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Heuristic Design of Cancer Chemotherapies
Minaya Villasana and Gabriela Ochoa

Abstract—A methodology using heuristic search methods is
proposed for optimizing cancer chemotherapies with drugs acting
on a specific phase of the cell cycle. Specifically, two evolutionary
algorithms, and a simulated annealing method are considered.
The methodology relies on an underlying mathematical model for
tumor growth that includes cycle phase specificity, and multiple
applications of a single cytotoxic agent. The goal is to determine
effective protocols for administering the agent, so that the tumor
is eradicated, while the immune system remains above a given
threshold. Results confirm that modern heuristic methods are a
good choice for optimizing complex systems. The three algorithms
considered produced effective solutions, and provided drug sched-
ules suitable for practice, although some methods excelled others
in performance. A discussion of comparative results is presented.

Index Terms—Cancer model, cycle-specific chemotherapy, evo-
lution strategies (ESs), evolutionary algorithms (EAs), genetic al-
gorithms (GAs), simulated annealing (SA), singular optimal con-
trol.

I. INTRODUCTION

TUMOR CELLS can be divided into proliferating or cy-
cling cells and nonproliferating or quiescent cells [3]. A

cell is considered cancerous when it has lost its ability to regu-
late cell growth and division (mitosis). Thus, cancer is a dis-
ease of rapid uncontrolled growth of malignant cells. A suc-
cessful treatment should target rapidly cycling or proliferating
cells, as are tumor cells (also hair follicle cells, cells in the diges-
tive tract, etc., where chemotherapy has common side effects).
Cycle-phase-specific drugs are those drugs that act on a specific
phase of cycling cells. One such example is Taxol® (paclitaxel),
which is hailed as a promising antineoplastic agent for treating
breast cancer. It was first isolated in 1971 from the bark of
the pacific yew, Taxus brevifolia, and has shown efficacy in the
treatment of cancer. The cytotoxic action of this drug is carried
through different mechanisms: it inhibits mitosis, induces apop-
tosis (programmed cell death), and enhances tumor radiosensi-
tivity. Today paclitaxel is used for treating breast cancer, ovarian
cancer, head, and neck cancer, sometimes as a single agent or
often accompanied by agents such as 5-FU or Doxorubicin. The
optimal scheduling and possible drug interactions for paclitaxel
are not totally understood [12] yet. When a new drug is discov-
ered, there are many costly trial and error procedures to deter-
mine the best way of administering it.
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Many authors have dealt with the drug scheduling problem,
for example, Cojocaru and Agur [6] studied drug scheduling for
cycle-phase-specific drugs based on probabilistic modeling and
found a relationship between scheduling times and cell cycle
times. Also, Panetta and Adams [21] studied the effect of cycle-
specific chemotherapy and determined best periods of appli-
cation on simple models. De Pillis and Radunskaya [8] posed
an optimal control problem (OCP) to schedule chemotherapy.
Their implementation resulted in a set of ordinary differential
equations with initial and boundary values, which they solved
using an iterative numerical method. In [18], McCall and Petro-
vski present an interactive tool (OWCH) that computes, through
the use of genetic algorithms (GAs), possible treatment sched-
ules with different drugs. The authors assumed gompertz dy-
namic for the patient with no other cell interaction. They ac-
counted for the effect of the treatment on cancer and added
constraints on total drug administration and maximum allowed
tumor levels.

The aim of our study is to design drug schedules with pacli-
taxel as the only chemotherapeutic agent. The patient dynamic
is modeled following the formulation by Villasana and Radun-
skaya [28], who proposed a model considering tumor growth,
interaction with immune cells, and the application of a cycle-
phase-specific drug. For this purpose, an OCP is formulated and
heuristic search methods are used to solve it. The goal is to drive
the tumor population below a level (given by the basin of attrac-
tion of the zero tumor level fixed point) after which the patient’s
immune system removes the remaining tumor cells.

The present study enhances McCall’s and Petrovski’s since
the patient model is designed to consider cycle-phase-specific
drugs, and it also includes the effect of certain immune cell lines
that are crucial in the fight against cancer. Our formulation spec-
ifies an objective function that not only ensures that the tumor
level is low at the end of the treatment but also minimizes tumor
levels during the course of treatment. Moreover, three heuristic
search methods are tested and compared. Our approach, how-
ever, does not include drug cocktails, leaving this as future work.

The OCP we propose admits bang-bang solutions, meaning
that the control (the drug injected at time ) attains its maximum
or minimum value for bounded control functions. Under this
setting it suffices to determine the best switching times of the
solution, i.e., the times in which the drug begins or ceases to be
administered. Since an analytical solution to this problem is not
feasible given the system’s complexity, alternative heuristic ap-
proaches were adopted. Specifically, we explored three method-
ologies: two evolutionary algorithms (EAs): 1) GAs; and 2) evo-
lutionary strategies (ESs); and 3) simulated annealing (SA).

This paper is organized as follows. Section II-A briefly recalls
the model presented in [28] for a single application of the drug
and expands to multiple applications. Section II-B describes the
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corresponding OCP and shows the admittance of bang-bang so-
lutions. Section III describes the three heuristic methods consid-
ered, while Section IV provides the algorithms’ parameter set-
tings used. Section V presents our empirical results and com-
pares the three algorithms’ performance. Finally, Section VI
summarizes and discusses our findings.

II. PROBLEM FORMULATION

A. Mathematical Model

The tumor growth model used [28], considers the effects and
interactions between tumor cells and immune cells, it also dif-
ferentiates between cell phases for subsequent treatment with
a cycle-phase-specific drug (i.e., a drug that acts on a specific
phase of the cell cycle).

The cell cycle is the process between two cell divisions or
mitosis. It encompasses four stages: , and . is
a resting phase (or Gap period) called presynthetic phase. is
the synthetic period, where the replication of deoxyribonucleic
acid (DNA) occurs. is another gap period called postsyn-
thetic phase, and finally, or mitosis in which cells segregate
the duplicated DNA material between daughter cells. Generally,
most cycle-phase-specific drugs interfere with mitosis, stopping
cell proliferation and allowing their natural death. To properly
account for cycle-specificity, and model how the drug acts, the
tumor population is subdivided into its different stages.

Let and denote the population of tumor cells
during interphase (period comprising through ) and mi-
tosis at time , and the immune system population at time t.
Let be the concentration of drug present at time and be
the resident time of cells in interphase. The governing equations
for the system with a multiple applications of the drug are

(1)

where denotes derivatives with respect to time and with initial
data given by

The immune system is comprised of many different types of
cells, [28] focused on a subset of these cells, namely, the popu-
lation of cytotoxic T cells (CTL), since they play a fundamental
role in combating cancer.

The drug free system corresponding to system (1) can have
up to five different fixed points depending on the parameter

values. However, there is one fixed point that is always present
in this system, namely, . This fixed point represents
a tumor-free environment with positive immune population,
which is a desirable scenario. The stability of this fixed point
was studied in [28]. The effect of the drug is represented by the
term , which expresses the removal of the
cells from the cell cycle due to the action of the drug. A similar
term with different parameters values is used for the effect of
the drug on the immune system.

The terms , and in the model equations
represent proportions of natural cell death or apoptosis, and

represent the different rates at which cells cycle or repro-
duce, and together with regulate the pace of cell division.
The terms and are standard competition terms that
represent losses due to encounters among the different cell
types. The coefficients that accompany these terms provide
the fraction of the losses from these encounters. The term

represents the nonlinear
growth of the immune population due to stimulus by the tumor
cells. With this choice, the recruitment function is zero when
there are no tumor cells, and increases monotonically toward a
horizontal asymptote: this rational form reflects these charac-
teristics in a simple, smooth function. The parameters , , and

depend on the type of tumor being considered and the health
of the immune system. The model assumes that in the absence
of tumor cells, immune cells are produced at a constant rate
(bone marrow production). The tumor cells reside in interphase
for a certain period of time , before continuing in the cycle
to mitosis. Assuming that cells reside in interphase units of
time, then the cells that enter mitosis at time are those cells
that entered interphase units of time before. This explains the
two terms appearing in system (1).

Paclitaxel, like many other drugs, has a decay that can be
modeled with two separate elimination rates (bi-exponential
curve). A fast rate of decay while the drug is distributed through
the blood to the tissues and a second, slower rate of decay in the
peripheral compartment or tissue [25]. Thus, the decay function
is expressed as

(2)

with , and real adimensional constants.
Letting and be such that the concentration of drug at

any given time is a linear convex combination
. The last two equations of system (1) model this situa-

tion with multiple drug applications in time, and are identified
with the function , which is the concentration of paclitaxel
that goes in the system at time . With this choice and initial
conditions, we get

decay

where denotes convolution.
Parameter estimation was performed on the drug free system

(for more details see [28]), where the estimation was done for
the drug terms using the information available for paclitaxel in
[5], [12], and [29]. We took these reports as guidelines to obtain
the effect of the drug on the different cell lines.

Before beginning the analysis, we nondimensionalized and
scaled our variables so that the model constants are as close to
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TABLE I
PARAMETER VALUES

unity as possible and in the same range of values. This improves
the stability of the numerical method for solving the equation.
However, the parameters will vary between tumor types and
from person to person. Therefore, there is no unique set of pa-
rameters values for any given model. The nondimensional pa-
rameter values used throughout this report are summarized in
Table I. This particular set represents a patient with a rapidly
growing tumor and an immune system not able to control the
tumor progression, resulting in his/her eventual death.

The general goal is to use the drug to drive the system inside
the estimated basin of attraction of the tumor-free fixed point,
while maintaining a minimum level of CTL.

The basin of attraction of a stable equilibrium can be
defined as the set of initial (history) functions for which

. In other words, it is the set of functions
, for which the orbits go toward an equilibrium. One way

to estimate a basin of attraction is by the use of a Lyapunov
function, which has been done in [27], where Villasana was
able to obtain a subset of the basin for the stable fixed point
that represents a tumor-free environment . In this
paper, we computed numerically the basin of attraction when a
constant history function is considered. This computation was
done in the following way: For each point in the discretization
of three-space (each point representing a history function equal
to the constant value), system (1) was integrated using delay
differential equation (DDE) for MATLAB, [26]. If at the final
time (for sufficiently large time) the tumor level is less than the
original level, then this point (function) is regarded as inside
the basin of attraction. Fig. 1 shows the estimated basin of
attraction when starting with a constant initial function for the
tumor-free fixed point.

We note that this estimated basin is a subset of the actual
basin, which may or may not depend on the immune system .
When the drug is added to the system, (a single bolus injection)
it can be seen that the region is enlarged, thus increasing the
estimated basin of attraction for the tumor-free fixed point.

The basin of attraction for different types of history functions
has been computed in [27], and its effect is seen in the enlarge-
ment or reduction of the basin of attraction that will extend or
shorten the total length of treatment according to the type of
history. A constant history function is a simplification of a past
history behavior (which is usually unknown). One may argue
that the course of the tumor in the past is an increasing function,
however, in the time frame where the history is needed ( day),

Fig. 1. Basin of attraction of tumor-free fixed point (0; 0; k=d ) when the
history is a constant function. The x axis represents tumor in interphase (T ),
the y axis represents the tumor in mitosis (T ), and the z axis is the immune
system (I).

we find that assuming a constant history function is an accept-
able simplification of the model.

Starting with a constant initial function outside the basin of
attraction and apply the
drug to drive the tumor population inside its basin of attraction.

B. Optimal Control Problem (OCP)

What is the best course of treatment with the single agent
paclitaxel on the model described (1), so that the tumor is
eradicated, while the immune system remains above a given
threshold?

Previous research shows [2], [4], [8], [24], that optimal con-
trol theory can be used to determine the optimal therapeutic
regime, whether it is applied to cancer, . influenzae, or any
other viral infection. Even though optimal control for systems
of DDE seems to be an adequate tool in the biosciences, there
are relatively few studies in this area.

The general mathematical formulation is as follows:

and

(3)

The control function is the amount of drug introduced
into the system as a function of time, determining the scheduling
and dosing of the drug. Our goal is to minimize the average and
final tumor size, thus, the problem is stated as

Equations in system (1) (4)
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Fig. 2. Schematic view of bang-bang solutions.

along with the added restriction

All the parameters involved in (4) are known, but nothing has
been said about the threshold imposed over the immune system.
There is no methodological way to determine this value. In prac-
tice, we want the patient to be as healthy as possible. In our
experiments, we required that the immune system does not fall
below its initial state.

Pontryagin’s Maximum Principle is used to obtain necessary
conditions for an analytical solution to this problem (see [15]).
For sufficiency conditions, we would have to verify that is
linear in the control. Also, that functions and in (3) are
concave in the state variables and the control.

Let denote the co-state or adjoint variables. To solve the
problem described by the set of equations in (4), we form the
Hamiltonian and solve the following additional set of differ-
ential equations for the co-state variables. These equations can
be derived from the Hamiltonian by taking its derivative with
respect to the state variables.

The Hamiltonian in our case is

(5)

It is not hard to find the system of forward equations that the
co-state variables must satisfy (see [15] and [27]), along with
the condition:

(6)

The fact that we have a set of differential equations forwarded
in time (for the co-state variables) and differential equations de-
layed in time (state variables) make finding an analytical so-
lution very difficult. A numerical solution for the augmented
system (delayed plus forwarded differential equations) entitles
the resolution of a two point boundary value problem since

Fig. 3. Schematic view of the control variable.

the co-state variables have end point conditions. This numer-
ical problem is difficult in itself from a numerical point of view,
therefore, we resort to heuristic approaches. From (6), we have
a singular problem, that is a problem were the Hamiltonian’s
gradient does not provide information about the control when
it is zero. This occurs when the controls appear linearly in the
state equations [17]. Since the amount of drug is bounded above,
then candidates for solution are bang-bang, i.e., they attain the
maximum value when , and the lowest value when

(see Fig. 2).
Since the control variable is the amount of drug administered,

and solutions are bang-bang, the problem reduces to finding the
times where the solution switches from “ON” to “OFF.” That
is, the times at which we begin and cease administering the drug.
Each ON-OFF switching constitutes a chemotherapeutic cycle.

C. Problem Encoding and Objective Function

In order to admit variable time intervals, the switching times
were set as the control variables, which can be encoded natu-
rally as real numbers. Two types of control variables are distin-
guished: administration-time lengths and resting-time lengths,
these variables are intercalated and concatenated to encode a
potential solution to the problem (configuration, see Fig. 3).
The range of admitted values is different for each type of vari-
able, being [0.2, 5] days for administration-time lengths and [0,
30] days for resting-time lengths. A parameter indicates the
number of switching times. We found empirically that nine (ap-
plication/resting) cycles were enough to drive the tumor into
the basin of attraction, therefore we report results for treatments
consisting of nine cycles (that is ).

The objective function was the minimization of average and
final tumor size, subject to the state equations, and a penalty
term for the restriction over immune system (4).

III. HEURISTIC METHODS

Conventional search techniques are often incapable of op-
timizing nonlinear multimodal functions. In such cases, an
heuristic search method might be required. Heuristic methods
do not use much knowledge of the problem to be optimized,
nor they depend on special properties of the objective function.
This section describes the heuristic algorithms included in our
study. Details of implementation, and choice of algorithm’s
components and parameters will be discussed in Section IV.

A. Evolutionary Algorithms (EAs)

Over the last few decades, several EAs have been proposed
and studied, they share the conceptual framework of simulating
natural evolution. The fundamental components of an EA are
the following:

• a representation of candidate solutions to the problem at
hand;

• a population of these candidate solutions;
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• mechanisms for generating new solutions from members
of the current population (operators such mutation and re-
combination);

• an evaluation or fitness function to assess the quality (fit-
ness) of a given solution;

• a selection method which gives better chances of survival
to good solutions.

Historically, there have been three well-defined approaches
to evolutionary computation: evolutionary programming (EP)
[9], evolution strategies [23], and GAs [13]. Although similar
at the highest level, these approaches differ in the way they im-
plement an EA. The differences touch all the aspects of EAs,
including the choices of representation for the individual struc-
tures, types of selection mechanisms, forms of variation opera-
tions, and measures of performance. The major differences are,
however, in the choice of representations, and emphasis and
use of variation operators. EP uses representations that are tai-
lored to the problem domain. Similarly, ESs, due to initial in-
terest in hydrodynamic optimization problems, use real-valued
vector representations. On the other hand, GAs have tradition-
ally used a more domain independent representation, namely,
binary strings. Regarding variation operations, both EP and ES
use mutation as the main operator, and propose a form of self-
adaptive mutation; whereas GAs emphasize recombination as
the main search operator, and use mutation as a secondary op-
erator applied with a small constant probability.

Mutation strength adaptation is a distinctive component of
ESs. An ill adjusted mutation strength can considerably slow
down progress if it is too low, or lead to divergence if it is too
high. Rather than using fixed schedules, ESs employ dynamic
schemes that adjust to the local characteristic of the problem
landscape. Several mutation strength adaptation methods have
been proposed (see [1] for a summarized review). A state of the
art scheme: cumulative mutation strength adaptation, has been
proposed by Hansen and Ostermeier [10], [11]. This scheme at-
tempts to “derandomize” the process of mutation strength ad-
justing. Unlike previous methods, cumulative adaptation is de-
terministic rather than based on variation and selection. It works
by accumulating and analyzing information over a number of
time steps.

For this paper, we selected the two mainstream EAs, namely,
GAs and ESs.

B. Simulated Annealing (SA)

SA [16] builds on an analogy with thermodynamics, specif-
ically with the way that liquids freeze and crystalize, or metals
cool and anneal. If the liquid or metal is cooled slowly, the
system may reach a state of minimum energy. The analogy with
optimization arises when we consider the optimal solution as
the state of minimum energy, and the optimization process as the
process of cooling. The method works as follows: a solution to a
problem is somehow perturbed, and a neighbor solution of less
quality is accepted with probability according to a Boltzmann
distribution , where represents the difference in
quality between the current solution and the perturbed one, and

the temperature of the process. The higher the temperature the
greater the probability of accepting a perturbed solution whose
quality is worse than the current state. By decreasing using

Fig. 4. Treatment obtained running the ES with the first set of bounds: [0.2, 10]
days for administration times and [0, 30] days for resting times. (a) Application
and resting times for each cycle. (b) Application times (horizontal lines at level
1), and resting times (horizontal lines at level 0). (c) Behavior of the system:
T = tumor level in mitosis, T = tumor level in interphase, and CTL =
immune cells level.

an annealing schedule, it is possible to simulate the cooling or
annealing processes.

To implement a SA algorithm, one must provide the following
elements [22]: 1) a description of possible system configura-
tions (or candidate solutions); 2) a generator of random changes
or perturbations in the configuration; 3) an objective function
(analog of energy) whose minimization is the goal of the pro-
cedure; and 4) a control parameter (analog of temperature)
together with an annealing schedule, which tells how it is low-
ered from high to low values.

IV. EXPERIMENTS

The range of values for administration and resting times were
set as follows. According to the literature the maximum toler-
ated dose for Paclitaxel is five days of infusion at 30 mg/m /day,
every three weeks [12], which imposes an upper bound for drug
administration times. A lower limit of 3 h infusions, a common
practice when using paclitaxel was selected. The resting times
were set in the interval [0, 30] (zero means that there is no resting
period and the treatment continues), where the upper bound
(30 days) follows the current practice of standard chemotherapy
schedule (i.e., infusions taking up to a week and a resting period
of at least three weeks). With these constraints (see Fig. 4), most
empirical results reached the maximum of five days for appli-
cation times on all treatments cycles. Moreover, from the sixth
cycle onwards, resting times also saturated to the maximum al-
lowed of 30 days. Following these observations, and with the
aim of exploring a wider range of schedules, we decided to run
experiments extending the constraints of both the administra-
tion and resting times. Specifically, we set the following ranges:
[0.2, 15] days for administration time lengths, and [0, 50] days
for resting time lengths. In other words, we extended the upper
bounds from 5 to 15 (administration times) and from 30 to 50
(resting times).
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TABLE II
GENETIC OPERATORS AND FREQUENCY OF APPLICATION (I.E., DISCRETE

NUMBER OF TIMES TO CALL THE OPERATOR EVERY GENERATION)

The optimization algorithms were implemented in Matlab,
since the model for tumor growth was already running in
Matlab. For the first set of bounds (called from now onwards
base bounds), the three algorithms were run ten times with dif-
ferent random seeds. For the extended bounds, given the longer
integration (and, thus running) times, we could only afford five
replications per algorithm. For comparison purposes, we set a
maximum of 3000 evaluations per run for each algorithm. It
is worth mentioning that each function evaluation required the
integration of a DDE system for large periods of time. Thus, a
single heuristic algorithm run took several days to complete.1

Performing any extensive parameter tuning was not feasible on
our current implementation.

A. Genetic Algorithms (GAs)

We used GAs for Optimization Toolbox (GAOT) a freeware
well documented Matlab library by Houck et al. [14]. The
authors tested the toolbox in a series of nonlinear, multimodal,
nonconvex test problems (taken from Corana et al. [7]), and
compared these results using SA. They found the GA with
real-valued representation to be superior to both a binary GA
and SA in terms of efficiency and quality of the solution.
GAOT implements several genetic operators for real-valued
representation (originally introduced by Michalewicz [19]), and
suggests parameter settings for them (see Table II).2 Further-
more, the toolbox provides three selection mechanisms: roulette
wheel, tournament, and normalized geometric selection. This
last method, the toolbox default, is a ranking scheme. Ranking
methods, only require the objective function to map the solu-
tions to a partially ordered set. They assign the probability of
selection based on the rank of the solution when all solutions
are sorted. Normalized geometric ranking [14] defines for
each individual as

where is the probability of selecting the best individual (with
a default value of 0.8), the rank of the individual, where 1 is
the best, and

1Up to five days for the base bounds and ten days for the extended bounds,
on an up to date PC.

2For a detailed description of each operator see [14].

For our experiments, we selected the float representation, ge-
netic operators, parameter settings, and selection method as sug-
gested by Houck et al. [14]. The other evolutionary parameters
were set as follows: a population of 30 individuals, and a fixed
termination criterium of 100 generations.

B. Evolution Strategies

We selected a derandomized ES with covariance matrix adap-
tation (CMA-ES). This algorithm was shown, empirically, to
have convergence velocity improvements over other ESs on a
large function optimization test suite [10], [11]. The authors
also provide a freeware, modular, and well documented Matlab
implementation of their algorithm. Furthermore, CMA-ES pro-
vides default values for its strategy parameters: the number of
offspring , has a value of (where is the
problem size), and the number of parents is set to .
In our experiments, , so and . Finally, the
weights for weighted recombination, are given by

for . We selected these default values and set the
number of iterations to 250 in order to reach the selected 3000
evaluations per run.

C. Simulated Annealing (SA)

An SA algorithm was implemented in Matlab. As the pertur-
bation operators, we selected the mutation operators for real-
valued representation provided by GAOT, specifically, uniform,
nonuniform, multinonuniform and boundary mutation (see Sec-
tion IV-A). For the annealing schedule, we set a initial temper-
ature , and a temperature decreasing factor of 0.85.
Each temperature was tried 30 times and the total number of
(different) temperatures tested was 100. These parameter values
were selected following suggested values taken from the litera-
ture [20], [22].

V. RESULTS

Before comparing the relative algorithms’ performance, we
assessed the quality of the solutions. A good solution should
have tumor levels within the basin of attraction at the end of
treatment, and should maintain the immune system initial state.
All experiments provided these elements and were regarded as
feasible solutions.

Fig. 4 shows results of a typical run using the first set of con-
straints (and in this case, the ES algorithm). Fig. 4(a) illustrates
the treatment obtained: for each cycle, we depict the application
(black bar) and resting time (white bar). Fig. 4(b) shows another
view, where the whole treatment can be appreciated. Horizontal
lines at level 0 represent the resting times, whereas lines at level
1 represent the application times. Finally, Fig. 4(c), provides
the behavior of system (1) with the multiple drug applications.
Specifically, the tumor levels in mitosis and interphase

and the immune cells level (CTL), can be appreciated. No-
tice in Fig. 4(a) that the first drug application is relatively low,
about one and a half days. However, from the second cycle on-
wards, the administration time reaches the maximum allowed
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Fig. 5. Treatment obtained running the ES with the extended set of bounds
([0.2, 15] days for administration times and [0, 50] days for resting times).
(a) Application (black bar) and resting time (white bar) for each cycle. (b)
Application times (horizontal lines at level 1); and resting times (horizontal
lines at level 0). (c) Behavior of the system: T = tumor level in mitosis,
T = tumor level in interphase, and CTL = immune cells level.

of five days. The resting times are between 11 and 13 days at
the beginning of treatment, reaching the maximin allowed of 30
days from the sixth cycle onwards. The whole treatment lasts
221.13 days, and the performance index, or objective function
value is . Fig. 4(c) illustrates the outcome of the
system with this protocol. The immune system (CTL) is always
above its initial level. The tumor levels decrease steadily in a
stepwise fashion, reaching a value of 0.3 for both and ,
which lies within the basin of attraction of the tumor-free fixed
point.

Fig. 5 shows results of a typical run using the extended con-
straints (and again the ES algorithm). Notice in Fig. 5(a) that
the first drug application is rather low, about 1.2 days, how-
ever, from the second cycle onwards, the administration time
increases successively to 8, 9, and 10, and finally stabilizes to
between 11 and 12 days. The maximum allowed of 15 days
is never reached, suggesting that the system is really deciding
for optimal doses instead of being limited by the upper bound.
Fig. 5(b) shows another view, the whole treatment period of 483
days, or about a year and a half, can be appreciated. Note that
this protocol is longer than the one presented in Fig. 4, which
was expected since the allowed application and resting time
ranges are longer. The resting times increase steadily from 26
days in the first cycle, reaching the maximum of 50 days from
the fifth cycle onwards. Finally, Fig. 5(c) illustrates the outcome
of the system with this protocol. Notice that the immune system
(CTL) is, again, maintained above its initial state, showing a
slight decrease after each administration time. So, despite ex-
tending the maximum allowed application time of five days, the
patient health under our system is not threatened. Again, tumor
levels decrease steadily in a stepwise fashion, this time reaching
very low tumor levels (0.08 for both and ). For this treat-
ment, the performance index is .

Fig. 6. Average best performance of the three methods using base bounds.

A. Comparing Algorithms’ Performance

We compared the relative performance of the three heuris-
tics for both the base and extended bounds. Comparisons were
done with a fixed set of algorithm parameters for each method.
A comparison with just one set of parameters does not yield a
general assessment of the algorithms’ behavior in this problem.
For a more general picture, an extensive parameter study should
be considered. This is a topic for future research, but is currently
not feasible given the extensive computational times. The re-
sults discussed in the following are intended to provide just an
impression of the behavioral differences of ESs, GAs, and SA,
using “standard” parameter settings.

1) Base Bounds: First, we discuss the results obtained
for the base bounds, as shown in Fig. 6, where the actually
best objective function value is plotted against the number of
function evaluations. ES showed very fast convergence, clearly
demonstrating its capabilities of approaching a good solution
quickly. GA performance demonstrated a slower convergence
and a missing emphasis on local optimization. SA had the
slowest convergence, but had better capabilities of local tuning
as compared with GA.

Table III provides quantitative measures for the three heuris-
tics after 1000 and 3000 evaluations. Clearly, ES outperformed
the other two algorithms providing not only the best solution,
but also giving better results on average. After 1000 evalua-
tions, GA slightly outperformed SA on average, indicating its
global searching emphasis. Whereas after 3000 evaluations the
opposite occurred, illustrating the local search abilities of SA.
ES, on the other hand, provided a good balance between global
and local search, making this algorithm the best suited for our
problem.

2) Extended Bounds: In this case, quantitative measures are
summarized in Table IV, while Fig. 7 provides a qualitative view
of relative performance. The situation is similar to the scenario
with base bounds described above. ES is again the most suitable
algorithm providing the fastest convergence, and an appropriate
balance between global and local search. GA showed a faster
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TABLE III
BASE BOUNDS

TABLE IV
EXTENDED BOUNDS

Fig. 7. Average best performance of the three methods using extended bounds.

initial convergence than SA, but stagnated and failed to fine tune
the solutions.

VI. DISCUSSION

The design of efficient drug schedules for a cycle-phase-spe-
cific agent can be seen, in the present model formulation, as
a singular OCP admitting bang-bang solutions, (i.e., solutions
that either attain its maximum or minimum value for bounded
control function). The problem can then be stated as finding
the switching times, that are the times at which we begin or
cease administering the anti-neoplastic agent. The heuristic
methods proposed here were successful at finding suitable
switching times. The algorithms were able to solve the OCP,
and produced solutions that drove the system inside the basin
of attraction of the tumor-free fixed point. Results confirm that
modern heuristic methods are a good choice for optimizing
complex systems. Although all the proposed methods produced

good solutions, some methods excelled others in performance.
ES clearly has the best speed of convergence, and provides
an appropriate balance between global and local search. SA
proved to be a good contender to ES if enough iterations are
afforded, and it is a much simpler algorithm.

Using the proposed approach, we can design protocols for
newly discovered drugs saving on costly trial and error pro-
cedures. These techniques are not intended to replace the ex-
pertise of the medical oncology community, but to aid them in
the scheduling of new agents. Furthermore, the slightly more
complex problem of scheduling drug cocktails (infusion of var-
ious drugs during the same treatment period) can also be ad-
dressed using heuristic methods. In such cases, a candidate so-
lution must encode the switching times of all the drugs involved.

Each patient has his or her own set of biological parameters.
Good parameter estimation is always a delicate issue given both
ethical implications, and lack of reliable methods. The tumor
model parameters selected here can be considered as a test set;
further studies in this subject must be made. They served, how-
ever, for the purpose of illustrating the suitability of the pro-
posed approach for designing efficient drug schedules.
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