
Grammar-based generation of variable-selection
heuristics for constraint satisfaction problems

Alejandro Sosa-Ascencio1 • Gabriela Ochoa2 •

Hugo Terashima-Marin1 • Santiago Enrique Conant-Pablos1

Received: 15 November 2014 / Revised: 26 August 2015

� Springer Science+Business Media New York 2015

Abstract We propose a grammar-based genetic programming framework that

generates variable-selection heuristics for solving constraint satisfaction problems.

This approach can be considered as a generation hyper-heuristic. A grammar to

express heuristics is extracted from successful human-designed variable-selection

heuristics. The search is performed on the derivation sequences of this grammar

using a strongly typed genetic programming framework. The approach brings two

innovations to grammar-based hyper-heuristics in this domain: the incorporation of

if-then-else rules to the function set, and the implementation of overloaded func-

tions capable of handling different input dimensionality. Moreover, the heuristic

search space is explored using not only evolutionary search, but also two alternative

simpler strategies, namely, iterated local search and parallel hill climbing. We tested

our approach on synthetic and real-world instances. The newly generated heuristics

have an improved performance when compared against human-designed heuristics.

Our results suggest that the constrained search space imposed by the proposed

grammar is the main factor in the generation of good heuristics. However, to

generate more general heuristics, the composition of the training set and the search

methodology played an important role. We found that increasing the variability of

the training set improved the generality of the evolved heuristics, and the evolu-

tionary search strategy produced slightly better results.

Keywords Constraint satisfaction problems � Hyper-heuristics � Genetic

programming � Variable ordering heuristics � Grammar-based framework

& Alejandro Sosa-Ascencio

alejandro.sosa.ascencio@gmail.com

1 Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo León, Mexico

2 Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, Scotland, UK

123

Genet Program Evolvable Mach

DOI 10.1007/s10710-015-9249-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-015-9249-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-015-9249-1&domain=pdf

1 Introduction

Hyper-heuristics have been defined as search methods or learning mechanisms for

selecting or generating heuristics to solve computational search problems [11, 14].

They are related to the notions of meta-learning in machine learning [37], and

autoconstructive evolution in genetic programming [42]. The main motivation is to

develop search methodologies with a higher degree of generality than tailored

metaheuristics and crafted heuristics. Hyper-heuristics differ from metaheuristics in

that they explore the space of heuristics or heuristic components, rather than directly

the space of solutions [11]. Two types of hyper-heuristics can be distinguished:

heuristic selection (methodologies for choosing or selecting existing heuristics) and

heuristic generation (methodologies for generating new heuristics from components

of existing heuristics) [14]. This paper presents a methodology of the second type.

Genetic programming is one of the most commonly used approaches to automat-

ically generate heuristics, and the inclusion of grammars is a recent trend with

promising results.

A constraint satisfaction problem (CSP) is defined by a set of variables X where

each variable is associated to a set of values D (domain), and a set C of constraints

between the variables. The objective is to either find a consistent assignment of

values to variables in such a way that all constraints are satisfied, or to show that

such consistent assignment does not exist. A wide range of problems and

applications in various domains can be modeled and solved as CSPs [1, 23].

This article proposes a grammar-based approach for automatically generating

new variable-selection heuristics for constraint satisfaction. A grammar is designed

taking inspiration from successful human-designed variable-selection heuristics.

The search space is therefore composed of valid sentences according to this

grammar. The proposed approach differs from previous grammar-based hyper-

heuristics developed for CSPs in two aspects. First, the function set contains

conditional statements (if-then-else), arithmetic operators and logical

expressions, which allow generating heuristics with a wider range of possibilities

than previous approaches that are restricted to arithmetic operators. Second, the

implementation of overloaded functions capable of handling different input

dimensionality, which brings greater flexibility and a wider space of possible

solutions. Three high-level strategies are considered for the generation of new

heuristics: genetic programming (GP), iterated local search (ILS) and parallel hill-

climbing (PHC).

Using both synthetic and real-world instances, we compare the performance of

newly generated heuristics against several state-of-the-art human-designed heuris-

tics. We also study the impact of the composition of the training set on the

generality of the evolved heuristics, i.e, their performance across unseen instances.

Finally, we consider how heuristics evolved by using sets of small synthetic

instances generalize to both unseen larger synthetic instances, and real-world data

sets.

The next section discusses related work on grammar-based hyper-heuristics and

how they have been applied to CSPs. Section 3 describes CSPs and the variable-

Genet Program Evolvable Mach

123

selection heuristics used to solve them. Section 4 explains the proposed hyper-

heuristic approach including the components and structure of the grammar.

Section 5 overviews the experimental setup, while Sect. 6 shows the experimental

results and their analysis. Finally, Sect. 7 summarizes our findings and suggest

future research directions.

2 Related work

Genetic programming has been applied to generate heuristics in several domains

such as production scheduling, cutting and packing, boolean satisfiability,

timetabling and scheduling [11, 12]. We next overview previous work related to

constraint satisfaction and grammar-based genetic programming hyper-heuristics.

2.1 Heuristic generation for CSPs

An early approach to the automated generation of heuristics for constraint

satisfaction was proposed by Minton [28]. This pioneering work presents a system

for generating reusable heuristics by modifying given elements of algorithm

‘schema’, which are templates of generic algorithms. The general idea is to

automatically synthesize problem-specific versions of constraint satisfaction

algorithms.

Ortiz-Bayliss et al. [32, 35] propose the generation of variable-selection

heuristics by using a linear combination of descriptors of the variables and tuned

weights. The descriptors extract information from the variables at each point in the

exploration of the CSP instance, and the weights determine the importance of each

descriptor. A genetic algorithm was used to tune the weights. The heuristics

produced by their approach suffer from over-fitting, as in most cases they fail to

generalize to unseen instances from different classes of instances.

Bain et al. [4, 5] present the generation of new heuristics that compose local and

complete search algorithms for solving CSPs. In Bain et al. [4] genetic program-

ming is used to evolve a population of local search algorithms, and in a more recent

work [5], the authors use beam search and random-generated heuristics and

compare them against the genetic programming approach, with the latter producing

better synergies.

Jafari and Mouhoub [30] develop a hybrid approach where two non-systematic

algorithms are used to assign weights to constraints and variables. Prior to the

backtracking process, hill climbing and ant colony optimization are used to adjust

the weights assigned to variables. Once the weights have been assigned, they remain

unchanged for the rest of the solving process.

2.2 Grammar-based genetic programming hyper-heuristics

Bader-El-Den and Poli [2] introduce a grammar-based approach able to generate

parsimonious and fast heuristics for satisfiability (SAT). The designed grammar

expresses four human-created heuristics and allows flexibility to create new

Genet Program Evolvable Mach

123

heuristics. The authors also propose a grammar-based framework for generating

timetabling heuristics [3]. The grammar contains components of graph coloring and

slot allocation heuristics. The results obtained are comparable with a range of

human-created approaches in the literature.

Keller and Poli [21, 22] devise a linear genetic programming hyper-heuristic for

the traveling salesman problem (TSP). The idea is to evolve iterative programs that

apply a number of simple local search operators. The programs are expressed as

sentences of a grammar, which is made progressively more complex in successive

papers including conditionals and loops.

Burke et al. [13] use grammatical evolution for evolving local search heuristics

for one-dimensional bin packing. Grammatical evolution is a branch of grammar-

based genetic programming that uses a linear representation. Their work shows that

the space of neighborhood move operators can be specified by a grammar, and high-

quality operators can be evolved.

Sabar et al. [39] propose a grammatical evolution approach for generating local

search heuristics to solve two combinatorial optimization problems: exam

timetabling and vehicle routing. The proposed grammar contains three types of

heuristic components: acceptance criteria, neighborhood structures or move

operators, and neighborhood combinations/operators.

Ortiz-Bayliss et al. [34] proposed a simple grammar composed by arithmetic

operators and five terminals (feature extractors), for generating variable-selection

heuristics for CSP.

3 Constraint satisfaction problems

CSPs are relevant to operations research and artificial intelligence. Many

combinatorial problems, such as scheduling, frequency assignment and micro-

controller selection and pin assignment can be formulated as CSPs (see for

example [8, 16, 20] and [7]). Several deterministic methods to solve CSPs exist

(see for example [23]), and solutions are found by searching systematically through

the possible assignments to variables, guided by heuristics.

3.1 Variable ordering heuristics

A solution to a CSP is constructed by selecting one variable at a time according to a

given heuristic. In complete search methods for solving CSPs, heuristics are usually

designed based on the fail-first principle [19] which is based on the idea of selecting

the variable with the highest probability of failure. Previous studies have shown that

a heuristic may work well for some classes of instances, but perform badly for

others [33]. Nine human-designed variable ordering heuristics are used in this

investigation and they are described below:

Minimum remaining values (MRV) heuristic Selects the variable with the fewest

available values in its domain [19, 38]. The idea consists basically in taking the

Genet Program Evolvable Mach

123

most restricted variable from those which have not been instantiated yet and by

doing so, reducing the branching factor of the search.

Solution density (RHO) heuristic Uses the approximated calculation of the

solution density q [18]. The idea is to select a variable that takes the search into

the subproblem that contains the largest fraction of solution states. That is, the

subproblem with the largest solution density. RHO will prefer the variable that,

once assigned a value, maximizes:

q ¼
Y

c2C
ð1 � pcÞ ð1Þ

where pc is the fraction of forbidden tuples in constraint c.

Expected number of solutions (ENS) heuristic Selects the variable that produces

the subproblem maximizing the expected number of solutions, defined as:

E½S� ¼
Y

x2X
jmxj � q ð2Þ

where jmxj is the domain size of variable x.

The ENS heuristic maximizes the size of the subproblem so as the solution

density. The selection criterion of this heuristic is a combination of the MRV and

RHO heuristics [18].

Kappa (K) heuristic Orders the variables based on the value of the kappa factor,

j [18]. j represents a notion of how restricted a combinatorial problem is.

Problems with j � 1 are less restricted and likely to have many solutions, while

the problems with j � 1 are highly restricted and likely to be unsatisfiable [18].

K will select first the variable that leads the search into the subproblem that

maximizes the value of j:

j ¼ �
P

c2C log2ð1 � pcÞP
x2X log2ðjmxjÞ

ð3Þ

Maximum backward degree (MBD) heuristic Selects the first variable arbitrarily.

Then, at each stage it prefers the variable that is connected to the largest group

among the variables already instantiated [15, 45].

Maximum forward degree (MFD) heuristic Prefers the variables connected to the

maximum number of uninstantiated variables, that is, the variables involved in

the largest number of constraints (edges between nodes) [45].

Backward Brelaz (BBZ) heuristic Inspired by the heuristic for graph coloring

proposed by Brelaz [9], it selects the variable that minimizes:

bbzðxiÞ ¼
jmxj

bdegðxÞ if bdegðxÞ[0

jmxj otherwise

8
<

: ð4Þ

where bdeg(x) is the backward degree of variable x.

Forward Brelaz (FBZ) heuristic Instantiates first the variable that minimizes the

quotient of the domain size over the forward degree of the variable:

Genet Program Evolvable Mach

123

fbzðxiÞ ¼
jmxj

fdegðxÞ if fdegðxÞ[0

jmxj otherwise

8
<

: ð5Þ

where fdeg(x) is the forward degree of variable x.

Max conflicts (MXC) heuristic Selects the variables according to the number of

conflicts they are involved in. Therefore, it prefers the variables involved in the

largest number of conflicts (which must not be confused with the number of

constraints).

4 The proposed approach

We propose a grammar-based genetic programming system based on Backus-Naur

form (BNF) for evolving variable-selection heuristics for solving CSPs. Grammars

bring a number of benefits for genetic programming where the most important one is

to restrict the search space to ensure the construction of valid individuals. To generate

Fig. 1 Description of the grammar proposed to construct variable-selection heuristics for CSPs

Genet Program Evolvable Mach

123

an individual, our implementation follows the procedure proposed by Whigham [46].

A random tree is generated up to a depth bound, according to an estimation of the

minimum tree-depth required by a function to reach all its terminal nodes. But unlike

usual grammar-based systems, where the genotype is first decoded into a derivation

tree before being transformed into an expression tree [27], the genotype in our system

is directly represented as a tree structure that is recursively constructed when the

individual is evaluated. This brings a significant reduction in the computational time.

The components and structure of the grammar are presented in Fig. 1. The grammar

module works over a strongly-typed system. The possible types that a function can

receive are described in Table 1. Every component in the grammar was defined as a

Java method from two main classes: simple functions and special functions.

The terminal functions, based on elements extracted from the human-designed

heuristics, are described in Table 2. The non-terminal functions are divided into

three main types: arithmetical, logical and decision. Table 3 describes the arithmetic

operators and their corresponding overloading.

We defined two logical functions: greater or equal than �ð Þ and smaller or equal

than 	ð Þ. Both functions receive two var_values objects as input arguments,

and return a boolean object.

The grammar also has three decision functions, two for selecting a variable

(smallest and largest) with either the smallest or largest value contained in the

var_value[] object, and the conditional function if-then-else. This is a

function intended to add flexibility to the design, since it receives as argument a wide

range of different object types. Also, it provides one of the main components

determining the structure of the new heuristics, usually produced in the form of decision

trees. The function receives three arguments, the first will always be aboolean object,

the second and third argument must share the same object type, but this could be any of

the types handled by the functions (double, boolean, var_values[],...). The

output will be determined in terms of the value of the boolean argument. If the value is

true, the output will be the second argument, otherwise the function returns the third

argument.

During the random initialization of new heuristics, the terminal and non-terminal

functions are randomly chosen by using a uniform distribution. In the future, other

distributions may be applied based on domain-specific knowledge.

The grammar components were extracted from an analysis performed over the

human-designed heuristics mentioned in Sect. 3. Figure 2 shows how these

Table 1 Type values handled by the grammar

var Uninstantiated variable

var_value Double value associated to a specific variable.

var_values[] One-dimensional array of length equal to the number of uninstantiated variables,

each array element contain a double value associated to a variable

var_values[][] Two-dimensional matrix of dimension n� t½ � where n is the number of

uninstantiated variables and t is the number of constraints; each element in the

matrix is a double value that relates a variable with a constraint

boolean True or false boolean value

double Double value

Genet Program Evolvable Mach

123

heuristics are represented by the grammar components. We observe that the human-

designed heuristics are usually simple structures selecting either the largest or

smaller feature value returned by one of the terminal functions.

Figure 3 gives an example of an automatically generated heuristic, where a more

elaborated combination of features is made through arithmetical and decision

functions. Algorithm 1 shows the pseudo-code of this heuristic.

Table 2 Terminal functions

Terminal Return type Description

constraints var_values[] Number of constraints in which a variable is involved

conflicts var_values[] Corresponds to the number of conflicts that results to select a

variable for instantiation. A conflict is an invalid pair of

values between two variables at the same time

fdeg var_values[] Is the forward degree used by heuristic FBZ. Calculates the

number of constraints with uninstantiated variables in which

the variable participated

bdeg var_values[] Is the backward degree used by heuristic MBD. Returns the

number of constraints with instantiated variables in which

the variable participates

fbz var_values[] Is the forward brelaz value used by the FBZ heuristic, and is

calculated as is presented in Eq. 5

bbz var_values[] Is the backward brelaz value used by the BBZ heuristic, and is

presented in Eq. 4

mxi var_values[] Number of available values for uninstantiated variable xi

pxi var_values[][] Is the fraction of infeasible pairs of values for Cxi over the total

number of possible assignments. Where Cxi is the set of

constraints in which variable xi is involved

one double Constant value of 1.0

Genet Program Evolvable Mach

123

T
a
b
le

3
D

es
cr

ip
ti

o
n

o
f

ar
it

h
m

et
ic

o
p
er

at
o
rs

w
it

h
th

ei
r

co
rr

es
p
o
n
d
in

g
o
v
er

lo
ad

in
g
,
i

an
d

j
ar

e
th

e
in

d
ex

fo
r
v
a
r
_
v
a
l
u
e
s
[
]

an
d
v
a
r
_
v
a
l
u
e
s
[
]
[
]

,
w

h
er

e

i
¼

1
;.
..
;n

,
an

d
n

is
th

e
n

u
m

b
er

o
f

u
n

in
st

an
ti

at
ed

v
ar

ia
b

le
s,

an
d
j
¼

1
;.
..
;c

,
w

h
er

e
c

is
th

e
n

u
m

b
er

o
f

co
n

st
ra

in
ts

O
p

er
at

o
r

In
p

u
t1

(x
)

In
p

u
t2

(y
)

O
u

tp
u

t
(z

)
D

es
cr

ip
ti

o
n

A
d

d
it

io
n

v
a
r
_
v
a
l
u
e
s
[
]

d
o
u
b
l
e

z
¼

P
n i¼

1
x i

v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]

z i
¼

x i
þ
y i

d
o
u
b
l
e

v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]

z i
¼

x
þ
y i

v
a
r
_
v
a
l
u
e
s
[
]
[
]

v
a
r
_
v
a
l
u
e
s
[
]

z i
¼

P
c j¼

1
x j
;i

v
a
r
_
v
a
l
u
e
s
[
]
[
]

d
o
u
b
l
e

v
a
r
_
v
a
l
u
e
s
[
]
[
]

z j
;i
¼

x j
;i
þ
y

v
a
r
_
v
a
l
u
e
s
[
]
[
]

v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]
[
]

z i
;j
¼

x j
;i
þ
y j

S
u

b
tr

ac
ti

o
n

v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]

z i
¼

x i
�
y i

d
o
u
b
l
e

v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]

z i
¼

x
�
y i

v
a
r
_
v
a
l
u
e
s
[
]
[
]

d
o
u
b
l
e

v
a
r
_
v
a
l
u
e
s
[
]
[
]

z j
;i
¼

x j
;i
�
y

v
a
r
_
v
a
l
u
e
s
[
]
[
]

v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]
[
]

z i
;j
¼

x j
;i
�
y j

M
u

lt
ip

li
ca

ti
o

n
v
a
r
_
v
a
l
u
e
s
[
]

d
o
u
b
l
e

z
¼

Q
n i¼

1
x i

v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]

z
¼

x i
�y

i

d
o
u
b
l
e

v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]

z i
¼

x
�y

i

v
a
r
_
v
a
l
u
e
s
[
]
[
]

v
a
r
_
v
a
l
u
e
s
[
]

z i
¼

Q
c j¼

1
x

v
a
r
_
v
a
l
u
e
s
[
]
[
]

d
o
u
b
l
e

v
a
r
_
v
a
l
u
e
s
[
]
[
]

z j
;i
¼

x j
;i
�y

v
a
r
_
v
a
l
u
e
s
[
]
[
]

v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]
[
]

z i
;j
¼

x j
;i
�y

j

D
iv

is
io

n
d
o
u
b
l
e

v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]

z i
¼

y i
=
x

if
x
6¼

0

y
if

x

0

�

v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]

z i
¼

y i
=
x i

if
x i
6¼

0

y
if
x i

0

�

N
eg

at
iv

e
v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]

z i
¼

�
1
�x

i

v
a
r
_
v
a
l
u
e
s
[
]
[
]

v
a
r
_
v
a
l
u
e
s
[
]
[
]

z j
;i
¼

�
1
�x

j;
i

lo
g

2
v
a
r
_
v
a
l
u
e
s
[
]

v
a
r
_
v
a
l
u
e
s
[
]

z i
¼

lo
g

2
x ið
Þ

Genet Program Evolvable Mach

123

4.1 Fitness function

The cost to solve a CSP instance is measured by the number of consistency checks

required to find the first solution or to prove than none exists—a consistency check

variableFromVariableValue

smallest

mxi

(a)

variableFromVariableValue

smallest

fbz

(b)

variableFromVariableValue

smallest

fbz

(c)

variableFromVariableValue

largest

bdeg

(d)

variableFromVariableValue

largest

fdeg

(e)

variableFromVariableValue

largest

conflicts

(f)

variableFromVariableValue

smallest

multiplication

minus

one pxi

(g)

variableFromVariableValue

smallest

multiplication

mxi multiplication

minus

one pxi

(h)

variableFromVariableValue

smallest

Kappa

(i)

Fig. 2 Human-designed heuristics constructed with the grammar proposed. a MRV heuristic, b BBZ
heuristic, c FBZ heuristic, d MBD heuristic, e MFD heuristic, f MXC heuristic, g RHO heuristic, h ENS,
i Kappa heuristic

Genet Program Evolvable Mach

123

occurs every time a constraint is to be revised. In general, easy instances require less

consistency checks than more difficult instances. We need to design a flexible

fitness function to guide the process into finding general and robust heuristics able to

solve well both types of instances. With this in mind, we try to avoid drifting into

generating specialized heuristics for solving well either hard or easy instances. The

evolutionary process is guided by the maximization of the function given by Eq. 6,

f hð Þ ¼
XT

i¼0

bi

ci;h
ð6Þ

where the fitness of the heuristic h is computed as a sum of T coefficients, one for

each training instance. Each coefficient is the quotient between bi (lowest number of

consistency checks for instance i provided by the best-so-far heuristic for that

instance) and ci;h (number of consistency checks produced by heuristic h when

solving instance i).

Before the search process begins, a vector b is initialized with the lowest number

of consistency checks obtained using the human-designed heuristics. The value of bi
changes dynamically as the search progresses and new heuristics are generated.

Every time a smaller count of consistency checks is found, bi is updated

accordingly, causing the coefficient to have a maximum value of 1, since in this case

bi ¼ ci;h. Therefore, the maximum fitness value that a heuristic can receive is T. In

variableFromVariableValue

smallest

If-VariablesValues1

greaterOrEqualThan minus minus

largest smallest

plus

mxi bdeg

conflicts

bbz log2

division

fdeg fbz

minus conflicts

multiplication plus

bbz pxi

Fig. 3 Example of a heuristic generated with the grammar proposed and GP as the high-level strategy.
The if nodes specify the object type that is received as second and third arguments

Genet Program Evolvable Mach

123

this way, the fitness function reflects the overall quality of the heuristics across the

set of instances, and simultaneously avoids falling into low quality solutions, as it is

guided to to perform closer to at the least the best human-designed heuristic for each

instance.

4.2 Search operators

When a heuristic is created or modified, the system guarantees that the returned

value for the function in the root node will be a variable/value tuple. The depth of a

tree is always controlled by having in each terminal or non-terminal function what

we call a maximum expansion value (MEV), which is the maximum-allowed depth

from a specific node to the leaves. Every time a node is added to the tree, the

maximum depth allowed from this node’s level is verified, and only the grammar

components that meet the MEV restriction are used to build the next level.

To search the space of possible heuristics, three operators are used:

• Crossover Receives as input two parent heuristics, we call them parent1 and

parent2. It randomly selects a node (except the root) from parent1 and

enumerates all nodes in parent2 that share the same expected return type as the

selected node from parent1. If no node with these features is found, a new

random node will be selected from parent1. Once the system finds two nodes

with the same return type, it verifies that after the interchange of nodes, both

trees fall within the maximum depth allowed. If this is not met, another node

from parent2 will be considered until a valid assignment is found or the list is

empty. In this case, a new random node will be selected from parent1.

• Normal mutation Randomly selects a node, which will be replaced by a new

sub-tree, following the same rules used in the generation of new trees.

• Small mutation Selects only a leaf node at a time and replaces it with a different

terminal function of the same type.

4.3 High-level strategies

To guide the construction of new heuristics, we implement three different search

methods as hyper-heuristics to explore the space of possible combinations of

grammar components. We used genetic programming (GP), iterated local search

(ILS), and parallel random hill climbing (PHC), to generate heuristics in the way of

decision trees. We set as termination criterium 1500 evaluations of the objective

function for each experimental run.

4.3.1 Genetic programming hyper-heuristic

We used a generational approach with population size of 50, elitism of 5

individuals, 30 generations and tournament selection of size 2. Once the parents

have been selected for crossover, a probability of 0.9 was used for actually crossing

the parents, and normal mutation probability of 0.05. All these parameters were

Genet Program Evolvable Mach

123

settled down from empirical analysis performed in a previous work [41], where

those parameters showed to be adequate considering performance and

expressiveness.

4.3.2 Iterated local search hyper-heuristic

Iterated local search (ILS) is a relative simple but effective algorithm, which has

been rediscovered several times [6, 24, 26]. The key idea is to generate a sequence

of solutions by using two basic operators: local search and perturbation. The local

search operator is in charge of improving solutions, while the perturbation operator

moves to other regions in the search space to escape from local optimal solutions.

One of the motivations behind including ILS in this investigation as an

alternative search to evolutionary search, was its simple implementation and

promising results provided by hyper-heuristic implementations in other domains

[10, 40, 44].

Our implementation operates by generating an initial solution (a variable-

selection heuristic) that is equivalent to an individual of the GP population. The

local search heuristic uses the small mutation, while the perturbation step, the

normal mutation. The acceptance criterion simply accepts improvements. The

perturbation operator is applied at a rate of 1 / 10 times with respect to the calls to

the local search operator. The pseudo-code for ILS is shown in Algorithm 2.

4.3.3 Parallel hill climbing hyper-heuristic

Parallel hill climbing (PHC) [36] is based on the same principle that general hill

climbing algorithms: start from a random initial solution and, by using a

neighborhood function, visit a certain number of neighbors until a better solution

is found or the stopping criteria is reached. PHC differs from traditional hill

climbing by having multiple initial search points, so that multiple hills are climbed

in parallel. Our implementation of PHC uses the GP module to randomly generate

an initial population of 50 heuristics. Then, each heuristic is used to solve a set of

training instances and its fitness value is calculated according to Eq. 6. We then

generate an alternative population from the previous one by using the normal

Genet Program Evolvable Mach

123

mutation operator as neighborhood function. Each individual in the original

population is mutated and the offspring become part of the alternate population with

their corresponding fitness function. If the fitness of the new individual is better than

its predecessor, the value is updated. This process is repeated for 30 iterations to

complete the 1500 objective function evaluations, which was fixed as the

termination criterion. The pseudo-code for PHC is shown in Algorithm 3.

We only performed 31 runs for PHC, using training set ABCDE to guide the

search. We decided to exclude experiments with the other four training sets, because

our implementation of PHC takes considerably more time than GP and ILS. This is

because PHC explores neighborhoods by applying traditional mutation, which

follows the same principle of generating new parse trees from scratch. This process

is computationally more expensive than the crossover used by GP and the mutation

of terminal nodes applied by ILS. although GP and ILS use traditional mutation, the

occurrence of this operator is around one tenth of which occurs in PHC.

5 Experimental setup

This section describes the constraint satisfaction solver used, the problem instances

employed, and the approach used for training and testing the hyper-heuristic system.

The CSP solver used was fully implemented in Java by Ortiz-Bayliss et al. [31,

35, 43]. The solver includes the AC3 constraint propagation method [25], together

with backjumping [17] as backtracking strategy. The Min Conflicts (MNC)

heuristic [29] is used for value selection. This heuristic selects the value with the

minimum number of conflicts with the previous assigned values.

The maximum depth of trees in the grammar-based GP system was set to 6

levels. This followed preliminary experiments, where depths of 8 and 10 levels

produced similar performance with a higher resource consumption.

Genet Program Evolvable Mach

123

5.1 Problem instances

Our study considers both synthetic instances produced with random generation

models, and real-world data sets, as described below.

5.1.1 Synthetic instances

When using CSP random generation models, it is common to select instances from a

region of relative difficulty, known as the phase transition [47, 48]. This occurs at

certain critic connectivity value, when the feasibility of instances changes abruptly

from having a solution to being unsatisfiable. Instances with parameters below this

threshold are under-constrained and thus easy to solve. Instances above the

threshold are over-constrained and it is easy to determine the absence of solutions. It

is around the phase transition, where determining if a problem has or not a solution

takes a higher computational effort.

Our experiments use synthetic instances produced with model RB [48]. In this

model the domain size of each variable increases polynomially with the number of

variables. The domain size is uniform over all the variables and calculated by

m ¼ na, where n is the number of variables and a is a constant greater than 0. All

constraints have at least 2 variables a� 2ð Þ. This model guarantees to present the

phase transition phenomena even when the number of variables approaches to

infinity. The generation of an instance in Model RB proceeds as follow:

1. Generate t¼rn ln nð Þ constraints, where n is the number of variables and r is a

constant determining the growth of the number of constraints. Each constraint is

made by selecting without repetition a of n variables.

2. Uniformly select without repetition pmn disallowed tuples of values for each

constraint.

We defined five classes of synthetic CSP instances with 20 variables and 10

values in their domains and fixed values of constraint density p1 and tightness p2.

The classes of synthetic instances considered for this investigation are characterized

as follows:

• Class A (easy satisfiable instances): 20; 10; 0:20; 0:30h i Low constraint density

and low tightness.

• Class B: 20; 10; 0:20; 0:80h i Low constraint density and high constraint

tightness, generate hard instances within the phase transition.

• Class C: 20; 10; 0:45; 0:50h i Medium constraint density and medium tightness,

generate hard instances within the phase transition.

• Class D (easy unsatisfiable instances): 20; 10; 0:75; 0:80h i High constraint

density and high tightness.

• Class E: 20; 10; 0:75; 0:20h i High constraint density and low constraint

tightness, produce hard instances within the phase transition.

Genet Program Evolvable Mach

123

Initially, a few experiments were conducted with instances of 30 variables and

domain sizes of 20, but the computational run-time grew considerably while the

behavior of the experiments remained similar. Instances with 20 variables and 10

values in their domains proved to be enough to show the transition in the difficulty

level between different regions in the search space.

Once the classes of synthetic instances were defined, we produced specific

instances from those classes to be used either for producing new heuristics or for

testing them. To produce new heuristics, five training sets of 20 instances were

generated as described in Table 4.

For testing purposes five sets were also produced, each containing 40 unseen

instances from each class (totaling 200).

5.1.2 Real-world instances

Two sets of benchmark problems are considered.1 First, the radio frequency

assignment problem, where the objective is to assign frequencies to a number of

radio links, satisfying a large number of constraints using as few frequencies as

possible. This set contains 8 satisfiable and 6 unsatisfiable instances. Second, the

job-shop problem domain, containing ten satisfiable instances. More details of these

instances are reported in Table 9.

Additionally to the 200 synthetic instances from the testing set defined in the

previous section, both the 14 radio frequency assignment instances and the 10 job-

shop ones were also exclusively used for testing purposes.

6 Results

Three sets of experiments were conducted in order to assess:

1. Whether heuristics generated with our system outperform human-designed

heuristics, and a comparative performance of the three proposed high-level

search strategies (GP, ILS, PHC) used as hyper-heuristics.

2. The impact of the composition of the training set upon the generality (or

specificity) of the produced heuristics.

Table 4 Name and composition

of the training sets
Set name Composition

ABCDE 4 instances of each class A, B, C, D and E

AB 10 instances of class A and 10 of class B

AD 10 instances of class A and 10 of class D

ED 10 instances of class E and 10 of class D

BCE 7 instances of class B, 7 of class C and 6 of class E

1 The real-world benchmark problems used can be found at http://www.cril.univ-artois.fr/lecoutre/

benchmarks.html, under the names ‘RLFAP-graphs’ and ‘jobShop-e0ddr1’

Genet Program Evolvable Mach

123

http://www.cril.univ-artois.fr/lecoutre/benchmarks.html
http://www.cril.univ-artois.fr/lecoutre/benchmarks.html

3. Whether heuristics trained on synthetic instances can generalize to solve real-

worlds instances.

The following subsections summarize the results obtained in each case.

6.1 Comparing evolved heuristics against human-designed heuristics

A total of 31 heuristics were generated with each of the three high-level strategies

(GP, ILS, PHC), using ABCDE as the training set, and testing on each of the

available synthetic sets. Figure 4 illustrates the results separating the instances by

testing set. The horizontal line indicates the best possible result obtained by the

human-designed heuristics described in Sect. 3.1 for each particular instance. The

values of the fitness function (Eq. 6) presented in the box-plots have a value of bi
equal to the count of consistency checks of the best human-designed heuristic for

instance i.

The box-plots in Fig. 4 clearly indicate that for instances from testing sets A, B

and C, the automatically generated heuristics for the three high-level strategies,

outperform the best-performing choice of human-designed heuristic per instance.

For testing sets D and E, the median value of the evolved heuristics is below the best

human-designed heuristic. However, the box-plots show that around 25% of the

heuristics have a better performance than the best choice of human-designed

heuristic per instance. One interesting result is that for instances from class A and B,

usually it is difficult to have a good gain against human-designed heuristics. This

may be because they are relatively easy to solve and the backtracking process does

most of the work. However, Fig. 4 shows that regardless of the approach (GP, ILS,

and PHC) the median value of the results of the automatically generated heuristics

have an improvement of 20% on the fitness value over human-designed heuristics

for class A, and for class B is around double.

These results suggest that the automatically generated heuristics in our system

have an overall similar behaviour, regardless of the search method (GP, ILS, and

PHC), and presenting a decrease in performance when solving instances with high

constraint density.

To determine which of the three algorithms (GP, ILS, PHC) produces the best-

performing heuristics, we applied a Friedman test over the results obtained by each

heuristic across the complete test set. The results are presented in Table 5, where

each row corresponds to the Friedman ranking of each algorithm on each instance

class (lesser value indicates better performance). The results indicate that for classes

A, B and E, the heuristics generated with PHC outperform those generated by GP

and ILS. For classes C and D, GP has a better performance. The p-value indicates

statistical significance supporting that at least two of the algorithms have a different

median performance. The ranking of the best approach over a specific class is

highlighted in bold font. Although, none of the high-level strategies dominates in all

classes, it is interesting to note that the simpler parallel hill climber (PHC),

produced the best performance in 3 out of 5 testing instance classes. This indicates

that the structure of the search space induced by the proposed grammar is more

important than the high-level strategy employed to explore the space. The random

Genet Program Evolvable Mach

123

generation of a sufficiently large number of heuristics is likely to produce good

results. To support this insight, Figs. 5 and 6 illustrates the convergence over time

for the 31 heuristics evolved by GP and ILS. Fitness is measured as the heuristic

performance over the 20 instances in the training set being used. As we can observe

from Fig. 5, the first GP generation already produced individuals with high fitness

values, which slightly improve across the run. This is consistent with the

convergence of the ILS’s fitness, which reach a similar fitness level after 100

evaluations of the fitness function.

Table 6 shows the distribution of the best human-designed heuristic per testing

set. The intention is to clarify their performance on different kinds of instances. For

sets A, B and C, it is clear that a combination of at most three heuristics obtain more

GP ILS PHC

Testing set A
Fi

tn
es

s

GP ILS PHC

Testing set B

Fi
tn

es
s

GP ILS PHC

Testing set C

Fi
tn

es
s

GP ILS PHC

Testing set D

Fi
tn

es
s

GP ILS PHC

0.
8

1.
0

1.
2

1.
4

0
2

4
6

1
3

5
7

0.
6

0.
8

1.
0

0.
0

0.
4

0.
8

1.
2

Testing set E

Fi
tn

es
s

Fig. 4 Performance of heuristics generated with GP, ILS, and PHC (horizontal axis) using the training
set ABCDE. Results are presented for each testing set

Table 5 Friedman ranking of

the three hyper-heuristic

methods on the five testing sets

Testing set GP ILS PHC p-value

A 1.9870 2.2040 1.8088 7.0908E-11

B 2.0217 2.1544 1.8237 5.0007E-11

C 1.7661 2.4286 1.8052 1.8432E-10

D 1.8302 2.1205 2.0491 3.4050E-11

E 2.0939 1.9572 1.9487 2.6620E-4

Genet Program Evolvable Mach

123

than 60 % of the best cases. Some heuristics do not obtain a best result for any

instance. For testing sets D and E the distribution is more uniform, and most of the

heuristics obtain the best result for a group of cases.

6.2 Impact of the training set on the heuristic generality

This subsection explores the impact of the composition of the training set upon the

generality or specificity of the evolved heuristics. A single high-level strategy

namely, GP is considered. To analyze the results we use both the Friedman and

Aligned Friedman tests, as the latter allows comparability among data sets and it is

desirable when the number of methods to compare is small. Table 7 shows the

average rankings of the 155 heuristics generated (31 heuristics for each of the 5

training sets). The evolved heuristics are tested using 200 testing instances coming

from all instance classes (20 from each of the 5 classes). The values in the table are

arranged in descending order, from the best ranked approach to the worst, according

to the Aligned Friedman value. Results suggest that the best performing (i.e more

general) heuristics tend to be those with more variety of classes in their training set.

Figure 7 illustrates the performance of heuristics evolved with different training

sets (one box per each set) as indicated in the horizontal axis. Each sub-figure

illustrates the performance on a separate test set consisting of instances of a single

class. The horizontal line indicates the performance of the best human-designed

heuristic for each test instance class.

For classes A, B, and E the distribution of performance and median values

suggest that all the evolved heuristics have similar behaviour. That is, the

14

16

18

0 10 20 30
Generation

Fi
tn

es
s

Trend
Average Fitness Function
Best Fitness Function

Fig. 5 Average of the best and mean fitness values from the 31 runs of the GP module (Training set
ABCDE)

Genet Program Evolvable Mach

123

composition of the training set does not impact on the performance of the evolved

heuristics. However, for testing sets C and D, the composition of the training set is a

determining factor. In particular, the presence of instances in class C in the training

set (i.e., training sets ABCDE and BCE) , improves the performance of heuristics

when tested with class C instances. Similarly, the training sets containing instances

from class D (i.e., ABCDE, AD and ED), produce improved performance when

tested with class D instances. It is worth noticing that in all cases, there are evolved

heuristics that outperform the best human-designed heuristic.

6.3 Performance of evolved heuristics on real-world sets

We applied the Friedman test over the complete set of automatically generated

heuristics in order to determine the best three heuristics. We then selected these top

3 heuristics to solve two sets of real-world problems. Tables 8 and 9 report the ratio

of the number of consistency checks by the best performing human-designed

14

16

18

0 200 400 600

Objective Function Evaluations

Fi
tn

es
s

Fig. 6 Average of the best fitness values from the 31 runs of the ILS module (Training set ABCDE)

Table 6 Distribution of the best performance among human-designed heuristics according to each

testing set

Heuristic Testing A (%) Testing B (%) Testing C (%) Testing D (%) Testing E (%)

MRV 42.5 30 5 17.5 35

RHO 7.5 0 0 5 10

ENS 2.5 0 0 15 10

K 0 0 0 20 5

MXC 17.5 15 45 10 2.5

MFD 10 15 2.5 7.5 7.5

MBD 0 0 0 5 7.5

FBZ 7.5 20 7.5 10 22.5

BBZ 12.5 20 40 10 0

Genet Program Evolvable Mach

123

heuristic over the number of consistency checks required by the best performing

evolved heuristics, when solving two sets of real-world instances.

Values higher than one indicate a proportional improvement of the generated

heuristics over the number of consistency checks of the best human-designed

heuristic. The best heuristic produced by each high-level strategy is considered.

Values in bold font highlight the fitness of the best automatically generated

heuristics by each approach (GP, ILS, and PHC) that outperform the best human-

designed heuristic.

Table 8 shows the results for the radio frequency assignment problem, where the

best heuristics are generated by ILS and GP, with ILS slightly outperforming GP. In

Table 7 Average Friedman and

Aligned Friedman rankings of

the training sets used with GP

over the five testing sets (A, B,

C, D, and E)

Training set Friedman Aligned Friedman

ABCDE 5.0795 27,056.2877

BCE 5.2703 27,359.1380

ED 4.8844 29,804.9437

AD 5.1109 30,341.5815

AB 5.5263 31,482.8831

Testing Set A

Fi
tn

es
s

Testing Set B

Fi
tn

es
s

Testing Set C

Fi
tn

es
s

Testing Set D

Fi
tn

es
s

ABCDE AB AD ED BCE

ABCDE AB AD ED BCE ABCDE AB AD ED BCE

ABCDE AB AD ED BCE

ABCDE AB AD ED BCE

0.
9

1.
1

1.
3

0
2

4
6

0
2

4
6

8

0.
6

0.
8

1.
0

0.
0

0.
4

0.
8

1.
2

Testing Set E

Fi
tn

es
s

Fig. 7 Performance of heuristics generated with GP using the five different training sets (ABCDE, AB,
AD, ED, BCE in the horizontal axis). Results are presented over the complete testing set, grouping testing
instances by class (sub-figures with titles)

Genet Program Evolvable Mach

123

most cases, the best human-designed heuristic is outperformed by an evolved

heuristic, with some exceptions like instances ‘graph3’, ‘graph4’ and ‘graph12’. It is

interesting to observe that the improvement, in some cases, reaches over 500 times.

We could remark at this point, that the comparison presented is against the result of

the best human-designed heuristic for each instance, and the instances in the real set

are different in size (variables, constraints) to those employed for training the high-

level strategies. This is a good indication that the scheme is capable of producing

good heuristics able to generalize over a wider range of problems.

Table 9 shows the performance of the three best heuristics generated with ILS,

PHC, and GP, respectively, when solving 10 job shop instances, modeled as CSPs.

All instances in this set contain 50 variables and 265 constraints. The evolved

heuristics show an improvement for 5 out of 10 instances, reaching a magnitude up

to 298 times for the instance ‘jobShop2’. However, the evolved heuristics did not

perform as well for the rest of the instances. This opens up an opportunity for further

research in order to determine the causes of this behavior that may guide to redesign

the process for generating heuristics and obtain a better performance.

7 Discussion and conclusions

This article presents the design and empirical validation of a grammar-based hype-

heuristic framework for generating variable selection heuristics in constraint

satisfaction. The grammar incorporates components of successful human-designed

Table 8 Performance of the three best heuristics found by each hyper-heuristic approach (GP, ILS, and

PHC) on the radio frequency assignment problem

Instance Variables Constraints Size of domains GP ILS PHC

graph1 200 1134 24, 44, 6, 22, 42, 36 1.0099 0.9798 1.0004

graph2 400 2245 44, 42, 36, 6, 22 0.9593 1.0068 1.0791

graph3 200 1134 42, 24, 44, 22, 36, 6 0.7862 0.9300 0.9999

graph4 400 2244 24, 36, 42, 44, 22 0.0757 0.0759 0.0893

graph5 200 1134 42, 44, 22, 6, 36, 24 189.9457 127.7952 0.9216

graph6 400 2170 42, 44, 24, 36, 22, 6 525.4997 525.4997 0.9512

graph7 400 2170 44, 36, 42, 22, 24, 6 1.9618 299.3141 1.1157

graph8 680 3757 22, 42, 44, 6, 36, 24 1.1799 1.2035 0.9988

graph9 916 5246 44, 36, 42, 22, 6, 24 1.3311 1.2702 0.7211

graph10 680 3907 24, 42, 22, 36, 44 1.0143 1.0202 0.0038

graph11 680 3757 36, 22, 42, 44, 6, 24 521.7835 304.3901 161.0860

graph12 680 4017 24, 36, 22, 44, 6, 42 0.1218 0.1378 0.0301

graph13 916 5273 24, 22, 44, 36, 42, 6 129.4874 129.4874 0.6915

graph14 916 4638 44, 24, 22, 36, 42 1.0210 1.0350 0.9568

Values higher than one indicate a proportional improvement of the generated heuristics over the number

of consistency checks of the best human-designed heuristic. The best heuristic produced by each high-

level strategy is considered. Values in bold font highlight the fitness of the best automatically generated

heuristics by each approach (GP, ILS, and PHC) that outperform the best human-designed heuristic

Genet Program Evolvable Mach

123

heuristics. Three high-level search strategies were used to explore the search

space.

Our results suggest that the constrained search space imposed by the proposed

grammar plays the main role in the generation of good heuristics. Good solutions

can be found when a large enough sample of heuristics is randomly produced.

Indeed, it was easy to find at least one heuristic that outperformed most human-

designed heuristics on a small set of instances. However, in order to generate a

general heuristic, capable of outperforming human-designed heuristics over a bigger

set of instances, it was necessary to further refine the randomly generated heuristics.

Even small improvements on fitness over a small training set, produced significant

improvements on the generality of the evolved heuristics across larger unseen

testing sets.

To generate competitive and more general heuristics, the composition of the

training set and the search methodology used played an important role. Our results

suggest that increasing the variability of the training set improves the generality of

the evolved heuristics. Among the three high-level strategies used, GP produces a

more consistent performance over unseen random-generated instances, although the

differences are not large.

Table 9 Performance of the three best heuristics found by each hyper-heuristic approach (GP, ILS, and

PHC) on jobshop benchmark problems

Instance Variables Constraints Size of domains GP ILS PHC

jobShop1 50 265 107, 106, 103, 100, 115, 105,

113, 108, 114

0.0037 0.0037 0.0037

jobShop2 50 265 110, 103, 118, 102, 109, 104,

111

298.4025 289.0380 290.8993

jobShop3 50 256 102, 111, 114, 104, 113, 106,

110

0.0893 0.0894 0.0893

jobShop4 50 265 93, 111, 106, 113, 100, 115,

116, 104

0.1155 0.0134 0.0032

jobShop5 50 265 120, 113, 111, 116, 117, 102,

95

0.9657 0.8972 0.9369

jobShop6 50 265 107, 109, 124, 113, 101, 120,

108, 117

1.1657 1.1055 1.1521

jobShop7 50 265 105, 107, 115, 103, 99, 111,

104, 118

242.4871 260.2672 280.3285

jobShop8 50 265 106, 102, 121, 110, 107, 109,

105, 112

0.0034 0.0034 0.0033

jobShop9 50 265 115, 110, 122, 112, 102, 113,

106, 119, 121

0.9629 1.0218 0.8261

jobShop10 50 265 119, 111, 109, 112, 114, 108,

102

1.0017 1.0003 0.9986

Values higher than one indicate a proportional improvement of the generated heuristics over the number

of consistency checks of the best human-designed heuristic. The best heuristic produced by each high-

level strategy is considered. Values in bold font highlight the fitness of the best automatically generated

heuristics by each approach (GP, ILS, and PHC) that outperform the best human-designed heuristic

Genet Program Evolvable Mach

123

The evolved heuristics had an overall improved performance when compared

against the human-designed heuristics. However, they do not completely dominate.

We can make the following two observations. First, there is a huge improvement

over human-designed heuristics on unseen random-generated instances with low

and medium constraint tightness, regardless of the constraint density. Second, when

the constraint tightness is high, the average performance of the evolved heuristics is

low, and only in few cases they are competitive against human-designed heuristics.

It was interesting to observe that the best heuristics evolved from synthetic

training sets, have an improved performance as compared to the human-designed

heuristics, on one set of real-world instances (radio frequency assignment) and a

competitive performance on the second real-world data set (job-shop problems).

Future work will both explore the performance of an alternative grammar to

tackle the same problem, and adapt the framework to tackle an additional problem

in the domain of cutting and packing.

Acknowledgments This research was supported in part by Tecnológico de Monterrey under the

strategic project PRY075 and the Research Group with Strategic Focus in Intelligent Systems, and the

CONACyT Projects (Basic Science) under Grants 99695 and 241461. G. Ochoa acknowledges funding

from the Engineering and Physical Sciences Research Council, UK (EPSRC) Grant Number EP/J017515.

References

1. D. Achlioptas, M.S.O. Molloy, L.M. Kirousis, Y.C. Stamatiou, E. Kranakis, D. Krizanc, Random

Constraint Satisfaction: A More Accurate Picture. Constraints. 6(4), 329–344 (2001)

2. M. Bader-El-Den, R. Poli, A GP-based hyper-heuristic framework for evolving 3-SAT heuristics, in

Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO ’7

(2007), p. 1749

3. M. Bader-El-Den, R. Poli, S. Fatima, Evolving timetabling heuristics using a grammar-based genetic

programming hyper-heuristic framework. Memet. Comput. 1(3), 205–219 (2009)

4. S. Bain, J. Thornton, A. Sattar, Evolving algorithms for constraint satisfaction, in Congress on

Evolutionary Computation (2004), pp. 265–272

5. S. Bain, J. Thornton, A. Sattar, Methods of automatic algorithm generation, in PRICAI 2004: Trends

in Artificial Intelligence (2004), pp. 1–10

6. E.B. Baum, Iterated descent: a better algorithm for local search in combinatorial optimization

problems. Technical report (Caltech, Pasadena, CA, 1986)

7. J. Berlier, J. McCollum, A constraint satisfaction algorithm for microcontroller selection and pin

assignment, in Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon) (2010), pp. 348–351

8. S.C. Brailsford, C.N. Potts, B.M. Smith, Constraint satisfaction problems: algorithms and applica-

tions. Eur. J. Oper. Res. 119(3), 557–581 (1999)

9. D. Brelaz, New methods to colour the vertices of a graph. Commun. ACM 22, 251–256 (1979)

10. E.K. Burke, T. Curtois, M. Hyde, G. Kendall, G.a. Ochoa, S. Petrovic, J.A. Vázquez-Rodrı́guez, M.

Gendreau, Iterated local search vs. hyper-heuristics: Towards general-purpose search algorithms.

IEEE Congress on Evolutionary Computation. Barcelona (2010)

11. E.K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, R. Qu, Hyper-heuristics: a

survey of the state of the art. J. Oper. Res. Soc 64(12), 1695–1724 (2013). doi:10.1057/jors.2013.71

12. E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, J. Woodward, Exploring hyper-heuristic

methodologies with genetic programming, in Computational Intelligence: Collaboration, Fusion and

Emergence, Intelligent Systems Reference Library, ed. by C. Mumford, L. Jain (Springer, Berlin,

2009), pp. 177–201

13. E.K. Burke, M.R. Hyde, G. Kendall, S. Member, Grammatical evolution of local search heuristics.

Trans. Evol. Comput. 16(3), 406–417 (2012)

Genet Program Evolvable Mach

123

http://dx.doi.org/10.1057/jors.2013.71

14. E.K. Burke, M.R. Hyde, G. Kendall, G. Ochoa, E. Özcan, J. Woodward, A Classification of Hyper-

heuristic Approaches. International Series in Operations Research & Management Science 146,

pp. 449–468 . Springer US (2010). doi:10.1007/978-1-4419-1665-5_15

15. R. Dechter, I. Meiri, Experimental evaluation of preprocessing algorithms for constraint satisfaction

problems. Artif. Intell. 38(2), 211–242 (1994)

16. N. Dunkin, S. Allen, Frequency assignment problems: representations and solutions. Technical report

CSD-TR-97-14, (University of London, 1997)

17. J. Gaschnig, Experimental case studies of backtrack versus waltz-type versus new algorithms for

satisfying assignment problems, in Second Biennial Conference of the Canadian Society for Com-

putational Studies of Intelligence, ed. by C.I.P. Society, Toronto (1978)

18. I. Gent, E. MacIntyre, P. Prosser, B. Smith, T. Walsh, An empirical study of dynamic variable

ordering heuristics for the constraint satisfaction problem, in Proceedings of the International

Conference on Principles and Practice of Constraint Programming (CP’96) (1996), pp. 179–193

19. R.M. Haralick, G.L. Elliott, Increasing tree search efficiency for constraint satisfaction problems.

Artif. Intell. 14(3), 263–313 (1980)

20. P. Hell, J. Nesetril, Colouring, constraint satisfaction, and complexity. Comput. Sci. Rev. 2(3),

143–163 (2008)

21. R. Keller, R. Poli, Linear genetic programming of parsimonious metaheuristics, in IEEE Congress on

Evolutionary Computation 2007. CEC 2007 (2007), pp. 4508–4515

22. R.E. Keller, R. Poli, Self-adaptive hyperheuristic and greedy search, in 2008 IEEE Congress on

Evolutionary Computation (IEEE World Congress on Computational Intelligence) (2008),

pp. 3801–3808

23. V. Kumar, Algorithms for constraint satisfaction problems: a survey. AI Mag. 13(1), 32–44 (1992)

24. H.R. Lourenco, O. Martin, T. Stutzle, Iterated local search. Technical report (Kluwer Academic,

Norwell, 2002)

25. A. Mackworth, Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)

26. O. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the traveling salesman problem.

Complex Syst. 5(3), 299–326 (1991)

27. R.I. McKay, N.X. Hoai, P.A. Whigham, Y. Shan, M. O’Neill, Grammar-based genetic programming:

a survey. Genet. Program. Evol. Mach. 11(3–4), 365–396 (2010)

28. S. Minton, An analytic learning system for specializing heuristics, in IJCAI (1993), pp. 922–928

29. S. Minton, M.D. Johnston, A.B. Philips, P. Laird, Minimizing conflicts: a heuristic repair method for

constraint satisfaction and scheduling problems. Artif. Intell. 58, 161–205 (1992)

30. M. Mouhoub, B. Jafari, Heuristic techniques for variable and value ordering in csps, in Proceedings

of the 13th annual conference on Genetic and evolutionary computation-GECCO ’11 (2011), p. 457

31. J.C. Ortiz Bayliss, Exploring hyper-heuristic approaches for solving constraint satisfaction problems.

Ph.D. thesis, Tecnológico de Monterrey (2011)

32. J.C. Ortiz-Bayliss, J.H. Moreno-Scott, H. Terashima-Marı́n, Automatic generation of heuristics for

constraint satisfaction problems, in International Workshop on Nature Inspired Cooperative

Strategies for Optimization (NICSO 2014) (2014), pp. 1–14

33. J.C. Ortiz-Bayliss, E. Özcan, A.J. Parkes, H. Terashima-Marin, Mapping the performance of

heuristics for constraint satisfaction, in CEC’10: Proceedings of the Congress on Evolutionary

Computation IEEE (2010)

34. J.C. Ortiz-Bayliss, A.J. Parkes, H. Terashima-Marı́n, A genetic programming hyper-heuristic: turning

features into heuristics for constraint satisfaction, in Workshop on Computational Intelligence (2013)

35. J.C. Ortiz-Bayliss, H. Terashima-Marı́n, S.E. Conant-Pablos, Learning vector quantization for

variable ordering in constraint satisfaction problems. Pattern Recognit. Lett. 34(4), 423–432 (2013)

36. F.J. Ovalle-Martı́nez, J. Solano-González, I. Stojmenovic, A parallel hill climbing algorithm for

pushing dependent data in clients–providers–servers systems. Mob. Netw. Appl. 9, 257–264 (2004)

37. G. Pappa, G. Ochoa, M. Hyde, A. Freitas, J. Woodward, J. Swan, Contrasting meta-learning and

hyper-heuristic research: the role of evolutionary algorithms. Genet. Program. Evol. Mach. 15(1),

3–35 (2014). doi:10.1007/s10710-013-9186-9

38. P.W. Purdom, Search rearrangement backtracking and polynomial average time. Artif. Intell. 21,

117–133 (1983)

39. N. Sabar, M. Ayob, G. Kendall, R. Qu, Grammatical evolution hyper-heuristic for combinatorial

optimization problems. IEEE Trans. Evol. Comput. 17(6), 840–861 (2013). doi:10.1109/TEVC.2013.

2281527

Genet Program Evolvable Mach

123

http://dx.doi.org/10.1007/978-1-4419-1665-5_15
http://dx.doi.org/10.1007/s10710-013-9186-9
http://dx.doi.org/10.1109/TEVC.2013.2281527
http://dx.doi.org/10.1109/TEVC.2013.2281527

40. J.A. Soria-Alcaraz, G. Ochoa, J. Swan, Effective learning hyper-heuristics for the course timetabling

problem. Eur. J. Oper. Res. 238(1), 77–86 (2014)

41. A. Sosa-Ascencio, H. Terashima-Marı́n, M. Valenzuela-Rendón, Grammar-based genetic program-

ming for evolving variable ordering heuristics, in IEEE Congress on Evolutionary Computation

(2013), pp. 1154–1161

42. L. Spector, Towards Practical Autoconstructive Evolution: Self-Evolution of Problem-Solving

Genetic Programming Systems, vol. 8 (Springer, Berlin, 2010)

43. H. Terashima-Marı́n, J.C. Ortiz-Bayliss, P. Ross, M. Valenzuela-Rendón, Using hyper-heuristics for

the dynamic variable ordering in binary constraint satisfaction problems, in 7th Mexican Interna-

tional Conference on Artificial Intelligence, Lecture Notes in Computer Science, vol. 5317, ed. by A.

Gelbukh, E. Morales (Springer, Berlin, 2008), pp. 407–417

44. J.D. Walker, G. Ochoa, M. Gendreau, E.K. Burke, Vehicle routing and adaptive iterated local search

within the hyflex hyper-heuristic framework, in Learning and Intelligent Optimization, Lecture Notes

in Computer Science ed. by Y. Hamadi, M. Schoenauer (Springer, Berlin, 2012), pp. 265–276

45. R. Wallace, Analysis of heuristic synergies, in Recent Advances in Constraints, Lecture Notes in

Computer Science, vol. 3978, ed. by B. Hnich, M. Carlsson, F. Fages, F. Rossi (Springer, Berlin,

2006), pp. 73–87

46. P.A. Whigham, Grammatically-based genetic programming, in Proceedings of the Workshop on

Genetic Programming: From Theory to Real-World Applications, ed. by J.P. Rosca (Tahoe City, CA,

1995), pp. 33–41

47. C.P. Williams, T. Gogg, Using deep structure to locate hard problems, in Proceedings of AAAI

(1992), pp. 472–477

48. K. Xu, W. Li, Exact phase transitions in random constraint satisfaction problems. J. Artif. Intell. Res.

12, 93–103 (2000)

Genet Program Evolvable Mach

123

	Grammar-based generation of variable-selection heuristics for constraint satisfaction problems
	Abstract
	Introduction
	Related work
	Heuristic generation for CSPs
	Grammar-based genetic programming hyper-heuristics

	Constraint satisfaction problems
	Variable ordering heuristics

	The proposed approach
	Fitness function
	Search operators
	High-level strategies
	Genetic programming hyper-heuristic
	Iterated local search hyper-heuristic
	Parallel hill climbing hyper-heuristic

	Experimental setup
	Problem instances
	Synthetic instances
	Real-world instances

	Results
	Comparing evolved heuristics against human-designed heuristics
	Impact of the training set on the heuristic generality
	Performance of evolved heuristics on real-world sets

	Discussion and conclusions
	Acknowledgments
	References

