Genetic and Evolutionary Computation Conference

20

0 110 01 100111

Madrid, Spain July 11-15, 2015

0

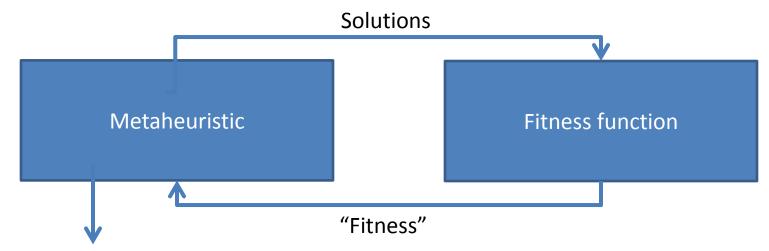
+GA+

GECCO

Metaheuristic Design Pattern: Surrogate Fitness Functions

<u>Alexander E.I. Brownlee¹</u> John R. Woodward¹ Jerry Swan²

¹ University of Stirling, UK ² University of York, UK

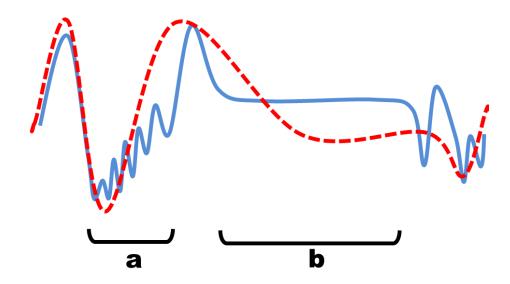

Computational Heuristics Operational Research Decision-Support

Outline

- Problem statement
- Solution
- Consequences
- Implementation
- Examples

Problem statement

• Metaheuristics need some notion of "fitness"



We're done - how did we do? (objectives)

- Two purposes:
 - 1. Measure quality (wrt the *objectives+constraints*)
 - 2. Guide the search
- (1) is not necessarily suitable for (2)...

Problem statement

- The *true* fitness function might:
- 1. Be costly
- 2. Be noisy
- 3. Not have a useful search gradient

Solution

- Surrogate fitness function in place of "true" FF
 Still need to refer to "true" fitness occasionally
- a.k.a. meta-model, proxy, fitness model or approximation
 - typically one of the above for costly problems, but less so for noisy problems or reshaping landscape
- Two types:
 - Static
 - Dynamic

Solution

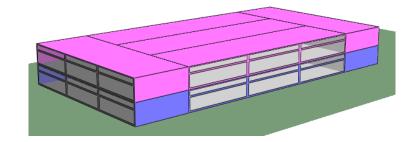
- Static surrogates
 - part of problem definition
 - can include domain knowledge
 - typically guides search towards partial solutions
- Constraint relaxation, multi-objective weights

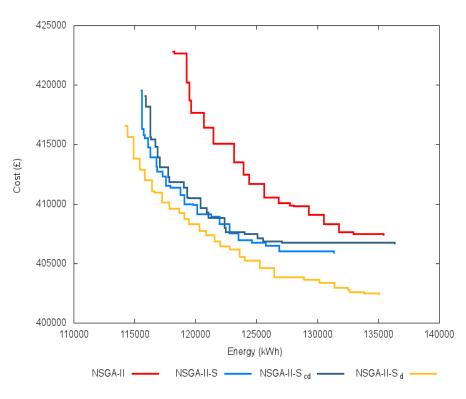
 might be classed as surrogates
- Often used already!

- We don't usually directly search the real world

Solution

- Dynamic surrogates
 - Regression or machine learning: polynomials,
 Kriging, artificial neural networks, interpolations
 - Fitness inheritance
- Trained using samples of "true" fitness
- Updated or replaced over time
 - bridge / handle / body pattern
- Ensembles combine strengths of many
 - "composite" pattern

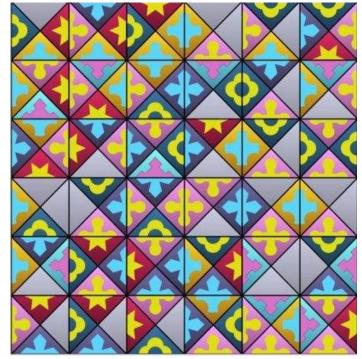

Consequences


- Search landscape altered
- Approximation errors
 - Must make reference to objective function
 - e.g. Surrogate filters new solutions before full evaluation, or switch between surrogate & true
- Can offer speed up but balance with overhead
- Surrogate explicitly models fitness: mine it to support decision making

Example 1

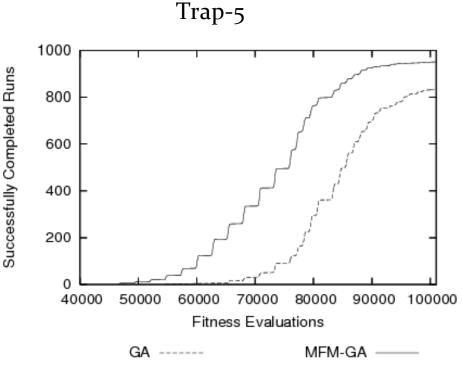
- Long-running simulations of building energy performance (mins to hrs)
- RBFN surrogate uses population as training data
- Filters offspring before evaluation with full simulation
- Many similar examples

Brownlee, A. E. and Wright, J. A. (2015) *Constrained, mixed-integer and multi-objective optimisation of building designs by NSGA-II with fitness approximation.* Applied Soft Computing, vol.33, pp 114-126



Example 2

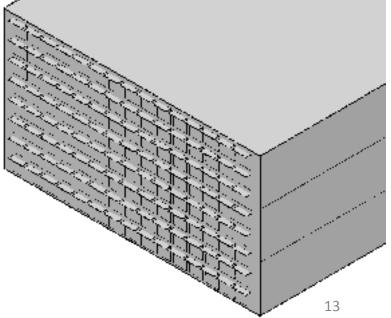
- Eternity II puzzle
- Objective: maximise matched adjacent edges
- *Surrogate* objectives:
 - Completed 2x2 squares
 - Completed 3x3 squares
 - Completed 4x4 squares
 - Tiles with all 4 edges matched
- Search iterates over two stages: surrogate, then objective


Tony Wauters, Wim Vancroonenburg and Greet Vanden Berghe. *A Guide-and-Observe Hyper-Heuristic Approach to the Eternity II Puzzle.* J Math Model Algor (2012) 11:217–233

Example 3

- MFM-GA uses undirected PGM (Markov network) to approximate fitness
- PGM initialised with dependencies between 5bit blocks in problem, coefficients estimated using randomly generated population
- Fewer evals wrt GA, but more overhead

A. E. I. Brownlee, O. Regnier-Coudert, J. A. W. McCall, and S. Massie. Using a Markov network as a surrogate fitness function in a genetic algorithm. IEEE CEC 2010. pp 4525-4532, Barcelona, Spain.

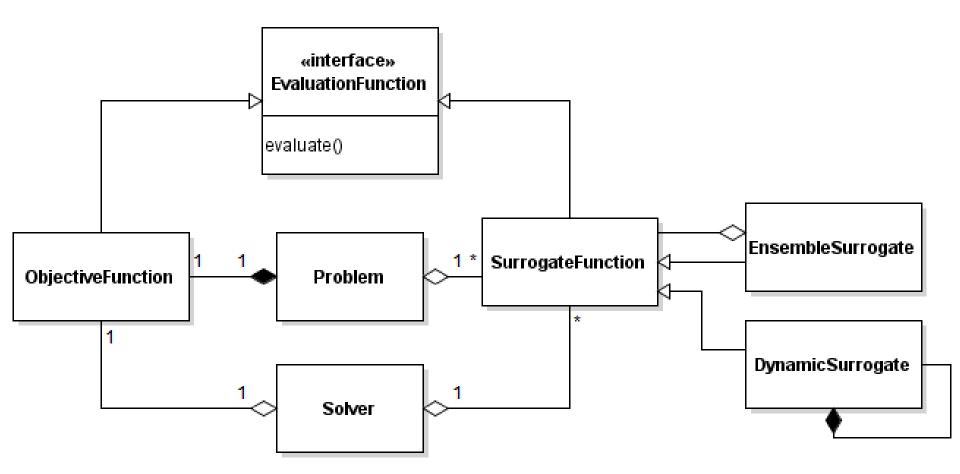


	GA	MFM-GA
Evals	83421	70839 (surr.) 14520 (true)
Run time	1.44 S	24.6 s

Mining a surrogate model

- Examine the surrogate model to gain insight into the problem
- Model here shows where glass is preferred (blue) on the façade

0.0170.0170.0160.0160.0150.0150.0160.015


Summary

- "true" fitness not always suited to guiding search
- Use surrogates to improve search efficiency
- Static surrogates often used already!
- More reading...
 - Yaochu Jin (2005). A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing, 9(1):3-12.
 - Yaochu Jin (2011). Surrogate-assisted evolutionary computation: Recent advances and future challenges.
 Swarm & Evolutionary Computation 1(2):61-70.

www.cs.stir.ac.uk/~sbr

<u>sbr@cs.stir.ac.uk</u>

Class diagram

