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Abstract The current state of the art in hyper-heuristic research comprises a set of
approaches that share the common goal of automating the design and adaptation of
heuristic methods to solve hard computational search problems. The main goal is to
produce more generally applicable search methodologies. In this chapter we present
an overview of previous categorisations of hyper-heuristics and provide a unified
classification and definition, which capture the work that is being undertaken in this
field. We distinguish between two main hyper-heuristic categories: heuristic selec-
tion and heuristic generation. Some representative examples of each category are
discussed in detail. Our goals are to clarify the main features of existing techniques
and to suggest new directions for hyper-heuristic research.

1 Introduction

The current state of the art in hyper-heuristic research comprises a set of approaches
that share the common goal of automating the design and adaptation of heuristic
methods in order to solve hard computational search problems. The motivation be-
hind these approaches is to raise the level of generality at which search methodolo-
gies can operate [6]. The term hyper-heuristic was first used in 1997 [21] to describe
a protocol that combines several artificial intelligence methods in the context of au-
tomated theorem proving. The term was independently used in 2000 [18] to describe
‘heuristics to choose heuristics’ in the context of combinatorial optimisation. In this
context a hyper-heuristic is a high-level approach that, given a particular problem
instance and a number of low-level heuristics, can select and apply an appropriate
low-level heuristic at each decision point [6, 52]. The idea of automating the heuris-
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tic design process, however, is not new. Indeed, it can be traced back to the early
1960s [20, 26, 27], and was independently developed by a number of authors during
the 1990s [24, 32, 33, 43, 58, 62]. Some historical notes, and a brief overview of
early approaches can be found in [6] and [52], respectively. A more recent research
trend in hyper-heuristics attempts to automatically generate new heuristics suited to
a given problem or class of problems. This is typically done by combining, through
the use of genetic programming for example, components or building-blocks of hu-
man designed heuristics [7].

A variety of hyper-heuristic approaches using high-level methodologies, together
with a set of low-level heuristics, and applied to different combinatorial problems,
have been proposed in the literature. The aim of this chapter is to provide an up-
dated version to the hyper-heuristic chapter [6] in the 2003 edition of the Handbook
of Metaheuristics. We present an overview of previous categorisations of hyper-
heuristics and provide a unified classification and definition which captures all the
work that is being undertaken in this field. Our goals are to clarify the main features
of existing techniques and to suggest new directions for hyper-heuristic research.

The next section outlines previous classifications of hyper-heuristics. Section 3
proposes both a unified classification and a new definition of the term. Sections 4 and
5, describe the main categories of the proposed classification, giving references to
work in the literature and discussing some representative examples. Finally, section
6 summarises our categorisation and suggests future research directions in the area.

2 Previous classifications

In [57], hyper-heuristics are categorised into two types: (i) with learning, and (ii)
without learning. Hyper-heuristics without learning include approaches that use sev-
eral heuristics (neighbourhood structures), but select the heuristics to call accord-
ing to a predetermined sequence. Therefore, this category contains approaches such
as variable neighbourhood search [42]. The hyper-heuristics with learning include
methods that dynamically change the preference of each heuristic based on their
historical performance, guided by some learning mechanism. As discussed in [57],
hyper-heuristics can be further classified with respect to the learning mechanism em-
ployed, and a distinction is made between approaches which use a genetic algorithm,
from those which use other mechanisms. This is because many hyper-heuristics to
date have been based on genetic algorithms. In these genetic algorithm-based hyper-
heuristics the idea is to evolve the solution methods, not the solutions themselves.

In [2], hyper-heuristics are classified into those which are constructive and those
which are local search methods. This distinction is also mentioned by Ross [52].
Constructive hyper-heuristics build a solution incrementally by adaptively selecting
heuristics, from a pool of constructive heuristics, at different stages of the construc-
tion process. Local search hyper-heuristics, on the other hand, start from a complete
initial solution and iteratively select, from a set of neighbourhood structures, appro-
priate heuristics to lead the search in a promising direction.
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When genetic programming started being used for hyper-heuristic research in
the late 2000’s (see [7] for an overview), a new class of hyper-heuristics emerged.
This class was explicitly and independently mentioned in [1] and [10]. In the first
class of heuristics, or ‘heuristics to choose heuristics’, the framework is provided
with a set of pre-existing, generally widely known heuristics for solving the tar-
get problem. In contrast, in the second class, the aim is to generate new heuristics
from a set of building-blocks or components of known heuristics, which are given
to the framework. Therefore, the process requires, as in the first class of hyper-
heuristics, the selection of a suitable set of heuristics known to be useful in solv-
ing the target problem. But, instead of supplying these directly to the framework,
the heuristics are first decomposed into their basic components. Genetic program-
ming hyper-heuristic researchers [1, 7, 10] have also made the distinction between
‘disposable’ and ‘reusable’ heuristics. A disposable heuristic is created just for one
problem, and is not intended for use on unseen problems. Alternatively, the heuristic
may be created for the purpose of re-using it on new unseen problems of a certain
class.

In [16], hyper-heuristics are classified into four categories: (i) hyper-heuristics
based on the random choice of low-level heuristics, (ii) greedy and peckish hyper-
heuristics, which requires preliminary evaluation of all or a subset of the heuris-
tics in order to select the best performing one, (iii) metaheuristics based hyper-
heuristics, and (iv) hyper-heuristics employing learning mechanisms to manage low
level heuristics.

3 The proposed classification and new definition

Building upon some of the previous classifications discussed above, and realising
that hyper-heuristics lie at the interface of optimisation and machine learning re-
search, we propose a general classification of hyper-heuristics according to two di-
mensions: (i) the nature of the heuristic search space, and (ii) the source of feedback
during learning. These dimensions are orthogonal in that different heuristic search
spaces can be combined with different sources of feedback, and thus different ma-
chine learning techniques.

We consider that the most fundamental hyper-heuristic categories from the pre-
vious classifications, are those represented by the processes of:

• Heuristic selection: Methodologies for choosing or selecting existing heuristics
• Heuristic generation: Methodologies for generating new heuristics from compo-

nents of existing heuristics

There is no reason why the higher level strategy (for selecting or generating
heuristics) should be restricted to be a heuristic. Indeed, sophisticated knowledge-
based techniques such as case-based reasoning has been employed in this way with
good results for university timetabling [15]. This leads us to propose the following
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Fig. 1 A classification of hyper-heuristic approaches, according to two dimensions (i) the nature
of the heuristic search space, and (ii) the source of feedback during learning.

more general definition of the term ‘hyper-heuristic’ which is intended to capture
the idea of a method for automating the heuristic design and selection process:

A hyper-heuristic is an automated methodology for selecting or generating
heuristics to solve hard computational search problems.

From this definition, there are two clear categories of hyper-heuristics: heuristic
selection and heuristic generation, which form the first level in our first dimension
(the nature of the search space). The second level in this dimension corresponds
to the distinction between constructive and local search hyper-heuristics, also dis-
cussed in section 2. Notice that this categorisation is concerned with the nature of
the low-level heuristics used in the hyper-heuristic framework. Our classification
uses the terms construction and perturbation to refer to these classes of low-level
heuristics. Sections 4 and 5 describe these categories in more detail, discussing some
concrete examples of recent approaches that can be found in the literature.

We consider a hyper-heuristic to be a learning algorithm when it uses some feed-
back from the search process. Therefore, non-learning hyper-heuristics are those
that do not use any feedback. According to the source of the feedback during learn-
ing, we propose a distinction between online and offline learning. Notice that in
the context of heuristic generation methodologies, an example of which is genetic
programming-based hyper-heuristics (discussed in section 2), the notions of dispos-
able and reusable have been used to refer to analogous ideas to those of online and
offline learning, as described below:

Online learning hyper-heuristics: The learning takes place while the algorithm is
solving an instance of a problem. Therefore, task-dependent local properties can
be used by the high-level strategy to determine the appropriate low-level heuristic
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to apply. Examples of on-line learning approaches within hyper-heuristics are:
the use of reinforcement learning for heuristic selection and, generally, the use of
metaheuristics as high-level search strategies across a search space of heuristics.

Offline learning hyper-heuristics: The idea is to gather knowledge in the form of
rules or programs, from a set of training instances, that would hopefully gen-
eralise to the process of solving unseen instances. Examples of offline learning
approaches within hyper-heuristics are: learning classifier systems, case-based
reasoning and genetic programming.

The proposed classification of hyper-heuristic approaches can be summarised as
follows (also see figure 1):

• With respect to the nature of the heuristic search space

– Heuristic selection methodologies: Produce combinations of pre-existing:
· Construction heuristics
· Perturbation heuristics

– Heuristic generation methodologies: Generate new heuristic methods using
basic components (building-blocks) of:
· Construction heuristics
· Perturbation heuristics

• With respect to the source of feedback during learning

– Online learning hyper-heuristics: Learn while solving a given instance of a
problem.

– Offline learning hyper-heuristics: Learn, from a set of training instances, a
method that would generalise to unseen instances.

– No-learning hyper-heuristics: Do not use feedback from the search process.

Note that these categories describe current research trends. There is, however,
nothing to stop the exploration of hybrid methodologies that combine for example
construction with perturbation heuristics, or heuristic selection with heuristic gen-
eration methodologies. These hybrid approaches are already starting to emerge.

4 Heuristic selection methodologies

This section is not intended to be an exhaustive survey. The intention is to present a
few examples to give the reader a flavour of the research that has been undertaken
in this area.
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4.1 Approaches based on construction low-level heuristics

These approaches build a solution incrementally. Starting with an empty solution,
the goal is to intelligently select and use construction heuristics to gradually build
a complete solution. The hyper-heuristic framework is provided with a set of pre-
existing (generally problem specific) construction heuristics, and the challenge is
to select the heuristic that is somehow the most suitable for the current problem
state. This process continues until the final state (a complete solution) is obtained.
Notice that there is a natural end to the construction process, that is, when a com-
plete solution is reached. Therefore the sequence of heuristic choices is finite and
determined by the size of the underlying combinatorial problem. Furthermore, there
is the interesting possibility of learning associations between partial solution stages
and adequate heuristics for those stages.

Several approaches have recently been proposed to generate efficient hybridis-
ations of existing construction heuristics in domains such as bin packing [41, 55],
timetabling [13, 15, 53, 54], production scheduling [63], and stock cutting [60, 61].
Both online and offline machine learning approaches have been investigated. Exam-
ples of online approaches are the use of metaheuristics in a search space of construc-
tion heuristics. For example, genetic algorithms [25, 33, 62, 63], tabu search [13]
and other single-point based search strategies [51]. For this type of hyper-heuristic,
recent research is starting to explore the structure of the heuristic search space or
hyper-heuristic landscape, in both timetabling [45] and production scheduling [46].
Examples of offline techniques are the use of learning classifier systems [41, 55],
messy genetic algorithms [53, 54, 61] and case-based reasoning [15].

4.1.1 Representative examples

Two hyper-heuristics based on construction heuristics are described here in more
detail. The first approach is online and is based on graph-colouring heuristics for
timetabling problems, whilst the second is offline and is based on bin packing
heuristics.

Graph-colouring hyper-heuristic for timetabling: In educational timetabling,
a number of courses or exams need to be assigned to a number of timeslots, subject
to a set of both hard and soft constraints. Timetabling problems can be modelled as
graph colouring problems, where nodes in the graph represent events (e.g. exams),
and edges represent conflicts between events. Graph heuristics in timetabling use
the information in the graph to order the events by their characteristics (e.g. num-
ber of conflicts with other events or the degree of conflict), and assign them one by
one into the timeslots. These characteristics suggest how difficult it is to schedule
the events. Therefore, the most difficult event, according to the corresponding or-
dering strategy, will be assigned first. The graph-based hyper-heuristic developed in
[13], implements the following five graph colouring-based heuristics, plus a random
ordering heuristic:
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• Largest Degree (LD): Orders the events in decreasing order based on the number
of conflicts the event has with the others events.

• Largest Weighted Degree (LW): The same as LD, but the events are weighted by
the number of students involved.

• Colour Degree (CD): Orders the events in decreasing order in terms of the num-
ber of conflicts (events with common students involved) each event has with
those already scheduled.

• Largest Enrolment (RO): Orders the events in decreasing order based on the num-
ber of enrolments.

• Saturation Degree (SD): Orders the events in increasing order based on the num-
ber of timeslots available for each event in the timetable at that time.

A candidate solution in the heuristic search space corresponds to a sequence
(list) of these heuristics. The solution (timetable) construction is an iterative process
where, at the ith iteration, the ith graph-colouring heuristic in the list is used to order
the events not yet scheduled at that step, and the first e events in the ordered list are
assigned to the first e least-cost timeslots in the timetable (see figure 2).

…ROCDLDSDLWSDSDLECDLDSDSD

heuristic list

…ROCDLDSDLWSDSDLECDLDSDSD

heuristic list

…e12e11e10e9e8e7e6e5e4e3e2e1
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Fig. 2 A solution (timetable) is constructed by iteratively considering each heuristic in the list, and
using it to order the events not yet scheduled. The first e events (in the figure e = 5) in the resulting
ordering are assigned to the first e least-cost timeslots in the timetable.

Tabu Search is employed as the high-level search strategy for producing good
sequences of the low-level heuristics. Each heuristic list produced by tabu search is
evaluated by sequentially using the individual heuristics to order the unscheduled
events, and thus construct a complete timetable. Each heuristic in the list is used
to schedule a number e of events. Therefore, the length of the heuristic list is n/e
where n is the number of events to be scheduled. Values in the range of e = 1, . . . ,5
were tested (details can be found in [13]). This work also highlights the existence
of two search spaces in constructive hyper-heuristics (the heuristic space and the
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problem solution). The approach was tested on both course and exam timetabling
benchmark instances with competitive results. This graph-based hyper-heuristic was
later extended in [51] where a formal definition of the framework is presented. The
authors also compare the performance of several high-level heuristics that operate
on the search space of heuristics. Specifically, a steepest descent method, iterated
local search and variable neighbourhood search are implemented and compared to
the previously implemented tabu search. The results suggests that the choice of a
particular neighbourhood structure on the heuristic space is not crucial to the per-
formance. Moreover, iterative techniques such as iterated local search and variable
neighbourhood search, were found to be more effective for traversing the heuristic
search space than more elaborate metaheuristics such as tabu search. The authors
suggest that the heuristic search space is likely to be smooth and to contain large
plateaus (i.e. areas where different heuristic sequences can produce similar quality).
The work also considers hybridisations of the hyper-heuristic framework with local
search operating on the solution space. This strategy greatly improves the perfor-
mance of the overall system, making it competitive with state-of-the-art approaches
on the studied benchmark instances.

In a further study [45], the notion of fitness landscapes is used to analyse the
search space of graph colouring heuristics. The study confirms some observations
about the structure of the heuristic search space discussed in [51]. Specifically, these
landscapes have a high level of neutrality (i.e. the presence of plateaus). Further-
more, although rugged, they have the encouraging feature of a globally convex or
big valley structure, which indicates that an optimal solution would not be isolated
but surrounded by many local minima. The study also revealed a positional bias
in the search space comprising sequences of heuristics. Specifically, changes in the
earlier positions of a heuristic sequence have a larger impact on the solution qual-
ity than changes in the later positions. This is because early decisions (heuristic
choices) in a construction process have a higher impact on the overall quality of the
solution than later decisions.

Classifier system hyper-heuristic for bin packing: Classifier systems [34] are
rule-based learning systems that evolve fixed length stimulus-response rules. The
rules are encoded as ternary strings, made of the symbols {0,1,#}, and have an as-
sociated strength. The system operates in two phases. First, the population of clas-
sification rules is applied to some task; and secondly, a genetic algorithm generates
a new population of rules by selection based on strength, and by the application
of standard genetic operators. Calculating the strength of each rule is a credit as-
signment problem, which refers to determining the contribution made by each sub-
component or partial solution, in decomposable problems being solved collectively
by a set of partial solutions.

In [55], a modern classifier system (accuracy-based classifier system [64]) was
used, in the domain of one-dimensional bin packing, to learn a set of rules that
associate characteristics of the current state of a problem with different low-level
construction heuristics. In the one-dimensional bin packing problem, there is an
unlimited supply of bins, each with capacity c. A set of n items is to be packed into
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the bins, the size of each item is given, and items must not overfill any bin. The task
is to minimise the total number of bins required.

The set of rules evolved by the classifier system is used as follows: given the ini-
tial problem characteristics P, a heuristic H is chosen to pack an item, thus gradually
altering the characteristics of the problem that remains to be solved. At each step a
rule appropriate to the current problem state P′ is selected, and the process continues
until all items have been packed. For the training phase a total of 890 benchmark in-
stances from the literature were used. The authors chose four bin packing heuristics
from the literature, the selection being based on those that produced the best results
on the studied benchmark set. These heuristics were as follows:

• Largest-Fit-Decreasing: Items are taken in order of size, largest first, and put in
the first bin where they fit (a new bin is opened if necessary, and effectively all
bins stay open).

• Next-Fit-Decreasing: An item is placed in the current bin if possible, or else a
new bin is opened into which the piece is placed. This new bin becomes the
current bin.

• Djang and Finch’s (DJD): A heuristic that considers combinations of up to three
items to completely fill partially full bins.

• A variation of DJD: A variation of the previous heuristic that considers combi-
nations of up to five items to completely fill partially full bins.

A simplified description of the current state of the problem is proposed. This de-
scription considers the number of items remaining to be packed, and calculates the
percentage of items in each of four size ranges (huge, large, medium, and small);
where the size of the items is judged in proportion to the bin size. The approach
used single-step environments, meaning that rewards were available after each ac-
tion had taken place. The classifier system was trained on a set of example problems
and showed good generalisation to unseen problems. In [41], the classifier system
approach is extended to multi-step environments. The authors test several reward
schemes in combination with alternate exploration/exploitation ratios, and several
sizes and types of multi-step environments. Again, the approach was tested using a
large set of one-dimensional benchmark bin packing problems. The classifier sys-
tem was able to generalise well and create solution processes that performed well
on a large set of NP-hard benchmark instances. The authors report that multi-step
environments can obtain better results than single-step environments at the expense
of a higher number of training cycles.

4.2 Approaches based on perturbation low-level heuristics

These approaches start with a complete solution, generated either randomly or using
simple construction heuristics, and thereafter try to iteratively improve the current
solution. The hyper-heuristic framework is provided with a set of neighbourhood
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structures and/or simple local searchers, and the goal is to iteratively select and ap-
ply them to the current complete solution. This process continues until a stopping
condition has been met. Notice that these approaches differ from those based on
construction heuristics, in that they do not have a natural termination condition. The
sequence of heuristic choices can, in principle, be arbitrarily extended. This class of
hyper-heuristics has the potential to be applied successfully to different combinato-
rial optimisation problems, since general neighbourhood structures or simple local
searchers can be made available. Hyper-heuristics based on perturbation have been
applied to personnel scheduling [12, 18], timetabling [5, 12], shelf space allocation
[3, 4], packing [23] and vehicle routing problems [50].

So far, the approaches that combine perturbation low-level heuristics in a hyper-
heuristic framework use online learning, in that they attempt to adaptively solve a
single instance of the problem under consideration. Furthermore, the majority of the
proposed approaches are single-point algorithms, in that they maintain a single in-
cumbent solution in the solution space. Some approaches that maintain a population
of points in the heuristic space have been attempted [17].

As suggested in [48, 49] perturbation hyper-heuristics can be separated into two
processes: (i) (low-level) heuristic selection, and (ii) move acceptance strategy. The
authors classify hyper-heuristics with respect to the nature of the heuristic selection
and move acceptance components. The heuristic selection can be done in a non-
adaptive (simple) way: either randomly or along a cycle, based on a prefixed heuris-
tic ordering [18, 19]. No learning is involved in these approaches. Alternatively,
the heuristic selection may incorporate an adaptive (or on-line learning) mechanism
based on the probabilistic weighting of the low-level heuristics [12, 44, 50], or some
type of performance statistics [18, 19]. Both non-adaptive and adaptive heuristic
selection schemes, are generally embedded within a single-point local search high-
level heuristic.

The acceptance strategy is an important component of any local search heuris-
tic. Many acceptance strategies have been explored within hyper-heuristics. Move
acceptance strategies can be divided into two categories: deterministic and non-
deterministic. In general, a move is accepted or rejected, based on the quality of
the move and the current solution during a single point search. At any point in
the search, deterministic move acceptance methods generate the same result for the
same candidate solution(s) used for the acceptance test. However, a different out-
come is possible if a non-deterministic approach is used. If the move acceptance
test involves other parameters, such as the current time, then these strategies are
referred to as non-deterministic strategies. Well known meta-heuristic components
are commonly used as non-deterministic acceptance methods, such as those of great
deluge [38] and simulated annealing [4, 23, 50].

4.2.1 Representative examples

Two hyper-heuristics based on perturbation heuristics are described here. The first
is applied to a real-world packing problem, whilst the second uses large neighbour-
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hood heuristics and is applied to five variants of the well known vehicle routing
problem.

A simulated annealing hyper-heuristic for determining shipper sizes: In [23]
the tabu search hyper-heuristic, originally presented in [12], is integrated within a
simulated annealing framework. That is, a simulated annealing acceptance strategy
is combined with the previously proposed heuristic selection mechanism. Figure 3
outlines the simulated annealing-based hyper-heuristic.

The tabu search hyper-heuristic [12], selects the low-level heuristics according
to learned utilities or ranks. The framework also incorporates a dynamic tabu list
of low-level heuristics that are temporarily excluded from the selection pool. The
algorithm deterministically selects the low-level heuristic with the highest rank (not
included in the tabu list), and applies it once regardless of whether the selected move
causes an improvement or not (all moves acceptance). If there is an improvement,
the rank is increased. If the new solution is worse, the rank of the low-level heuristic
is decreased and it is made tabu. The rank update scheme is additive, and the tabu
list is emptied each time a non-improvement move is accepted. This general tabu
search approach was evaluated on various instances of two distinct timetabling and
rostering (personal scheduling) problems, and the obtained results were competitive
with those obtained using state-of-the-art problem-specific techniques. Apart from
the simulated annealing acceptance criteria, some modifications are also introduced
in [23]. In particular, a single application of a low-level heuristic h, is defined to be
k iterations of h. Therefore, the decision points are set every k iterations, and the
feedback for updating the quality of heuristic h is based on the best cost obtained
during those k iterations. Additionally, a non monotonic cooling schedule is pro-
posed to deal with the effects of having different neighbourhood sizes (given by the
pool of low-level heuristics used). The methodology was applied to a packing prob-
lem in the cosmetics industry, where the shipper sizes for storage and transportation
had to be determined. Real data was used for generating the instances, and the ap-
proach was compared with a simpler local search strategy (random descent), with
favourable results.

A general heuristic for vehicle routing problems: In [50], a unified method-
ology is presented, which is able to solve five variants of the vehicle routing prob-
lem: the vehicle routing problem with time windows, the capacitated vehicle routing
problem, the multi-depot vehicle routing problem, the site-dependent vehicle rout-
ing problem and the open vehicle routing problem. All problem variants are trans-
formed into a rich pickup and delivery model and solved using an adaptive large
neighbourhood search methodology (ALNS), which extends a previous framework
presented in [56]. ALNS can be based on any local search framework, e.g. simulated
annealing, tabu search or guided local search. The general framework is outlined in
Fig.4, where the repeat loop corresponds to the local search framework at the master
level. Implementing a simulated annealing algorithm is straightforward as one so-
lution is sampled in each iteration of the ALNS. In each iteration of the main loop,
the algorithm chooses one destroy (N−) and one repair neighbourhood (N+). An
adaptive layer stochastically controls which neighbourhoods to choose according to
their past performance (score, Pi). The more a neighbourhood Ni has contributed to
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Fig. 3 A simulated annealing hyper-heuristic framework.

the solution process, the larger score Pi it obtains, and hence it has a larger probabil-
ity of being chosen. The adaptive layer uses roulette wheel selection for choosing a
destroy and a repair neighbourhood.

The pickup and delivery model is concerned with serving a number of trans-
portation requests using a limited number of vehicles. Each request involves mov-
ing a number of goods from a pickup location to a delivery location. The task is
to construct routes that visit all locations such that the corresponding pickups and
deliveries are placed on the same route and such that a pickup is performed before
the corresponding delivery. Different constraints are added to model the different
problem variants. The proposed framework adaptively chooses among a number of
insertion and removal heuristics to intensify and diversify the search. These com-
peting sub-heuristics are selected with a frequency corresponding to their historic
performance (stored as learned weights for each heuristic). The approach uses a
simulated annealing acceptance strategy with a standard exponential cooling rate. A
large number of tests were performed on standard benchmarks from the literature
on the five variants of the vehicle routing problem. The results proved to be highly
promising, as the methodology was able to improve on the best known solutions of
over one third of the tested instances.
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Construct a feasible solution x; set x*:=x
Repeat

Choose a destroy and a repair neighbourhood: N- and N +
based on previously obtained scores (Pi)

Generate a new solution x’ from x using the heuristics
corresponding to the chosen destroy and repair neighbourhoods

If x’ can be accepted then set x:=x’
Update scores Pi of N- and N +
If f(x) < f(x*) set x*:=x

Until a stopping criteria is met
return x*

Fig. 4 Outline of the Adaptive Large Neighbourhood framework. N− and N+ correspond to de-
stroy and repair neighbourhoods respectively, whilst Pi stands for the score associated to the heuris-
tic i.

5 Heuristic generation methodologies

This section provides some examples of approaches that have the potential to au-
tomatically generate heuristics for a given problem. Many of the approaches in the
literature to generate heuristics use genetic programming [7], a branch of evolution-
ary computation concerned with the automatic generation of computer programs
[40]. Besides the particular representation (using trees as chromosomes1), it dif-
fers from other evolutionary approaches in its application area. While most appli-
cations of evolutionary algorithms deal with optimisation problems, genetic pro-
gramming could instead be positioned in the field of machine learning. Genetic pro-
gramming has been successfully applied to the automated generation of heuristics
that solve hard combinatorial optimisation problems, such as boolean satisfiability,
[1, 28, 29, 30, 39], bin packing [9, 8, 11], traveling salesman problem [36, 37] and
production scheduling [22, 31, 59].

Some genetic programming-based hyper-heuristics have evolved local search
heuristics [1, 29, 30, 37, 36] or even evolutionary algorithms [47]. An alternative
idea is to use genetic programming to evolve a program representing a function,
which is part of the processing of a given problem specific construction heuristic
[9, 8, 11, 22, 31, 59]. Most examples of using genetic programming as a hyper-
heuristic are offline in that a training set is used for generating a program that acts
as a heuristic, which is thereafter used on unseen instances of the same problem.
That is, the idea is to generate reusable heuristics. However, research on disposable
heuristics has also been conducted [1, 36, 37]. In other words, heuristics are evolved
for solving a single instance of a problem. This approach is analogous to the online
heuristic selection methodologies discussed in section 4, except that a new heuristic
is generated for each instance, instead of choosing a sequence of heuristics from a
predefined set.

1 According to the genetic programming literature, programs can be represented in ways other
than trees. Research has already established the efficacy of both linear and graph based genetic
programming systems.
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The adaptation of heuristic orderings can also be considered as a methodology
for heuristic generation. The adaptive approach proposed in [14], starts with one
heuristic and adapts it to suit a particular problem instance ‘on the fly’. This method
provides an alternative to existing forms of ‘backtracking’, which are often required
to cope with the possible unsuitability of a heuristic. The adaptive method is more
general, significantly easier to implement, and produces results that are at least com-
parable (if not better) than the current state-of-the-art examination timetabling algo-
rithms.

5.1 Representative examples

We discuss two representative examples of heuristic generation using genetic pro-
gramming. The first evolves packing heuristics that operate on a constructive frame-
work, whilst the second evolves complete local search algorithms, using compo-
nents of successful, existing local search heuristics for boolean satisfiability.

Generation of construction heuristics for bin packing: As mentioned earlier,
the one-dimensional bin packing problem involves a set of integer pieces L, which
must be packed into bins of a certain capacity C, using the minimum number of
bins possible. In the online version of the problem, the number of pieces and their
sizes are not known in advance. This is in contrast to the offline version of the
problem where the set of items to be packed is available at the start. An example
of a construction heuristic used in online bin packing is first-fit, which packs a set
of pieces one at a time, in the order that they are presented. The heuristic iterates
through the open bins, and the current piece is placed in the first bin into which it
fits.

In [9, 8, 11], construction heuristics are evolved for the online bin packing prob-
lem. The evolved heuristics, represented as trees (see Fig. 5 for an example), operate
within a fixed framework that resembles the operation of the first-fit heuristic dis-
cussed above. The key idea is to use the attributes of the pieces and bin capacities,
that represent the state of the problem, in order to evolve functions (expressions)
that would direct the process of packing. Each evolved function (GP tree) is applied
in turn to the available bins, returning a value. If the value is zero or less then the
system moves on to the next bin, but if the value is positive the piece is packed into
the bin. In this way, it is the expression which decides when to stop the search for a
suitable bin and place the piece. The algorithm (depicted in Fig. 6) then repeats the
process for each of the other pieces until all the pieces have been packed.

In a genetic programming framework, the set of terminals and functions need
to be specified. The hyper-heuristic framework for online bin packing uses some
attributes that describe the state of the problem to define the terminals. In [9, 8], the
authors use the following terminals:

• S, the size of the current piece,
• C, the capacity of a bin (this is a constant for the problem) and,
• F , the fullness of a bin (i.e. the total size of all of the items occupying that bin).
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Fig. 5 Evolving one-dimensional packing heuristics with genetic programming.

Later [11], these three attributes were replaced by two: S,the size of the current
item and, E (= C−F), the emptiness of a bin (i.e. how much space is remaining
in the bin, or how much more space can be allocated to it before it exceeds its
capacity). The function set used in [9, 8] consisted of ≤,+,−,×,%, where % is
the ‘protected divide function’[40]. The results in [8] show that a simple genetic
programming system can discover human designed heuristics such as first-fit, whilst
in [9, 11], heuristics that outperformed first-fit were evolved. In [9], it was also
shown empirically that the choice of the training instances (categorised according
to the piece size distribution), impacts on the trade-off between the performance and
generality of the heuristics generated and their applicability to new problems.

For each piece p
For each bin b

output := evaluate Heuristic
If (output > 0)

place piece p in bin b
break

End If
End For

End For

Fig. 6 Pseudo code showing the overall program structure within which an evolved packing heuris-
tic operates.

Generation of local search heuristics for satisfiability testing: The boolean
satisfiability problem consists of finding the true/false assignments of a set of
boolean variables, to decide if a given propositional formula or expression (in con-
junctive normal form) can be satisfied. The problem, denoted as SAT, is a classic
NP-complete problem.

In [28, 29, 30] a genetic programming system, named CLASS (Composite
Learned Algorithms for SAT Search), is proposed which automatically discovers
new SAT local search heuristics. Figure 7 illustrates a generic SAT local search
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algorithm, where the ‘key detail’ is the choice of a variable selection heuristic in
the inner loop. Much research in the past decade has focused on designing a better
variable selection heuristic, and as a result, local search heuristics have improved
dramatically since the original method. The CLASS system was developed in order
to automatically discover variable selection heuristics for SAT local search. It was
noted in [28] that many of the best-known SAT heuristics (such as GSAT, HSAT,
Walksat, and Novelty [30]) could be expressed as decision tree-like combinations
of a set of primitives. Thus, it should be possible for a machine learning system to
automatically discover new, efficient variable selection heuristics by exploring the
space of combinations of these primitives. Examples of the primitives used in hu-
man designed SAT heuristics are the gain obtained by flipping a variable (i.e. the
increase in the number of satisfied clauses in the formula) or the age of a variable
(i.e. how long since it was last flipped).

The results using CLASS [30], show that a simple genetic programming system
is able to generate local search heuristics that are competitive with efficient imple-
mentations of state-of-the-art heuristics (e.g. Walksat and Novelty variants), as well
as previous evolutionary approaches. The evolved heuristics scale and generalise
fairly well on random instances as well as more structured problem classes.

A:= randomly generated truth assignment
For j:= 1 to termination condition
If A satisfies formula then return A

v:= Choose variable using
"variable selection heuristic"

A:= A with value of v inverted
End If

End For
return FAILURE (no assignment found)

Fig. 7 A generic SAT local search algorithm. The “variable selection heuristic” is replaced by the
evolved function.

6 Summary and discussion

The defining feature of hyper-heuristic research is that it investigates methodologies
that operate on a search space of heuristics rather than directly on a search space
of problem solutions. This feature provides the potential for increasing the level of
generality of search methodologies. Several hyper-heuristic approaches have been
proposed that incorporate different search and machine learning paradigms. We have
suggested an updated definition of the term ‘hyper-heuristic’ to reflect recent work
in the area.

With the incorporation of genetic programming [40], and other methods such
as squeaky wheel optimisation [35], into hyper-heuristic research, a new class of
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approaches can be identified; that is, heuristic generation methodologies. These ap-
proaches provide richer heuristic search spaces, and thus the freedom to create new
methodologies for solving the underlying combinatorial problems. However, they
are more difficult to implement than their counterpart, heuristic selection method-
ologies, since they require the decomposition of existing heuristics, and the design
of an appropriate framework.

We have further categorised the two main classes of hyper-heuristics (heuristic
selection and heuristic generation), according to whether they use construction or
perturbation low-level heuristics. These categories describe current research trends.
However, the possibilities are open for the exploration of hybrid approaches. We
also considered an additional orthogonal criterion for classifying hyper-heuristics
with respect to the source of the feedback during the learning process, which can be
either one instance (online approaches) or many instances of the underlying problem
(offline approaches). Both online and offline approaches are potentially useful and
therefore worth investigating. Although having a reusable method will increase the
speed of solving new instances of problems, using online (or disposable) methods
can have other advantages. In particular, searching over a space of heuristics may be
more effective than directly searching the underlying problem space, as heuristics
may provide an advantageous search space structure. Moreover, in newly encoun-
tered problems there may not be a set of related instances on which to train off-line
hyper-heuristic methods.

Hyper-heuristic research lies in the the interface between search methodologies
and machine learning methods. Machine learning is a well established artificial in-
telligence sub-field with a wealth of proven tools. The exploration of these tech-
niques for automating the design of heuristics is only in its infancy. We foresee
increasing interest in these methodologies in the coming years.
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