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1. Introduction

The main goal in cancer chemotherapy is to cure the patient,
and it is important to do so as efficiently as possible. Several
alternatives to enhance chemotherapy treatments have been
proposed [1] such as using combinations of toxic drugs,
immunotherapy and more recently virotherapy [2]. This article
focuses on the use of a cytostatic drug to aid a cytotoxic drug in
chemotherapy. There is evidence in the medical literature [3], that
this type of combined therapy has increased effectiveness.

The model formulated by Villasana and Radunskaya [4]
considers the tumor growth, its interaction with the immune
system and the action of a cycle-specific cytotoxic drug. In [5]
this model is used in an optimal control formulation of the

chemotherapy scheduling problem, which is successfully solved
using modern heuristic search methods. A more recent study [6]
considered the effect of different terms in the objective function of
the optimal control formulation (such as the tumor levels, the
immune system level, and the number of treatment cycles) on the
overall features and efficacy of the obtained treatments.

Other authors have formulated the design of chemotherapy
schedules from the point of view of optimal control [7–9], solving
the stated optimization problem either analytically or numerically.
However, for increasingly complex and realistic cancer models,
analytical or traditional numerical methods are no longer
applicable, and some authors have turned to meta-heuristics to
optimize chemotherapy schedules. Petrovski, McCall and collea-
gues, have extensively and successfully used evolutionary algo-
rithms and other modern heuristics in this domain [10–12]. Their
work differs from the approach in [5], mainly in the underlying
mathematical model of tumor growth. While Petrovski et al.
considered the Gompertz growth model with linear cell-loss effect
[10], without including interactions with the immune system;
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A B S T R A C T

Objectives: This study extends a previous mathematical model of cancer cytotoxic chemotherapy, which

considered cycling tumor cells and interactions with the immune system, by incorporating a different

type of drug: a cytostatic agent. The effect of a cytostatic drug is to arrest cells in a phase of their cycle. In

consequence, once tumor cells are arrested and synchronized they can be targeted with a cytotoxic

agent, thus maximizing cell kill fraction and minimizing normal cell killing. The goal is to incorporate the

new drug into the chemotherapy protocol and devise optimal delivery schedules.

Methods: The problem of designing efficient combined chemotherapies is formulated as an optimal

control problem and tackled using a state-of-the-art evolutionary algorithm for real-valued encoding,

namely the covariance matrix adaptation evolution strategy. Alternative solution representations and

three formulations of the underlying objective function are proposed and compared.

Results: The optimization problem was successfully solved by the proposed approach. The encoding that

enforced non-overlapping (simultaneous) application of the two types of drugs produced competitive

protocols with significant less amount of toxic drug, thus achieving better immune system health. When

compared to treatment protocols that only consider a cytotoxic agent, the incorporation of a cytostatic

drug dramatically improved the outcome and performance of the overall treatment, confirming in silico

that the combination of a cytostatic with a cytotoxic agent improves the efficacy and efficiency of the

chemotherapy.

Conclusion: We conclude that the proposed approach can serve as a valuable decision support tool for

the medical practitioner facing the complex problem of designing efficient combined chemotherapies.
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Villasana et al. employed a more realistic cancer model [4].
Specifically, our model includes the interactions between tumor
cells and immune cells; and differentiates between cell phases for
subsequent treatment with a cycle-phase-specific drug. In a more
recent book chapter, McCall et al. present a survey of approaches
employing heuristic search methods to solve the cancer chemo-
therapy scheduling problem via optimal control. Examples of these
approaches include the use of simulated annealing on a model of
tumor and host cell interaction, a parallelized genetic algorithm,
and multimodal optimization genetic algorithms (see [13] and the
references therein for further details). More recently, Liang and
colleagues have applied several algorithms to the chemotherapy
scheduling problem using optimal control, where the underlying
dynamics follows a modification of Martin’s original model [14]. In
[15], the authors use a genetic algorithm to solve the proposed
optimal control problem, while in [16], they combine the genetic
algorithm with the forward iterative dynamic programming as the
local search in a memetic approach. However, none of these
published studies based on heuristics search methods considers a
drug that is not cytotoxic nor do the models incorporate the tumor
interaction with the body’s natural defense system.

Swierniak et al. [17] published a series of models for tumor
growth using cycle-phase-specific drugs. The authors also devel-
oped analytical relations for the optimal drug scheduling on the
simpler of those problems. In their exposition, a model that
incorporates a cytostatic drug is included and the numerical
solution for the optimal control model using Pontryagin’s
Maximum Principle is obtained. The optimal solution encountered
was bang–bang (i.e. a solution that only takes upon the maximum
and minimum values on a bounded range) with non-overlapping
applications of the two types of drugs. Some of the models
considered were simple enough to be still mathematically
tractable, and thus, analytic solutions were readily available.
However, the model that took into account the cell arrest,
considered a single treatment cycle, while in practice cancer
treatments are composed of multiple cycles. For more complex
models of tumor growth, and multiple drug applications,
mathematical manipulation becomes prohibitive. In consequence,
an understanding of the qualitative features of the treatments that
would be obtained in those cases is still lacking.

The present study extends our previous work [4–6] with the
goal of suggesting more efficient cancer treatments. Specifically, a
modification of the model presented in [4] is carried out so that it
incorporates a different type of drug, which would act as a
cytostatic agent in conjunction with the original cytotoxic agent.
The idea behind combining these two agents, is that the cytostatic
drug can halt the rapid progression of the cancerous cells through
their cell cycle at a certain phase. Thus, when the cells are released,
they are mostly arrested in the most vulnerable stage to the action
of cytotoxic drugs. The overall strategy is that once cells are
arrested and synchronized in the cell cycle, these can be targeted
with a cytotoxic agent, thus maximizing cell kill fraction and
minimizing normal cell killing. An example of a cycle-phase-
specific cytotoxic drug is Taxol (paclitaxel), and an example of a
cytostatic drug is Iressa (gefitinib). These are the drugs that were
identified and modeled in our approach. Our study proposes and
compares several treatment encodings and optimal control
formulations of the chemotherapy scheduling problem. We
present a detailed analysis of the treatments obtained, and a
comparison with previous treatments that do not include the
cytostatic agent.

The article is organized as follows. Section 2 presents the
mathematical formulation of the problem, including the relevant
biomedical background, the mathematical model describing the
patient dynamics and the optimal control formulation. Thereafter,
Section 3 details the methodology, including the alternative

problem encodings and objective functions, and the evolutionary
algorithm employed. Section 4 outlines the results, while Section 5
summarizes and discusses the main findings.

2. Problem formulation

2.1. Biomedical background

Most chemotherapy drugs work by attacking cells that are
dividing rapidly. Normal cells divide at a self-regulated rate with
tight controls in its progression in the cell cycle. In cancer cells,
these controls are bypassed giving way to defective cells unable to
control their reproduction, thus leading to the formation of a tumor
or blood cancer. Chemotherapy drugs interfere with the division of
these cells and may cause the cancer to recede completely. The
treatment reduces the number of cancerous cells to a minimum
level, at which point other mechanisms (e.g. programmed cell
death) will remove the remaining tumor cells.

The cell cycle is the process leading to cell division. It
encompasses four stages: G1, S, G2, and M, where G1 and G2 are
resting phases (or Gap periods), S is the synthetic period, and M or
mitosis is the time during which cells segregate the duplicated
DNA material between daughter cells. Cycle-phase-specific drugs
are those acting on a specific phase of the cell cycle. These drugs are
either cytotoxic, or cytostatic. Cytotoxic drugs are toxic to the cells,
thus killing them, while cytostatic drugs are not aimed at killing
cancer cells but rather at stopping them from multiplying and
trapping them in the cell cycle progression. When the concentra-
tion levels of the cytostatic drug fades, the cells are then released to
continue in the cell cycle.

An example of a cytotoxic phase-specific drug is Taxol
(paclitaxel) which has shown high efficacy in the treatment of
breast, ovarian, head, and neck cancer. The action of this drug is
carried through different mechanisms: it inhibits mitosis, induces
apoptosis (programmed cell death), and enhances tumor radio-
sensitivity. Today, paclitaxel is used either as a single agent or
accompanied by other drugs. The optimal scheduling and possible
drug interactions for paclitaxel are not yet fully understood [18].
An example of a cytostatic drug is Iressa (gefitinib). Gefitinib is the
first selective inhibitor of epidermal growth factor receptor’s
(EGFR) tyrosine kinase domain. Over-expression of EGFR is
observed in certain types of carcinomas (for example lung and
breast) leading to uncontrolled cell proliferation. Gefitinib inhibits
EGFR tyrosine kinase by binding to the adenosine triphosphate
(ATP) binding site of the enzyme. Thus the function of the EGFR
tyrosine kinase in activating the Ras signal transduction cascade is
inhibited, and malignant cells are inhibited. The study presented in
[3] confirmed that the combination of these two drugs (paclitaxel
and gefitinib) produces higher toxicity for the cancer cells. The
Iressa drug acts by inducing a delay in cell cycle progression, with a
complete arrest of G1 cell phase growth after 72 h of treatment
(daily dose of a 250 mg tablet). Iressa has been used with Taxol in
clinical trials on mice obtaining better results than those treated
exclusively with Taxol [19].

2.2. Mathematical model

The patient model used [4] is a competition model of tumor
growth that includes the immune system response. The model
considers three populations of cells: immune system, tumor
during interphase (period comprising G1 through G2), and tumor
during mitosis. Delay differential equations are used to take into
account the phases of the cell cycle.

In the model, T1(t) and TM(t) denote the population of tumor
cells during interphase and mitosis at time t respectively. I(t)
represents the immune system population at time t, that we take
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as the cytotoxic T cells (CTL) (see [4] for a full discussion). Let t be
the resident time of cells in interphase. The governing equations
for the patient dynamic are:

T 0I ¼ 2a4TM � ðc1I þ d2ÞTI � a1TIðt � tÞ
T 0M ¼ a1TIðt � tÞ � d3TM � a4TM � c3TMI

I0 ¼ kþ rIðTI þ TMÞ3

aþ ðTI þ TMÞ3
�c2ITI � c4TMI � d1I

(1)

where 0 denotes derivatives with respect to time and with initial
data given by:

TIðtÞ ¼ f1ðtÞ for t2 ½�t;0�
TMðtÞ ¼ f2ðtÞ for t 2 ½�t;0�
IðtÞ ¼ f3ðtÞ for t 2 ½�t;0�

(2)

This system (1) can have up to 5 different fixed points depending on
the parameter values [4], one of which is always present, namely
(0, 0, k/d1). This fixed point represents the desirable scenario of a
tumor-free environment with positive immune population.

2.3. Including the drug actions

The action of a cytotoxic drug can be described as follows: for
high concentrations of the drug, it arrests tumor cells in mitosis
where they die naturally when they fail to continue in the cycle.
This can be modeled by assuming that a tumor cell that encounters
the drug is taken out of the cycle and can no longer proliferate.
High drug concentration also impairs other cell lines by either
destroying cells (as in the case of tumor cells) or diminishing their
ability to attack (as in the case for immune system cells). The
fraction of cells that are targeted by this drug can be modeled by a
term of the form �k jð1� e�hiuÞ, where u is the drug concentration
and hi and kj are parameters that model the effectiveness. The decay
rate of paclitaxel is modeled as before ([4,5]) with two separate
elimination terms. Thus the decay function is expressed as:

decayuðtÞ ¼ r1e�l1t þ r2e�l2t (3)

with r1 and r2 are the real non-dimensional constants.
Let u1 and u2 be such that the drug concentration at any given

time is the linear convex combination u(t) = r1u1(t) + r2u2(t).
Eqs. (4) and (5) of system (7) model this situation with multiple
drug applications in time, identified with the function cu(t), which
is the concentration of paclitaxel that goes in the system at time t.
With this choice and initial conditions u1(0) = 0 and u2(0) = 0 we
get:

uðtÞ ¼ cuðtÞ � decayuðtÞ (4)

where * denotes convolution.
On the other hand, the action of high concentrations of a

cytostatic drug is to arrest cells in the interphase compartment. It
has been reported [20] that after 3 days of treatment with Iressa
there is 100% cell arrest (cytostasis) in phase G1. Its elimination half
life is 48 h.

From half life data we can fit an exponential decay curve of the
form decayvðtÞ ¼ A expf�atg. Given that at t = 0, decayvð0Þ ¼ 1, and
that at t = 3 (48 h), decayvð2Þ ¼ 1=2, then it is easy to show that the
decay function must be decayvðtÞ ¼ expðlnð

ffiffiffi
2
p
ÞtÞ. Thus the

ordinary differential equation that governs the dynamics for the
concentration of the drug n is

dv
dt
¼ �lnð

ffiffiffi
2
p
Þvþ cvðtÞ (5)

where cn is the amount of drug administered at time t. cn is
regarded in Eq. (5) as a continuous input.

Iressa’s commercial presentation consists of 250 mg pills. In
order to model this presentation as a continuous variable, we
adjusted the maximum drug concentration to follow the trend
illustrated in Fig. 1. This figure represents a simulation of daily
doses of Iressa. The infusion rate can be adjusted so that
continuous infusion time intervals can be directly associated with
a discrete dosage. It should be noted that the overall features of the
graph in Fig. 1 coincide with other reports [21], in that the
saturation levels are reached within 7–10 days. From [21] we know
that after 3 days of administration a 100% cell arrest is observed, at
concentration level of roughly 330 mg.

In the mathematical model, we need to express the effect of the
drug with respect to concentration levels. A simple approach
would be to consider the effect of the drug on the tumor level to be
linear with respect to concentration levels. Given that the
concentration level after 3 days is approx. 330 mg, we obtain that
the effect of the drug with respect to drug concentration (n) is:

EðvÞ ¼ � 1

330
vþ 1 0 � v � 330

0 v>330

(
(6)

This linear relation is an approximation to concentration level
curves encountered in published data [21] from human trials.
Other functions were tested (logistic and exponential) to capture
the main features of the data but we found the linear function to be
a sufficiently good approximation.

Therefore the model equations, with respect to the original
model (Section 2.2), are modified as follows to account for the
incorporation of the drugs:

T 0I ¼ 2a4TM � ðc1I þ d2ÞTI �max 0;� 1

330
vþ 1

� �
a1TIðt � tÞ

T 0M ¼max 0;� 1

330
vþ 1

� �
a1TIðt � tÞ � d3TM � a4TM

� c3TMI � k1ð1� e�k2uÞTM

I0 ¼ kþ rIðTI þ TMÞ3

aþ ðTI þ TMÞ3
�c2ITI � c4TMI � d1I � k3ð1� e�k4uÞI

u01 ¼ �l1u1 þ cuðtÞ
u02 ¼ �l2u2 þ cuðtÞ
v0 ¼ �lnð

ffiffiffi
2
p
Þvþ cvðtÞ

(7)

The first and second equation of system (7) have a modified cycling
term that is inspired from the model in [17]. This term reflects that

[(Fig._1)TD$FIG]

Fig. 1. A simulation of Iressa drug concentration levels using daily doses of 250 mg

(dashed lines) and all day infusion of 125 mg (solid lines).
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the proliferating fraction of cells depends on the concentration
level of the cytostatic drug. The parameter estimation was
performed on the drug free system [4]. The information available
for paclitaxel in [18,22,23] was used for estimating the paclitaxel
drug terms. The system was re-scaled using the same non-
dimensionalization as in [4]. The maximum drug concentration
after 3 days of treatment (330 mg) was used as the scaling factor
for the drug concentration of n. The remaining model parameter
values used are the same as in [5].

2.4. Optimal control problem

The problem of designing a chemotherapy protocol can be
viewed as an optimal control problem. The goal is to eradicate the
tumor while maintaining acceptable levels for the immune system.
Mathematically this means using the drugs introduced into the
system as control functions to drive the tumor into the tumor-free
fixed point’s basin of attraction, while keeping the immune system
above a certain threshold.

The general optimal control problem can be stated as follows:

Min JðTIðtÞ; TMðtÞ; IðtÞ;uðtÞ; vðtÞÞ
s:t Equations in system ð7Þ (8)

Pontryagin’s Maximum Principle was used to obtain the necessary
conditions for an analytical solution to this problem [5]. It turned
out that such a solution is prohibitive (as are also numerical
solutions) which justifies the use of heuristic search algorithms
(such as evolutionary algorithms) in our approach. The analysis
also revealed that the problem is singular (the Hamiltonian’s
gradient does not provide information about the control when it is
zero). This occurs when the controls appear linearly in the state
equations [24]. In consequence, formulations of the objective
function that do not have the control variable explicitly, will not
change the singular property of the problem. Since the amount of
drug (the control variable) in this formulation is bounded below
and above, the candidate solutions are bang–bang, which means
that the optimal control switches from one extreme to the other at
certain times (i.e. is never strictly in between the bounds).

In [17], an optimal control problem was solved numerically
for a three compartment system that modeled two drugs: one
cytostatic and one cytotoxic. The solution considered a single
treatment cycle and the optimal solution consisted of non-
overlapping applications of first the cytostatic drug followed by
the cytotoxic drug. This is intuitive, first the cytostatic drug is
used to synchronize the cells and then they are targeted with a
cytotoxic drug. One of the objectives of the present study is to
verify that this non-overlapping strategy is conserved for more
realistic systems and multiple cycle therapies.

3. Methods

3.1. The evolutionary algorithm

Evolutionary computing is the contemporary term given to a
well established area within computer science and artificial
intelligence [25]. As the name suggests, it draws inspiration from
the process of natural evolution. The power of evolution is evident
in the diverse species that make up our world, and their wonderful
adaptations. The fundamental metaphor of evolutionary comput-
ing relates the power of natural evolution to a trial-and-error style
of problem solving. The algorithms involved within evolutionary
computing are termed evolutionary algorithms, of which several
variants can be found in the literature. The covariance matrix

adaptation evolution strategy (CMA-ES) is a state-of-the-art
evolutionary algorithm for difficult non-linear non-convex opti-

mization problems in continuous domain. The algorithm is
typically applied to unconstrained or bounded constraint optimi-
zation problems, and search space dimensions between three and a
hundred. This algorithm is, therefore, perfectly suited to tackle our
optimal control problem in which the search space is composed of
a set of real numbers representing drug application times (as
described in the next subsection).

CMA-ES has proved to be a particularly reliable and and highly
competitive evolutionary algorithm for both local optimization
[26] and global optimization [27–29]. Moreover, it was the best
performing approach in our previous studies of chemotherapy
scheduling [5,6]. Evolution strategies are primarily based on
mutation and selection as search operators [30]. As usual with
evolutionary algorithms, the operators are applied in a loop for a
certain number of iterations, until a termination condition is met.
For real-valued search spaces, mutation is generally performed by
adding a small normally distributed random value to each vector
component. The step size or mutation strength (i.e. the standard
deviation of the normal distribution) is often governed in evolution
strategies by self-adaptation, which refers to a specific way of
varying evolutionary parameters during a run, namely, the
parameters are included in the chromosomes and evolve with the
solutions. Individual step sizes for each coordinate, or correlations
between coordinates, are either governed by self-adaptation or by
covariance matrix adaptation [26]. Covariance matrix adaptation
attempts to ‘‘derandomize’’ the process of mutation rate adjusting.
Unlike previous methods, it is deterministic rather than based on
mutation and selection. This scheme uses the path that has been
followed by evolution so far to (i) adapt the step size, a scaling
parameter that tunes the granularity of the search, by comparing the
actual path length to that of a random walk; (ii) modify the
covariance matrix of the multivariate Gaussian distribution in order
to increase the likelihood of beneficial moves. A single Gaussian
distribution is maintained, centered at a linear combination of the
parameters. CMA-ES does not require tedious parameter tuning as it
provides robust default parameters: the population size is set is set
to l ¼ 4þ b3 ln N c (where N is the problem size); and the initial
step size to a third of the parameters range. The version used here
(Matlab implementation [31]) incorporates weighted recombina-
tion [32], with weights (wi; . . . ;wm) given by:

wi ¼ ln
lþ 1

2
� ln i

for i = 1, . . ., m.

3.2. Problem encoding

In our optimal control formulation, the control functions are the
amount of drug concentration introduced into the system as a
function of time. These concentrations determine the scheduling
and dosing of both drugs. Since solutions are bang–bang, the
problem reduces to finding optimal switching times for both drugs.
Following the encoding used in [5], where real numbers are used to
encode the switching times (from ‘‘on’’ to ‘‘off’’ and viceversa), an
extension of the coding is considered to incorporate the new drug
in a similar way. Four types of control variables are, therefore,
distinguished: administration-time lengths and resting-time
lengths (measured in days) for both drugs. For each drug, these
variables (application and resting times) are intercalated and
concatenated. Two additional variables are incorporated to
account for the number of cycles of each drug, PU and PV, which
are integer numbers in the range from 6 to 12 cycles in accordance
to previous results [6]. So this representation deals with a variable
length encoding. Fig. 2 illustrates this encoding, which we termed
overlapping-permitting, as it allows overlapping (simultaneous)
applications of the cytostatic and cytotoxic drugs.
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It is of interest, however, to find solutions that will have the
same qualitative features as those found in [17]. For this purpose, a
second encoding, that we termed non-overlapping representation
was also considered, where the solutions always deliver non-
overlapping treatment cycles, that is, the two drugs are never
simultaneously applied. In this encoding, a treatment cycle
consists of the application of the cytostatic drug, followed by
the application of the cytotoxic drug, and a resting period. An
additional variable, P, accounts for the number of cycles (allowed
to vary from 6 to 12 cycles). Fig. 3 illustrates the non-overlapping
representation. Notice that this encoding induces a smaller search
space, since a single resting time for each cycle is encoded.

The resting times were set in the interval [0, 30], where 0 means
that there is no resting period and the treatment continues; and 30
follows the current practice of standard chemotherapy schedule
(i.e. infusions taking up to a week and a resting period of at least 3
weeks). The maximum tolerated dose for paclitaxel is 5 days of
infusion at 30 mg/m2/day, every 3 weeks [18] which imposes an
upper bound for drug administration times. A lower limit of 3 h
infusions is also a common practice when using paclitaxel. Thus,
the range of values for application times was set as [0.2, 5]. In the
case of Iressa, the bounds for the application times were set as: [1–
5]. From [21] we know that after 3 days of administration a 100%
cell arrest is observed. We used 5 days as an upper bound to
provide greater scheduling variety, and to be able to achieve steady
state concentration levels.

The course of treatment is simulated starting from a constant
initial function outside the tumor-free basin of attraction.
Specifically, the initial conditions were set as TI(0), TM(0),
I(0) = (1.3, 1.2, 0.9), where these values represent the populations
of tumor cells (in interphase and mitosis) and immune system
cells, respectively, all normalized by a factor of 106. This represents
a patient with a tumor which cannot be controlled by her/his own
immune system. Therefore, the goal is to apply the drugs to drive
the tumor population inside the tumor-free basin of attraction
(which in our simulations is represented by the point
ðT�I ; T�MÞ ¼ ð0:3;0:3Þ), while maintaining the immune system level
above its initial value (Ithr = 0.9). See [5] for more details on the
computation of the basin of attraction for the model.

3.3. Objective functions

The formulation of the objective function is crucial for setting
up the optimal control problem. Our previous study of cytotoxic
only chemotherapy [6], suggests relevant terms to be considered in

the objective function. Some additional terms (such as those
described fifth in the next list) were also explored for designing
synchronized cytotoxic/cytostatic combination therapies:

1. jTIðt f Þ � 0:3j and jTMðt f Þ � 0:3j, this term is present in all the
objective functions considered since it states that we are
minimizing the distance of the tumor from a desired state inside
the basin of attraction. Here, TMðt f Þ and TIðt f Þ are the tumor
level in mitosis and interphase at the end of the treatment.

2. The integral term, ð1=T f Þ
R t f

0 ðTM þ TIÞdt accounts for the
average tumor level throughout the course of treatment. This
term may be important to prevent spikes for the tumor orbit
which can compromise the patients’ health. Such spikes were
seen in [8], and the integral term was included in the initial
formulation [5] to rule out this undesirable behavior.

3. The immune restriction expressed as the violation of the
threshold imposed to the immune system, written mathemati-
cally as:

FðIÞ ¼
0 if IðtÞ> Ithr

Ithr � IðtÞ if IðtÞ � Ithr

(
(9)

where Ithr = 0.9. This term was included in all the formulations
studied, as the immune system level accounts for the patient’s
health.4. The number of treatment cycles of the cytotoxic drug,
PU, and the number of cycles of the cytostatic drug, PV, were
also included in the minimization process. The idea behind
these terms is to automatically find treatments with the lowest
number of treatment cycles, which still achieve the desired
goals. Shorter treatments would lessen the patient’s burden.5.
The sum of the treatment resting times for both the cytotoxic
and the cytostatic drugs were also considered, SRU and SRV,
respectively. The rationale behind these terms is the following:
maximizing the resting time of the cytotoxic drug (SRU) will
extend the time given to the patient to recover, while
maximizing the resting time of the cytostatic drug (SRV) will
extend the time given to the system to liberate the trapped cells.

An exploration of several combinations of these factors was
carried out. However, to maintain clarity in the exposition we will
focus the analysis on those objective functions that produced
better chemotherapy treatments. All the components in the sums
representing the objective functions described below, were
considered equally, that is they were normalized to have
magnitudes in similar ranges. The following three objective
functions were considered:

Objective Function 1 (OF1) is expressed mathematically as:

jTIðt f Þ � 0:3j þ jTMðt f Þ � 0:3j þ 1

T f

Z T f

0
ðTM þ TIÞdt þ FðIÞ

þ PU (10)

Objective Function 2 (OF2) is similar to OF1, with the important
difference that it does not incorporate the integral term. It is
written mathematically as:

jTIðt f Þ � 0:3j þ jTMðt f Þ � 0:3j þ FðIÞ þ PU (11)

Objective Function 3 (OF3) is similar to OF1, but incorporates the
term (�SRU). As mentioned earlier, SRU accounts for the total
resting time of the cytotoxic drug during treatment. Maximizing
this value will help in reducing the simultaneous application of the
two drugs, when using the overlapping-permitting representation:

jTIðt f Þ � 0:3j þ jTMðt f Þ � 0:3j þ 1

T f

Z T f

0
ðTM þ TIÞdt þ FðIÞ � SRU

(12)

[(Fig._2)TD$FIG]

Fig. 2. Schematic view of a candidate solution (control variable). This first encoding

termed overlapping-permitting, has two sections, the first section corresponds to the

coding of the cytotoxic drug while the second to the cytostatic drug. The cytotoxic

drug has cycles beginning with an application, while the cytostatic drug’s cycle

begins with a resting period. Application and resting times for both drugs are real

numbers representing days. Two additional variables are incorporated to account

for the number of cycles of each drug, PU and PV.

[(Fig._3)TD$FIG]

Fig. 3. Schematic view of a candidate solution (control variable). This second

encoding, termed non-overlapping has cycles consisting of the application of the

cytostatic drug, followed by the application of the cytotoxic drug, and a resting

period. Application and resting times for both drugs are real numbers representing

days. An additional variable, P, accounts for the number of treatment cycles.

M. Villasana et al. / Artificial Intelligence in Medicine 50 (2010) 163–173 167



Author's personal copy

3.4. Experimental setup

We conducted experiments for the two proposed encodings
(overlapping-permitting and non-overlapping-permitting) and the
three objective functions described above. The size of the search
space depends on the encoding used (see Section 3.2). The first
(overlapping-permitting) encoding consists of 50 numbers, of
which the first 24 are application and resting times for the
cytotoxic drug, the following 24 application and resting times for
the cytostatic drug, and the last two correspond to the number of
effective cycles of each drug. The second encoding consists of 37
numbers, of which the first 36 correspond to the application times
and the resting times for the drugs, and the last, is the number of
effective cycles of both drugs. Recall that the application and
resting times are measured in days in the ranges discussed in
Section 3.2, whereas the effective number of cycles is integers in
the range 6–12.

The stopping criteria was set as a fixed number of iterations,
specifically, 100 iterations. This value was selected after observ-
ing very little progression in the performance curves during a set
of preliminary experiments in which 10 executions for each
problem encoding were allowed to run for 300 iterations. The
evolutionary algorithm parameters were set according to the
suggestions and default values given by the CMA-ES Toolbox
[31] (see also Section 3.1). Specifically, the number of offspring
was set to l ¼ 4þ b3 ln N c (where N is the problem size). In our
case the problem sizes are N = 50 for the first encoding and N = 37
for the second, therefore, l = 15 and l = 14, were respectively
used.

We ran 10 replicas for each combination objective function—
problem encoding. Notice that the objective function 3 (OF3)
was combined with the overlapping-permitting representation
only, as the intention was to reduce the amount of overlap in that
case. We are aware that 10 replicas is a small number for statistical
analysis purposes. In consequence, we rely on a study of typical
runs, and stress the qualitative value of the results. It is worth
mentioning that each function evaluation required the integration
of a delay differential equation system for large periods of
simulated time. Thus, a single replica of the evolutionary
algorithms took in the order of 5 h to complete on an Intel Xeon
CPU 3.00 GHz (2 processors). Performing any extensive statistical
analysis of the results was, therefore, not practical on our
current implementation. In order to asses how the results would
vary for a larger number of runs, we conducted an additional set of
10 runs for one of the studied scenarios (the overlapping-
permitting representation with the objective function 2). The
conclusions and results (overall behavior) were maintained in this
larger set.

The best solution at the end of each of the 10 runs (for each
combination problem encoding—objective function) was stored,
and boxplots were produced to illustrate the magnitude and
distribution of the best objective values. Additionally, the
following treatment quality measurements were considered:

Area under the tumor curve: given a solution vector, this
measure calculates the sum of integrals under the state variables
that represents the total amount of tumor cells during the course of
treatment. A treatment schedule that minimizes the total amount
of tumor cells is clearly preferable, therefore this magnitude is a
direct measure of the efficiency of the treatment.

Immune system health: is the the average immune system’s
level, calculated with the difference:

ISH ¼
Z T f

0
IðtÞdt � Ithr � T f

It corresponds to the average deviation of the immune level,
through the course of the entire treatment, with respect to the

established threshold (Ithr). This measure accounts for the overall
patients’ health.

Both measures described above are embedded into the
objective function formulation. However, they are reported
separately to give more information about the treatments, and
to allow a direct comparison among the alternative objective
functions. Other quantities of interest that can help to describe the
quality and structure of the solutions are:

Total application time for the cytotoxic drug: This magnitude
corresponds to the area under the curve for the control variable,
and measures the total amount of toxic drug in the system. In
general it is desirable to eradicate the tumor giving the least
possible amount of drug, as this would reduce the toxicity on
healthy tissue.

Duration of treatment: This measure corresponds to the total
length of the treatment in days. A reduction of this magnitude
would represent both a more efficient treatment and a better
quality of life for the patient.

In general, one should favor treatments with low values for the
area under the tumor curve, total application time for the cytotoxic
drug, and duration of treatment, while having high values for the
immune system health.

4. Results

4.1. Comparing alternative encodings and objective functions

Since the studied objective functions have different terms, and
thus produce different ranges of values, they cannot be directly
compared. In order to illustrate the convergence behavior, and the
spread of the solutions obtained with each objective function and
problem encoding, Figs. 4–6 show, respectively, for each of
function: (a) the convergence behaviors (trace) of a typical
(median) and the best run and (b) the magnitude and distribution
(boxplot) of the objective function values. Notice that for objective
function 3 (Fig. 6), results are shown only for the overlapping-
permitting representation. Recall that this function was especially
designed to implicitly reduce the simultaneous application of the
two drugs in this case. This is, of course, not necessary for the other
representation, in which the non-overlapping application condi-
tion is imposed by the encoding. Figs. 4–6, suggest that 100
iterations are enough to obtain reasonably good convergence of the
method. It can be noticed that the non-overlapping representation
has a faster convergence (Figs. 4 and 5), which can be explained by
the smaller search space induced by this encoding. These figures
also show that the overlapping-permitting encoding can produce
solutions with lower (better) objective fitness values, but with a
much wider spread of values; while the non-overlapping encoding
produces a more stable set of solutions (more noticeable for the
objective function 2, Fig. 5).

The spread of solutions is also small for objective function 3, as
can be seen when considering the small range of values in the
vertical axis of Fig. 6(b). This small variation in the objective values
suggests that the non-simultaneous application of the two drugs,
enforced by OF3 in the first representation and given by definition
in the second, imposes a strong constraint on the design space of
the drug schedules. This observation is indirectly supported by the
distribution of the number of treatment cycles obtained by each
function and encoding (Table 1). Recall that the number of cycles
was allowed to vary between 6 and 12, and 10 runs were
conducted for each combination of objective function and solution
encoding. As indicated in Table 1, both OF3 and the non-
overlapping encoding, produced solutions with 12 cycles only;
while OF1 and OF2 with the overlapping-permitting representation
were able to produce shorter treatments with 10 and 11 cycles.
This is done, however, at the expense of higher toxic drug doses
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[(Fig._4)TD$FIG]

Fig. 4. Objective function 1 (OF1): (a) typical (top) and best (bottom) trace and (b) distribution of objective function values at the end of the run. The two problem

representations, overlapping-permitting and non-overlapping-permitting, are displayed.

[(Fig._6)TD$FIG]

Fig. 6. Objective function 3 (OF3): (a) typical (solid line) and best (dotted line) trace and (b) distribution of objective function values at the end of the run. Only the overlapping-

permitting representation is used for this objective function.

[(Fig._5)TD$FIG]

Fig. 5. Objective function 2 (OF2): (a) typical (top) and best (bottom) trace and (b) distribution of objective function values at the end of the run. The two problem

representations, overlapping-permitting and non-overlapping-permitting, are displayed.
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during treatment, as will be discussed below. It is worth noticing,
also, that the number of cycles is correlated with the total duration
of a treatment, but the exact duration in days also depends on the
length of each cycle.

When inspecting the average overlapping times of the two
drugs, produced when using the overlapping-permitting encoding
in combination with the three objective functions (Table 2), we
found that it is smaller when using the objective functions 2 and 3.
Indeed, some of the solutions obtained with these functions, were
non-overlapping. As expected, OF3 produced the least overlapping.

Fig. 7 allows us to directly compare the quantitative features of
the treatments obtained with each combination of objective
function and solution encoding. With respect to the area under the
tumor curve reduction (Fig. 7(a)), the two encodings produced
comparative solutions when used in combination with objective
functions 1 and 2. The objective function 1 (OF1), shows the lowest
tumor area at the end of treatment, which can be explained by the

presence of the integral term in this function (see Section 3.3). This
term enforces a minimization of the tumor level throughout the
whole treatment.

The objective function 3, appears the least efficient from the
three objective functions. A closer examination of the tumor
dynamic across the treatment, reveals that the solutions obtained
from this function (OF3) decrease much slower than its consorts.
This is illustrated in Fig. 8, where a comparison of the tumor
dynamics for typical solutions obtained with OF1 and OF3, is
presented. This slower decline towards zero leads to a greater
value of the area under the tumor curve, regardless of the fact that
the solution for OF3 provides a smaller tumor burden at the end of
the treatment. However, OF3 achieves higher immune system
health (part (b) in Fig. 7), at the expense of much longer treatment
durations (part (d) in Fig. 7).

The most striking observation from Fig. 7, is that the solutions
with non-overlapping drug applications achieve a similar efficacy

Table 1
Distribution of the number of treatments cycles of the cytotoxic drug obtained with

the different objective functions, and problem encodings.

Number of cycles Overlapping Non-overlapping

OF1 OF2 OF3 OF1 OF2

10 5 4 0 0 0

11 2 4 0 0 0

12 3 2 10 10 10

Table 2
Overlapping times of the applications of the cytotoxic and cytostatic drugs for the

three objective functions studied.

Overlapping OF1 OF2 OF3

Min 0.31 0 0

Max 12.1 13.96 10.29

Mean 4.99 4.74 3.16

Std 4.22 4.54 2.97

[(Fig._7)TD$FIG]

Fig. 7. Comparison of the three objective functions (OF), using both representations, with respect to: (a) area under the tumor, (b) immune system health, (c) total drug

application and (d) total treatment duration.
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and improved immune system health, when compared to their
overlapping-permitting consorts, but with far less amount of toxic
drug applied to the system. We suggest that this increased
efficiency is due to the clear-cut synchronization between the two
drugs. This is consistent with the strategy used in practice of first
arrest and synchronize the cells, and then target them a cytotoxic
agent, thus maximizing cell kill fraction and minimizing normal
cell killing. We observed, however, that the non-overlapping-
permitting representation produced treatments with a larger
number of cycles, and longer duration in days (part (b) in Fig. 7).
We suggest that this increase in treatment duration is also due to
the strict synchronization (i.e. non-simultaneous application) of
the two drugs.

4.2. Comparing system dynamics

Fig. 9 illustrates the dynamics of the system following good
schedules obtained with the overlapping-permitting (a) and the
non-overlapping representation (b). The x-axis indicates treatment
duration in days. The horizontal thick lines in the upper graphs of
the plots, represent the application times of the cytotoxic and the
cytostatic drugs. The resting times are represented by the empty
spaces in between drug applications. The left plot ((a) in Fig. 9)
shows overlapping between the applications of the static and toxic

drugs in some of the cycles (upper plot), whereas this is not the
case in the upper portion of the right plot ((b) in Fig. 9), as expected.
The lower portion of each graph describes the resulting dynamics
for each of the state variables (TI, TM, and I) when the protocol
shown on the upper portion is employed. Notice that the immune
system (I) is always above its threshold value (its initial level) with
small oscillations that correspond to the toxic drug application.
The tumor levels in mitosis and interphase (TI, TM) are closely
correlated and decrease steadily during the treatment progression.
The figures suggest that both representations produce a similar
tumor dynamics. The overlapping-permitting representation (plot
(a) in Fig. 9) produces a shorter treatment of 220 days, while the
alternative representation (plot (b) produces a longer treatment
(300 days)). However, although not visually clear, the total amount
of cytotoxic drug administered in (a) is 44.35, while in (b) is much
smaller: 15.43.

4.3. Comparing cytotoxic versus combined cytotoxic/cytostatic

treatments

One crucial aspect in this study is to asses the impact on the
treatment efficiency of administering the two drugs in conjunction
(cytotoxic and cytostatic) versus administering the cytotoxic drug
only. Figs. 10 and 11 compare the dynamics of the tumor
(specifically the tumor levels in interphase) using examples of
good treatments obtained with the model incorporating only the
cytotoxic drug [5,6], and the current model including also the
cytostatic drug. In Fig. 10 the time frame was fixed to 120 days of
treatment, and the dynamics is plotted according to the drug
schedule up to that time. The curves clearly indicate the increased
efficiency of the combined treatment, evidenced by the lower
tumor levels.

In this case the amount of cytotoxic drug introduced with the
combined therapy is 22.8 versus 18.5 administered during the
same time frame using a single cytotoxic agent. Even though the
schedule administers 18% less cytotoxic drug with the combined
therapy, the difference in tumor levels is roughly 30% less tumor
burden when the combined therapy is employed.

The treatments are different with and without the cytostatic
agent. Therefore, up to any given time, the amount of toxic drug
introduced into the system in each case is not necessarily the same.
In Fig. 11, the system of equations was integrated until a maximum
quantity of drug administered was reached (15 units), giving a
qualitative idea of the increased efficacy with respect to drug
dosing, corroborating the results above.

[(Fig._9)TD$FIG]

Fig. 9. Comparison of the system dynamics when minimizing the objective function 1. (a) Using the overlapping-permitting representation and (b) using the non-overlapping

representation. The total amount of cytotoxic drug administered in (a) is 44.35, while in (b) is much smaller: 15.43.

[(Fig._8)TD$FIG]

Fig. 8. Comparison of the system dynamics for tumor in interphase using the

overlapping-permitting representation with OF1 and OF3.
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5. Discussion

An extension of a previous mathematical model of cancer
cytotoxic chemotherapy is introduced by including a different
type of drug, namely a cytostatic agent. The design of combined
chemotherapies incorporating these two types of drugs was
formulated as an optimal control problem, which was successfully
solved by a state-of-the-art evolutionary algorithm for real-valued
representation. Alternative objective functions and solution
encodings were proposed and tested. Our main findings can be
summarized as follows:

� The three objective functions studied for the overlapping-
permitting representation provide competitive solutions, with
different qualitative and quantitative features. The first two
functions OF1 and OF2 are similar in the quality of the solutions,
rendering some with non-simultaneous drug applications (or
very small overlapping).
� The encoding that enforced non-overlapping (simultaneous)

application of the two types of drugs, produced not only

competitive protocols as compared to the overlapping-permit-
ting encoding in terms of the tumor levels during treatment, but
was able to do so with significant less amount of toxic drug, thus
achieving better immune system health. Our results, therefore,
confirm what was shown for more simplistic cancer models and
a single cycle treatment [17].
� Finally, and most importantly, when compared to treatment

protocols that only consider a cytotoxic agent, the incorporation
of a cytostatic drug dramatically improved the outcome and
performance of the overall treatment. Our model confirmed in

silico what medical researchers have shown in vivo [19,3], that
the combination of a cytostatic with a cytotoxic agent improves
the efficacy and efficiency of the chemotherapy.

The proposed approach can be applied to drug combination
chemotherapies, provided that the model is suitably identified for
a specific type of cancer, patient characteristic and drugs’ effect.
Each patient has his or her own set of biological parameters. In
order to tailor this model to a patient, one must first identify the
specific tumor and drug kinetics and the patient’s response to
chemotherapy. These values are embedded in the model param-
eters as well as the initial conditions. Good parameter estimation is
always a delicate issue given both ethical implications and lack of
reliable methods. The tumor model parameters used in our
numerical simulations can be considered as a case study. This
example served, however, to illustrate the suitability of the
proposed approach for designing chemotherapy schedules based
on the two types of drug modeled. Although our approach has
validated previous medical results with regards to combined
cytotoxic and cytostatic drug therapies, clearly, further validation
in clinical trials of the insights suggested by our approach would
need to be carried out.

As future work, we are interested in exploring the performance
of alternative evolutionary algorithm and heuristic search
methods for solving the formulated optimal control problem. An
additional line of research is to incorporate, into the tumor model,
the effect of drug resistance observed in medical chemotherapy.
The design of cancer chemotherapies may be considered as multi-
objective problem, since there are at least two opposing goals: to
eliminate the tumor cells as effectively as possible, while
maintaining the patient health at an acceptable level. We have
preliminary explored multi-objective formulations of our current
model, but have obtained unsatisfactory results in terms of the
quality of the resulting treatments. This line of research,
although worth exploring, will probably require some significant
reformulation of our current model, and the identification of
efficient state-of-the-art algorithms for continuous multi-objec-
tive optimization.

Finally, we argue that mathematical and computational
approaches such as the model proposed here, can become valuable
decision support tools for the medical practitioner facing the
complex and critical problem of designing and testing efficient
combined chemotherapies, where an in-silica exploration can
provide elements for understanding the characteristics of effective
scheduling.
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