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Summary

We developed a three component model (pre-synaptic, post-
synaptic and axon initial segment) of the calyx of Held synapse
and its target, the principal neurons in the MNTB to estimate the
metabolic efficiency in this brainstem auditory system. Model
parameters are fit such that data from whole cell recordings is
reproduced, and models are compared between a baseline
condition with low levels of nitric oxide (NO), and following
conditioning with evoked activity that increases NO levels.
Energy consumption by each component is estimated during
low and high frequency activity.

Energy budget

Fig. 2, Metabolic cost of
neurotransmission.
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the MNTB principal cells that allows a higher firing rate to be
transmitted through the calyx of Held (Steinert, 2011).

(Attwell, 2001). Coefficients were identifi

housekeeping energy use excluded

of the pre-synapse, the post synapse and the AP firing site from the amount of transmitter release,
the post-synaptic current (EPSC) integral, and the AP sodium current integral, respectively.

ed to evaluate the absolute and relative energy consumption

Model identification

Fig. 3, Synapse model. A ‘vesicle state
model with activity dependent vesicle
release (see equations). n is the
proportion of vesicles from a readily
releasable vesicle pool of maximal size
n0 (which is replenished with two
different time constants). Vesicles
release with  probability Pv on
presynaptic stimulation, resulting in a
postsynaptic response, Psr.

The parameters of this model were
identified in control and NO conditions.
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channels were taken into account.

Results Sensitivity analysis
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