {bi j} are
referred to as the distance and flow matrices, respectively. The structure of these two
matrices characterizes the class of instances of the QAP problem.

The results presented in this chapter are based on two instance generators pro-
posed in [23]. These generators were originally devised for the multi-objective QAP,
but were adapted for the single-objective QAP and used for the local optima network
analysis in [9, 10]. In order to perform a statistical analysis of the extracted local op-
tima networks, several problem instances of the two different problem classes were
considered. The first generator produces uniformly random instances where all flows
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and distances are integers sampled from uniform distributions. This leads to the kind
of problem known in literature as Tainna, where nn is the problem dimension [40].
The second generator produces flow entries that are non-uniform random values.
This procedure, detailed in [23] generates random instances of type Tainnb which
have the so called “real-like” structure since they resemble the structure of QAP
problems found in practical applications.

1.4 The Local Optima Network Model

This section formally describes the local optima network model of combinatorial
landscapes. We start by defining the notion of fitness landscapes, and follow by
formalizing the notions of nodes and edges of the network model.

A fitness landscape [36] is a triplet (S,V, f ) where S is a set of potential solutions
i.e. a search space; V : S−→ 2S, a neighborhood structure, is a function that assigns
to every s ∈ S a set of neighbors V (s), and f : S −→ R is a fitness function that can
be pictured as the height of the corresponding solutions.

Local optima networks have been analyzed for the two combinatorial landscapes
discussed in Section 1.3. Therefore, two search spaces or solution representations
have been studied: binary strings (NK landscapes) and permutations (QAP). For
each case, the most basic neighborhood structure is considered, as described in Ta-
ble 1.1. The single bit-flip operation changes a single bit in a given binary string,
whereas the pairwise exchange operation exchanges any two positions in a permu-
tation, thus transforming it into another permutation.

Table 1.1 Search space and neighborhood structure characteristics.

Representation Length Search space size Neighborhood Neighborhood size

Binary N 2N single bit-flip N
Permutation N N! pairwise exchange N(N−1)/2

1.4.1 Definition of nodes

We start by describing the HillClimbing algorithm (Algorithm 1) used to determine
the local optima, and therefore define the basins of attraction. The algorithm de-
fines a mapping from the search space S to the set of locally optimal solutions S∗.
Hill climbing algorithms differ in their so-called pivot or selection rule. In best-
improvement local search, the entire neighborhood is explored and the best solu-
tion is returned, whereas in first-improvement, a neighbor is selected uniformly at
random and is accepted if it improves on the current fitness value. We consider
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here a best-improvement local search heuristic (see Algorithm 1). For a compari-
son between first and best-improvement local optima network models, the reader is
referred to [33].

This best-improvement local search (or hill-climbing) algorithm is used to de-
termine the local optima. The neighborhoods used for each of the studied represen-
tation can be seen in Table 1.1. These local optima will represent the nodes of the
network as discussed below.

1.4.1.1 Nodes

A local optimum (LO), which is taken to be a maximum here, is a solution s∗ such
that ∀s ∈V (s), f (s)≤ f (s∗).

Let us denote by h(s) the stochastic operator that associates each solution s to its
local optimum, i.e. the solution obtained after applying the best-improvement hill-
climbing algorithm (see Algorithm 1) until convergence. The size of the landscape
is finite, so we can denote by LO1, LO2, LO3 . . . ,LOp, the local optima. These LOs
are the vertices of the local optima network.

1.4.2 Definition of edges

Two edge models have been considered: basin-transition and escape edges.

1.4.2.1 Basin-transition edges

The basin of attraction of a local optimum LOi ∈ S is the set bi = {s ∈ S | h(s) =
LOi}. The size of the basin of attraction of a local optimum i is the cardinality
of bi, denoted ]bi. Notice that for non-neutral1 fitness landscapes, as are standard
NK landscapes, the basins of attraction as defined above produce a partition of the
configuration space S. Therefore, S = ∪i∈S∗bi and ∀i ∈ S ∀ j 6= i, bi∩b j = /0.

We can now define the weight of an edge that connects two feasible solutions in
the fitness landscape.
For each pair of solutions s and s

′
, p(s→ s

′
) is the probability to pass from s to s

′

with the given neighborhood structure. These probabilities are given below for the
two solution representations studied (see Table 1.1), with length N or size N and
considering uniform selection of random neighbors.

Binary representation:
if s

′ ∈V (s) , p(s→ s
′
) = 1

N and
if s

′ 6∈V (s) , p(s→ s
′
) = 0.

1 For a definition of basins that deals with neutrality, the reader is referred to [45].
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Algorithm 1 Best-improvement local search (hill-climbing).
Choose initial solution s ∈ S
repeat

choose s
′ ∈V (s), such that f (s

′
) = maxx∈V (s) f (x)

if f (s)< f (s
′
) then

s← s
′

end if
until s is a Local optimum

Permutation representation: if s
′ ∈V (s) , p(s→ s

′
) = 1

N(N−1)/2 and

if s
′ 6∈V (s) , p(s→ s

′
) = 0.

The probability ( p(s→ b j) ≤ 1) to go from solution s ∈ S to a solution belonging
to the basin b j, is:

p(s→ b j) =
∑
s′∈b j

p(s→ s
′
)

Thus, the total probability of going from basin bi to basin b j, i.e. the weight wi j
of edge ei j, is the average over all s ∈ bi of the transition probabilities to solutions
s
′ ∈ b j :

p(bi→ b j) =
1
]bi

∑
s∈bi

p(s→ b j)

1.4.2.2 Escape edges

The escape edges are defined according to a distance function d (minimal number
of moves between two solutions), and a positive integer D > 0. There is an edge ei j
between LOi and LO j if a solution s exists such that d(s,LOi)≤D and s h(s) = LO j.
The weight wi j of this edge is wi j = ]{s ∈ S | d(s,LOi)≤ D and h(s) = LO j}. This
weight can be normalized by the number of solutions, ]{s ∈ S | d(s,LOi) ≤ D},
within reach at distance D.

1.4.3 Local optima network

The weighted local optima network Gw = (N,E) is the graph where the nodes ni ∈N
are the local optima, and there is an edge ei j ∈ E, with weight wi j, between two
nodes ni and n j if wi j > 0.

According to both definitions of edge weights, wi j may be different than w ji.
Thus, two weights are needed in general, and we have an oriented transition graph.
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Figures 1.2 and 1.3 illustrate the alternative local optima network (LON) mod-
els. All figures correspond to a real NK landscape with N = 18, K = 2. Figure 1.2
illustrates the basin-transition edges, while Figure 1.3 the escape edges with D = 1
(left) and D = 2 (right). Notice that the basin-transition edges (Figure 1.2) produce
a densely connected network, while the escape edges (Figure 1.3) produce more
sparse networks.

●
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●

●

Fig. 1.2 Local optima network with basin-transition edges for an NK-landscape instance with N =
18, K = 2. The size of the nodes is proportional to the basin sizes. The nodes’ color represent the
fitness values: the darker the color, the highest the fitness value. The edges’ width scales with the
transition probability (weight) between local optima.

1.5 Results of the Network Analysis

The purpose of this section is to give an overview of the main results of the anal-
ysis of local optima networks for the two example combinatorial landscapes: NK
landscapes (Section 1.5.1) and the quadratic assignment problem (Section 1.5.2).
For each example, the empirical set up and instances analyzed are discussed. The
values obtained from the study of basins of attraction, general network metrics and
connectivity, are reported and discussed.
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Fig. 1.3 Local optima network with escape edges (with D = 1 and D = 2) for an NK-landscape
instance with N = 18, K = 2. Since this model does not require the calculation of the basins sizes,
these are not depicted in the plots. The nodes’ color represent the fitness values: the darker the
color, the highest the fitness value. The edges’ width scales with the transition probability (weight)
between local optima.

1.5.1 The NK model

For the NK model, the two definitions of edges, i.e. basin-transition and escape
edges (Section 1.4.2), are considered. Moreover, an initial study correlating network
metrics with search difficulty is also presented.

Results are presented for landscapes with N = 18 and varied values of K (K ∈
{2,4,6,8,10,12,14,16,17}. N = 18 represents the largest size for which an exhaus-
tive sample of the configuration space was computationally feasible in our imple-
mentation. Metrics are generally calculated as averages of 30 independent instances
for each K value.

1.5.1.1 Basins of attraction

We start by analyzing the structure of the basins of attraction, namely, their size,
shape and fitness of the corresponding local optima. These features are independent
of the network edge definition. They are, however, relevant as the time complexity
of local search heuristics is known to be linked to the size and spreading of attraction
basins [16].

The distribution of basin sizes for given N and K values is not uniform; instead
it follows a right-skewed distribution with a faster-than-exponential decay (see Fig-
ure 1.4, left, with semi-logarithmic scale). With increasing ruggedness (K values),
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the distribution shifts to the left and decays faster. This suggest that as the land-
scape ruggedness increases, the basin sizes decrease. In particular, with increasing
ruggedness, the decrease of the relative size of global optimum basin is approxi-
mately exponential (Figure 1.4, Right).
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Fig. 1.4 Size of the basins of attraction for NK Landscapes. Left: cumulative distribution of basin
sizes for landscapes with N = 18, and selected values of K. Right: average normalized size of the
basin of the global optimum. Averages (points) and standard deviation (bars) refer to 30 instances
for each K value.

With respect to the fitness of local optima and the size of their basins, a strong
positive correlation was observed. Surprisingly, the average Spearman correlation
coefficient is above 0.8 for all K values. Figure 1.5 (left) provides an example for
N = 18, K = 8. This is an encouraging feature suggesting that local optima with
high fitness should be easier to locate by hill-climbing. NK landscapes can thus
be imagined as mountain ranges where wider mountain basins belong to higher
peaks. But intuitions can be misleading, a striking finding is that these mountains
are hollow; for all the observed instances, the average size of the basin interior is
always less than 1% of the size of the basin itself. In other words, most solutions sit
on the basin frontier and neighboring basins are richly interconnected [41].

1.5.1.2 General network features

Table 1.2 reports some general features for the two network models: basin-transition
edges and escape edges (with distances (D = {1,2}); specifically, the number of
nodes (which is independent of the edges model), the relative number or density
of edges, and the average path length to the global optimum, where the distance
between two nodes i and j is given by 1/wi j.

The number of local optima (Table 1.2, 2nd column) rapidly increases with the
value of K (1st column). Escape edges produce much less dense networks (3rd ,
4th, and 5th columns), which confirms the visual inspection of Figures 1.2 and 1.3.
For all the models, the density of edges decreases, whereas the path length to the
global optimum (6th,7th, and 8th columns) increases with increasing values of K.
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Fig. 1.5 Fitness correlations for NK landscapes. Left: Basin size and the fitness of its correspond-
ing optima for a representative instance with N = 18,K = 8. Right: fitness of an optimum and
its strength, i.e. the sum of the weights of its incoming transitions. Averages (points) and 0.95
confidence intervals (bars) are estimated by a t-test over 30 instances.

Table 1.2 General network features for NK landscapes. K = epistasis value of the corresponding
NK landscape (N = 18); Nv = number of vertices; Dedge = density of edges (Ne/(Nv)

2× 100%);
Lopt = average shortest path to reach the global optimum (di j = 1/wi j). Values are averages over
30 random instances, standard deviations are shown as subscripts.

K Nv Dedge (%) Lopt

all Basin-trans. Esc.D1 Esc.D2 Basin-trans. Esc.D1 Esc.D2

2 43.027.7 74.18213.128 8.2984.716 22.7509.301 21.28.0 16.84.7 33.514.1
4 220.639.1 54.0614.413 1.4630.231 7.0660.810 41.710.5 19.25.1 53.712.4
6 748.470.2 26.3431.963 0.4690.047 3.4660.279 80.019.1 22.23.9 66.712.9
8 1668.873.5 12.7090.512 0.2280.009 2.2010.066 110.113.8 24.04.9 76.69.1

10 3147.6109.9 6.2690.244 0.1320.004 1.5310.036 152.819.3 27.35.0 90.78.4
12 5270.3103.9 3.2400.079 0.0880.001 1.1150.015 185.123.8 30.36.7 108.312.3
14 8099.6121.1 1.7740.035 0.0640.001 0.8380.009 200.216.0 38.99.6 124.78.6
16 11688.1101.3 1.0300.013 0.0510.000 0.6470.004 211.815.0 47.911.4 146.211.2
17 13801.074.1 0.8010.007 0.0470.000 0.5740.002 214.317.5 55.712.5 155.912.2

Since a low density of edges and a long path length to the optimum would hinder
heuristic search, these observations confirm that the network metrics capture the
search difficulty associated with increasing landscape ruggedness. These findings
also suggest that the two models of edges are consistent, which is encouraging as
calculating the escape-edges is less computationally expensive.

A study of the network’s local connectivity shows differences between the two
edge models. As Figure 1.6 (left) shows, the basin-transition edges produce net-
works with higher out degree (i.e. number of transitions leaving a node). Clustering
coefficients are also higher in this case (they are indeed higher than those of a ran-
dom graph), which is probably due to the higher density of basin-transition edges
(Figure 1.6, right). There is, however, a common decreasing trend for all models in
this metric with increasing K, as seen in Figure 1.6, right. The varying difference
between the two models might lie in the size of the basins of attraction. For low K
values, large basins produce high edge density and thus high clustering coefficients
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in the basin-transition model; whereas for large values of K, basins are so small
that the two models show a similar structure. The escape-edges reproduce the basin
topology.
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Fig. 1.6 Local connectivity for NK landscapes. Left: Average out-degree. Right: Average cluster-
ing coefficient. Averages (points) and 0.95 confidence intervals (bars) are estimated by a t-test over
30 random instances with N = 18.

1.5.1.3 Transitions among local optima

Edges weights wi j can be interpreted as the expected number of moves it takes to
go from basin bi to basin b j (or from local optimum i to basin b j in the escape-edge
model). For both edge models, the weights of self-loops (wii) are an order of magni-
tude higher than wi j, j 6=i. Therefore, it is more probable for a random move to remain
in the same basin than to escape from it. Self-loop probabilities are then corre-
lated with basin sizes, and display a similar exponential decrease with the landscape
ruggedness K. We analyze, therefore, in more detail the weights wi j, j 6=i. Figure 1.7
(left) shows the cumulative distribution of basin-transition weights for wi j, j 6=i for se-
lected values of K. The curves illustrate that low K values have longer tails, whereas
mid and high K values produce a faster decay. Figure 1.7 (right), shows the average
weight out-going transition for all edge models and K values. For the escape-edges
model, the out-going weights decrease smoothly, with a slower decrease for D = 1.
The trend is different for basin-transition edges where the out-going weights de-
crease with increasing ruggedness but only up to K = 6, and then they increase in
value.

A relevant question is whether there are preferential directions when leaving a
particular node in the network. Specifically, whether for a given optimum i, all the
outgoing weights wi j, j 6=i, are equivalent. This can be revealed by the disparity Y2
metric (discussed in Section 1.2.4), which gauges the heterogeneity of the contri-
butions of the edges of node i to its total strength si. If a dominant weight does not
exist, the value Y2 ≈ 1/k, were k is the node out-degree. Figure 1.8 (left) illustrates
the relationship between disparity and out-degree for basin-transition edges and se-
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Fig. 1.7 Network transitions for NK landscapes. Left: Cumulative probability distribution of the
network weights wi j, j 6=i with basin-transition edges, N = 18, and selected K values. Right: Average
out-going wi j values for all edge models and K values. Averages (points) and 0.95 confidence
intervals (bars) are estimated by a t-test over 30 landscapes with N = 18.

lected K values. The figure also shows the limit case Y2 ≈ 1/k (labeled as random).
For calculating this plot, the nodes’ disparity values Y2(i) were grouped and aver-
aged by node out-degree. The curves suggest that there are preferential directions
for low values of K. However, with increasing K, the transition probabilities to leave
a given basin appear to become more uniform (i.e closer to the limit case Y2 = 1/k).
Figure 1.8 (right) shows the disparity metric for all models and K values. In all cases,
disparity values are higher than those expected in the limit case (Y2 ≈ 1/k, labeled as
random), indicating that preferential transitions are present. For the basin-transition
edges and the escape edges wit D = 2, disparity values get closer to the limit case
of large K values.
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Fig. 1.8 Weight disparity for outgoing edges in NK landscapes. Left: relationship between dis-
parity and out-degree for the basin-transition edges, and selected values of K. Right: relationship
between disparity and landscape ruggedness (K) for the two network models. Averages and confi-
dence intervals are estimated on the 30 analyzed instances. Dotted lines (labeled as random) present
the limit case Y2 = 1/k, where k is the node out-going degree.
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1.5.1.4 Search difficulty and network metrics

While the previous sections described relevant network features, this section ex-
plores correlations between these features and the performance of local search
heuristics running on the underlying combinatorial optimization problem. The ulti-
mate goal is to have predictive models of the performance of specific search heuris-
tics when solving a given problem instance, and thus select a method according to
this predication.

Daolio et al. [11], conducted a first study using iterated local search and the
NK family of landscapes (with escape edges, D = 2). Iterated local search is a rela-
tively simple but powerful single point heuristic. It alternates between a perturbation
stage and an improvement stage. This search principle has been rediscovered multi-
ple times, within different research communities and with different names [5]. The
term iterated local search (ILS) was proposed in [26]. Algorithm 2 outlines the
procedure.

Algorithm 2 Iterated Local Search
s0← GenerateInitialSolution
s∗← LocalSearch(s0)
repeat

s′← Perturbation(s∗)
s′∗← LocalSearch(s

′
)

s∗← AcceptanceCriterion(s∗,s′∗)
until termination condition met

In our implementation, the LocalSearch stage corresponds to the best-improvement
hill-climber described in Section 1.4 (Algorithm 1), which stops when reaching a
local optimum, and uses the single bit-flip move operator. The Perturbation stage
considers a stronger operator,i.e. 2-bit-flip mutation. A simple greedy acceptance
is used (i.e. only improvement moves are accepted). The search terminates at the
global optimum, which for benchmark problems is known a priori, or when reach-
ing a pre-set limit of fitness evaluations FEmax.

As the performance criterion, we selected the expected number of function eval-
uations to reach the global optimum (success) after independent restarts. This mea-
sure accounts for both the success rate (ps ∈ (0,1]) and the convergence speed [1].
The function evaluations limit was set to 1/5 of the size of the search space, i.e.
FEmax ' 5.2 ·104, for binary strings of length N = 18. The success rate ps and run-
ning time of successful runs Ts were estimated on 500 random restarts per instance.

Figure 1.9 (left), shows the distribution of the expected iterated local search (ILS,
Algorithm 2) running times to success with respect to K. As expected, the running
times increase steadily with increasing K. As an example of the correlations arising
between LON features and the performance of ILS, the right plot in Figure. 1.9,
illustrates the relationship between the running time and the shortest path length to
the global optimum. A strong positive correlation is observed, suggesting that LON
features are able to capture search difficulty in combinatorial landscapes. Other net-
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work metrics also revealed positive correlations with search performance, namely,
the average out-degree, the average disparity, and the degree of assortativity [11]. A
multiple regression analysis was also conducted using the most significant network
metrics. The model obtained was able to predict about 85% of the variance observed
in the expected running times
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Fig. 1.9 Performance of ILS on NK landscapes. Left: distribution of the expected running times
to success for different K values. Right: correlation between the expected running times and the
average shortest path to the global optimum. The regression line is dashed. The legend gives the
ratio of variance explained by the regression, R2, and the Pearson correlation coefficient, r, with
the asterisks indicating its significance level.

1.5.2 The quadratic assignment problem

This section summarises the main results for the QAP. In this case, only the basin-
transition edges are considered. The study of escape-edges will be the subject of
future work. An analysis of the LON communities structure is also presented. This
was not done for the NK landscape as our analysis revealed little cluster structure of
local optima in these more random landscapes. Their search spaces seem isotropic
from the point of view of basin inter-connectivity. An initial study correlating QAP
local optima network metrics with heuristic search performance is reported else-
where [7].

Two QAP instance classes were considered: real-like and uniform instances as
described in Section 1.3.2. For the general network analysis, 30 random uniform
and 30 random real-like instances have been generated for each problem dimension
in {5, ...,10}, and metrics are given as averages of these 30 independent instances.
To the specific purpose of community detection, 200 additional instances have been
produced and analyzed with size 9 for the random uniform class, and size 11 for
the real-like instances class. Problem size 11 is the largest permitting an exhaustive
sample of the configuration space. Only the basin-transition edges are studied. The
escape-edges will be the subject of future work.
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1.5.2.1 Basins of attraction

Figure 1.10 (left) shows the size of the global optimum basin of attraction (normal-
ized by the whole search space size). This value decreases exponentially with the
problem size for both instance classes. The real-like instances have larger global
optimum basins, which can be explained by their smaller local optima networks (as
discussed below). The relative size of the global optimum basin is related to the
probability of finding the best solution with a local search algorithm from a random
starting point. The exponential decrease confirms that the larger the problem, the
smaller the probability for a local search algorithm to locate the global optimum.
The separation between the curves in Figure 1.10 (left) is consistent with recent
empirical results indicating that real-like instances are easier to solve than uniform
instances for heuristic search algorithms such as simulated annealing and genetic
algorithms [7].

Figure 1.10 (right), shows the correlation between the fitness value of a local
optimum and the size of its basin of attraction. As with the NK landscape, there is a
strong positive correlation between the fitness of a local optimum and the size of its
basin. This is an encouraging feature suggesting that local optima with high fitness
should be easier to locate by stochastic local search. The correlation coefficients
are generally higher for the uniform instances, which also show noticeably lower
variance. More details about QAP basins of attraction and network features can be
found in [10].
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Fig. 1.10 Basins of attraction in QAP instances. Left: Normalized size of the basin of the global
optimum. Right: Pearson correlation coefficient between the fitness value of an optimum and the
logarithmic size of its basin. Averages (points) and 0.95 confidence intervals (bars) are estimated
with a t-test over 30 instances for each combination of problem class and size.

1.5.2.2 General network features

Table 1.3 reports relevant features for the two classes of QAP instances and problem
sizes from 5 to 10; specifically, the number of vertices (Nv), the density of edges
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(Dedge = Ne/(Nv)
2), the weighted clustering coefficient (Cw) and the disparity in

out-going transitions (Y2). The number of lohcal optima grows exponentially with
the problem dimension for both instance classes. For a given problem size, how-
ever, real-like instances produce much smaller networks, i.e. they have significantly
fewer local optima. The size difference between the two instance classes also grows
almost exponentially with the problem dimension. This is again consistent with the
empirical studies indicating that real-like instances are easier to solve by common
metaheuristics [7].

The QAP networks are notably dense, with density of edges close to one (Ta-
ble 1.3, Dedge), much more dense than than those of the NK landscapes which op-
erate on binary spaces. This is not surprising as the neighborhood size is larger for
permutation search spaces (see Table 1.1). Local optima networks are almost com-
plete graphs for QAP. Moreover, the average weighted clustering coefficient Cw is
higher than what would be expected from network density alone, indicating that
the interconnected triples are more likely formed by edges with larger weight. The
studied QAP instances show very high local connectivity. The clustering coefficient
decreases with the problem dimension and is higher for real-like instances.

The last row in Table 1.3 reports the disparity coefficient in out-going transitions
for both classes with respect to the problem dimension. High diversity indicates
preferential transitions. The decreasing trend reflects that, with increasing problem
size, the out-going transition to neighbouring optima tend to become equally prob-
able. This trend is more evident for uniform instances whose LONs have higher
cardinality.

Table 1.3 General network features for QAP instances. Nv = number of vertices; Dedge = density
of edges (Ne/(Nv)

2); Cw = weighted clustering coefficient; Y2 = disparity in out-going transitions.
Values are averages over 30 instances with standard deviations in subscripts.

class size

5 6 7 8 9 10

Nv
real-like 1.6670.802 2.7671.48 3.9002.25 6.1332.99 12.5675.73 25.70013.8
uniform 3.3331.27 6.8002.37 19.1007.39 51.30020.53 137.30054.84 414.133177.5

Dedge
real-like 1.0000.000 0.9930.026 0.9940.030 0.9990.006 0.9920.025 0.9880.035
uniform 0.9980.007 0.9930.019 0.9690.030 0.9400.036 0.9090.035 0.8740.053

Cw real-like 1.0000.000 0.9880.032 0.9950.024 0.9990.005 0.9950.015 0.9930.020
uniform 0.9980.008 0.9950.014 0.9820.016 0.9700.017 0.9610.015 0.9520.020

Y2
real-like 0.8880.193 0.7390.251 0.5330.270 0.3690.171 0.2210.118 0.1430.058
uniform 0.6490.271 0.2860.093 0.1360.061 0.0740.048 0.0400.013 0.0230.008
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1.5.2.3 Path lengths

Figure 1.11 (left) displays the average shortest path length between optima and the
average shortest path length to the global optimum. Both metrics clearly increase
with problem size. Values are noticeably higher for the uniform instances, which
have a larger number of local optima than the real-like instances for the same prob-
lem dimension. The figures support that the search difficulty increases with the prob-
lem size and the number of local optima.
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Fig. 1.11 Shortest paths in QAP instances. Left: average path length. Right: average length of the
shortest paths to the global optimum. Averages (points) and 0.95 confidence intervals (bars) are
estimated with a t-test over 30 instances for each combination of problem class and size.

1.5.2.4 Clustering of local optima

The manner in which local optima are distributed in the configuration space is rel-
evant for heuristic search. Several questions can be raised. Are they uniformly dis-
tributed, or do they cluster in some non-homogeneous way? If the latter, what is the
relation between objective function values within and among different clusters and
how easy is it to go from one to another? As discussed in Section 1.2.5, clusters or
communities in networks are groups of nodes that are strongly connected between
them and poorly connected with the rest of the graph. The topological distribution
of local optima can be directly investigated by means of community detection on
the local optima network. In [9], we conducted a community detection study on the
two classes of QAP instances. Problems of size of 11 for the real-like class and 9
for the uniform class were considered as LONs for these two cases have comparable
sizes in terms of number of vertices.

Community detection is a difficult task, but today several good approximate algo-
rithms are available [15]. In [9], we used two of them: (i) a method based on greedy
modularity optimization, and (ii) a spin glass ground state-based algorithm in order
to double check the community partition results. Figure 1.12 shows the modularity
score (Q) distribution for each algorithm/instance-class. The higher the Q score of
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a partition, the crisper the community structure [15]. The plot indicates that the two
instance classes are well separated in terms of Q, regardless of the algorithm used.
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Fig. 1.12 Network modularity for QAP instances. Boxplots of the modularity score Q on the y-
axis with respect to class problem (rl stands for real-like and uni stands for random uniform) and
community detection algorithm (1 stands for fast greedy modularity optimization and 2 stands for
spin glass search algorithm).

The real-like instances have significantly more cluster structure than the uniform
instances. This can be appreciated visually in Figure 1.13 illustrating the community
structures of two particular instances. These two selected cases have the highest Q
values of their respective classes, but they represent a general trend. For the real-
like instance (Figure 1.13, right) the groups of local optima are recognizable and
form well separated clusters (encircled with dotted lines), which is also reflected
in the high corresponding modularity value Q = 0.79. In contrast, the LON of the
uniform instance (Figure 1.13, left) has some modularity, with a Q = 0.53, but the
communities are hard to represent graphically, and thus are not shown in the picture.

The LONs community structure is likely to have consequences on the heuristic
algorithms used to search the corresponding landscapes. According to the level of
modularity, different search strategies would be more efficient. For example, we can
envision that for real-like instances, a local search algorithm may require stronger
perturbation mechanisms to escape a cluster of local optima with poor quality solu-
tions.
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Fig. 1.13 Visualization of network communities in QAP instances. Left: a uniform instance of
size 9. Right: a real-like instance of size. Node size is proportional to basin size, and node color
to fitness (the darker, the better). Communities are highlighted in the right picture, which was not
possible in the left one.

1.6 Conclusions

A network-based model of combinatorial landscapes is described and a thorough
analysis is presented for two example combinatorial landscapes: NK landscapes
and the quadratic assignment problem. A network model requires defining its nodes
and edges. Nodes are the landscape local optima obtained with a best-improvement
hill-climbing algorithm; edges are defined in two alternative ways: one is based
on the transition probabilities between basins of attraction, the other on the tran-
sition (escape) probabilities from local optima. The model, therefore, compresses
the fitness landscapes into a more manageable mathematical object. New features
can be measured in this model, coming from the science of complex networks such
as the degree distribution, clustering coefficient, shortest path length, disparity and
community structure. Results from the studied landscapes show that local optima
networks share some features with complex networks: basin sizes are not uniformly
distributed, weight distributions are not normal, path lengths to the global optimum
can be short, clustering coefficients can be high, and networks can have community
structure.

The results clearly show that the search difficulty on the studied landscapes,
which may be either known a priori or empirically estimated, correlate with some
fundamental LON features such as the number of nodes, size of basins, shortest
path length to the global optimum, out-degree, disparity, and degree of assortativ-
ity. Indeed, some of these metrics were used successfully to construct a statistical
predictive model of search performance. The network analysis also revealed inter-
esting topological differences on the distribution of local optima for different classes
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of problem instances. These differences may lead to designing search heuristics that
can adapt and thus exploit the landscape structure.

Local optima networks can be seen as a generic model of combinatorial land-
scapes based on defining convergence points of simple heuristics in the search space.
In this work, the convergence points are local optima, and edges are transition prob-
abilities between these points which also reflect the path of a local search. From
a mathematical point of view, LONs reduce the study of the whole transition ma-
trix between solutions of a local search by a smaller transition matrix between local
optima. The search dynamic is then decomposed into two time scales: one to reach
local optima, the other to traverse between local optima. From LON graphs and their
corresponding transition matrices, it should be possible to conduct a Markov chain
analysis and thus compute running times or expected performance.

Another research direction is to use LONs for automated parameter tuning and
design of heuristic search methods. Some network metrics can be estimated with-
out knowing the global optimum beforehand. These metrics coupled with adequate
performance prediction models open up exciting possibilities. Our current analysis
requires the exhaustive enumeration of the search space; with standard sampling
methods, larger search spaces could be studied. We plan to continue working on the
afore mentioned directions and extend this analysis to other combinatorial optimiza-
tion problems.
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