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Who am I?
� Started in July, member of CHORDS group

� Airport operations optimisation

� Previous:

� RA Loughborough University: multi-objective building 
design optimisation

� PhD Robert Gordon University: fitness modelling, EDAs



3

Outline
� Context: optimisation, meta-heuristics, evolutionary 

algorithms

� Fitness models, the MFM, and DEUM EDA

� Speedup – FM as surrogates

� Decision support – mining FM

� What makes a good model? – and the broader impact
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Context
� Meta-heuristics (e.g. EA)

� Explores the space of solutions 
to a problem (typically quite 
big)

� Evolution is random, but 
guided by fitness (objectives 
and constraints)

� Solutions can look quite 
different: set of bits, integers, 
real values, trees, programs…

select
parents

breed
children

update
population

initialisation

completion
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Context

Meta-heuristic
Evaluator

e.g. simulation

Fitness (objectives and constraints)

solution

Optimal solution(s)
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Fitness, objectives, constraints
� “Fitness” / “fitness function”: how algorithm compares 

solutions

� Objectives: things to minimise / maximise

� Constraints: pass / fail particular solutions

� A fitness model attempts to approximate all or some of 
the above
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Single Objective EA Example
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Fitness models
� Try to estimate some or all of the fitness 

landscape

� a.k.a meta-models, fitness approximations, 
surrogates , “model of the model”

� Several uses:
� Reduce cost associated with evaluations

� Overcome difficult search landscape
� Noise, multi-modality, plateaux

� Used if no explicit fitness function (e.g. 
evolutionary art, real-world measurement)

� Many approaches:
� Neural networks, support vector machines, 

Kriging, database, probabilistic model
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Example fitness models
� “A couple” now rounded to “approximately one”

� Markov network fitness model (MFM)

� Targeted at binary / bit-string representations

� Radial basis function network (RBFN)

� Targeted at mixed representation (continuous & 
discrete variables)



Model 1 : MFM

select
parents

breed
children

update
population

GA EDA

initialisation

completion

select
parents

model
parents

generate
population

initialisation

completion

� Originally developed as part of DEUM EDA
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Probabilistic models
� Solution x - a collection of 

random variables

� Model distribution of x as a 
joint probability 
distribution (j.p.d.)

� Could simply use marginal 
probabilities of variables

� What if there are 
dependencies between 
variables?

),...,,()( 21 nxxxpxp =
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Markov Network
� An undirected probabilistic graphical model

� Contrast with Bayesian network (directed graph)

� Representation of the joint probability distribution

� Variables become nodes on a graph

� Edges represent dependencies between variables

� Markovianity property
� distribution of a variable determined by its neighbours

� Hammersley-Clifford theorem
� j.p.d. factorises as a Gibbs distribution, defined over 

the cliques of the graph

� (a clique is a set of mutually neighbouring variables)



Markov Network
� Cliques have energy, defined in a clique potential 

function

� MN describes energy U(x) as sum of clique potentials

� In DEUM, Gibbs distribution of MN is equated to 
mass distribution of fitness in population

� Energy has negative log relationship to probability, so 
minimise U to maximise f

� (CPFs correspond to Walsh functions)
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– Variables are -1 and +1 instead of 0 and 1

• Build a set of equations using values 
from population

• Use least squares fit to solve set of 
equations and estimate α values

• Also need to determine the cliques 
(structure)

Markov network example
• Model can be represented by:
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Sample MN to find optimal solutionCalc coefficients 

0011 f=2

Markov network example
Calc MN parameters

1011 f=1

1111 f=4

1001 f=1

1000 f=3

α0=-0.38   α1=0.16   α2=0.02   α3=-0.34
α01=-0.07  α02=0.25   α03=-0.11   α13=-0.11
α23=-0.25   α013=-0.34   α023=-0.02   c=-0.61
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Sampling in DEUM EDA
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• Decreasing temperature T cools probability to 
either 1 or 0 depending upon sign and value of

• Sampling the probability gives a value for a 
particular variable - this forms the basis for the 
optimisation algorithm DEUMd

ω



Example run of DEUMd
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MN Model Predicts Fitness
� Example; for solution X={1011}

� Substitute variable values into energy function and 
solve:

� Hence, the Markov network Fitness Model
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Outline
� Context: optimisation, meta-heuristics, evolutionary 

algorithms

� Fitness models, the MFM, and DEUM EDA

� Speedup – FM as surrogates

� Decision support – mining FM

� What makes a good model? – and the broader impact
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FMs as surrogates
� Common use of fitness model is to reduce calls to true 

fitness function

� Function may be costly: e.g. long run-time or human 
evaluation

� Two broad approaches:

� Surrogate FM is trained prior to run and used in place 
of fitness function

� “Evolution control”: some evaluations are replaced with 
calls to the surrogate, and surrogate may be updated as 
run proceeds
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Fitness Model as a Surrogate
� Train a model of the fitness function

� Use the model in place of the FF (sometimes)

fitness

solution

Optimal solution(s)

predicted fitness

training
solution

EvaluatorMeta-heuristic Surrogate
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Example - feature selection
� Feature selection (CBR) - costly fitness function

� Choose features that best distinguish cases

� Must run through entire case-base counting whether 
cases were correctly classified

� GA previously applied to FS

� Bitstring encoding, 1=selected, 0=not selected

� Uses two public domain datasets:

� Sonar – 60 features, 208 cases

� Vehicle – 18 features, 946 cases
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MFM-GA
1. Generate random population

2. Compute true fitness for members of the population

3. Choose the best ones and recombine them to 
produce offspring

4. Mutate the offspring

5. Repeat 1-5 until we’re done

Plain EA
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MFM-GA
1. Generate random population

2. Every nth generation:
1. Compute true fitness for members of the population

2. estimate model parameters

3. Otherwise:
1. Use model to estimate fitness of population

4. Choose the best ones and recombine them to 
produce offspring

5. Mutate the offspring

6. Repeat 1-5 until we’re done

EA with surrogate
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Results
Sonar Vehicle

Algorithm Best Fitness (SD) Time (SD) Best Fitness (SD) Time (SD)

GA 0.952 (0.010) 796 s (18) 0.756 (0.006) 7778 s (593)

MFM-GA0 0.910 (0.012)
[-0.042 on GA]

147s (11) 
[0.18 x GA]

0.721 (0.006)
[-0.035 on GA]

283 s (43)
[0.04 x GA]

MFM-GA10 0.908 (0.015)
[-0.044 on GA]

272 s (12)
[0.34 x GA]

0.726 (0.010)
[-0.030 on GA]

1270 s (78)
[0.16 x GA]
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Results
� Faster, but reduction in final solution quality

� (still higher fitness than CBR-specific filter selection 
techniques: information gain, SVM, feature subset 
evaluation)

� Improved by updating model, with a trade-off in 
speedup
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Building optimisation
� Used RBFN as surrogate, with mixed variable 

types, multiple objectives and constraints
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Building optimisation
1. Generate random population

2. Assign a fitness to members of the population

3. Choose the best ones and recombine them to 
produce offspring

4. Mutate the offspring

5. Repeat 1-4 until we’re done

Plain EA
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Building optimisation
1. Generate random population

2. Assign a fitness to members of the population

3. Train surrogate

4. Choose the best ones and recombine them to 
produce too many offspring

5. Mutate the offspring

6. Use surrogate to filter out promising offspring

7. Repeat 1-6 until we’re done

EA with surrogate



30

Results
� Speedup / found higher hypervolume

� NB - constraints need special treatment

Algorithm 
variant Hypervolume p-value SR (%) Evals

NSGA-II 0.849 (0.028) n/a 50 4017

NSGA-IIc 0.845 (0.022) 0.969 40 4026

NSGA-II-S 0.856 (0.028) 0.783 83 3817

NSGA-II-Sc 0.860 (0.024) 0.338 63 4002

NSGA-II-Sd 0.881 (0.031) < 0.001 83 3184

NSGA-II-Scd 0.867 (0.027) 0.034 73 3340
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Outline
� Context: optimisation, meta-heuristics, evolutionary 

algorithms

� Fitness models, the MFM, and DEUM EDA

� Speedup – FM as surrogates

� Decision support – mining FM

� What makes a good model? – and the broader impact
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Decision support
� MFM model coefficients

� The model points to solutions that are probably high 
in fitness

� α > 0 : bit should be 0, or bits should differ in value

� α < 0 : bit should be 1, or bits should be equal in value

� The following are models built using a single 
randomly generated population – values are mean 
from 100 runs
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Model coefficients
� Onemax

� Fitness is count 
of variables with 
value 1 
(maximise)

� All variables 
have equal 
weight and 
should be 1 -0.01
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Model coefficients
� 2D checkerboard

� Maximise neighbours 
that are different in value

� Includes pairwise 
interactions
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Model coefficients
x1 x2 x3 x4
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Model coefficients
� Bio-control (Mushrooms)

� Predicted intervention point match lifecycle of 
sciarid larvae
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Cellular Windows
� Ideal placement of glazing on a building façade; 

minimise energy use
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Outline
� Context: optimisation, meta-heuristics, evolutionary 

algorithms

� Fitness models, the MFM, and DEUM EDA

� Speedup – FM as surrogates

� Decision support – mining FM

� What makes a good model? – and the broader impact
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What makes a good model?
� How do we define “good model”?

� Population size

� Structure (cliques in the model)

� Selection (filtering of solutions)
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Fitness Prediction Correlation
� A measure of fitness prediction capability

� Procedure:

� Construct fitness model

� Generate population P

� Predict fitnesses of P

� Compute true fitnesses of P using fitness function

� Calculate Spearman’s rank correlation between predicted and 
true fitnesses
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Two FPC figures
� Cr and Cm

� Cr is the FPC for a randomly generated population

� Cm is the FPC for a “neighbour population” – the 
solutions used to build the model each mutated 1 bit

� Cm is relevant because in one generation an EA moves 
between two similar populations

1 0 1 1

1 11 0 1 1

0 1 0 0 00

0 1 0 0 00

1 1
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Population size
� Number of solutions used to build the model is 

important
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Structure
� 1D checkerboard

� Optima 01010101…. and 10101010….

� Trap-5

� Bitstring divided into groups of 5

� Local optimum:

� 000000….

� Global optimum:

� 111111111….
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Structure
� 1D checkerboard

� Aggregated over instances from 10-1000 bits
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Structure
� Trap-5

� Aggregated over instances with 20-100 bits

1-cliques 1+2 cliques 1+2+5 cliques 1+2+3+4+5 cliques
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Structure
� Different parts of structure more / less important for 

good model (ranking solutions)

� Recent work: most problems have “structure”

� How much of it do we need to know about to 
determine ranking?

� Can we use knowledge of problem structure to map 
hard problems onto easier ones?
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Selection
� Selection is not needed to choose population for 

estimating MFM parameters
� But nothing to stop us using selection as a filter

� Many EDAs use truncation selection
� Crude but inexpensive; selects top n individuals and 

discards the rest

� This study looked at the impact of selection on fitness 
information within the population

� Many other selection operators exist, e.g.
� Fitness proportionate (roulette wheel)

� Tournament
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Selection operators
� Top selection

� Standard Truncation

� Bottom selection

� Top & Bottom selection
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100 bit OneMax
� Fully specified, perfect model structure
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100 bit MaxSAT
� Underspecified, perfect model structure
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100 bit MaxSAT

� Fully specified, univariate model structure
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Selection / structure learning
� Selection often part of 

structure learning

� Here, learning “structure” 
for onemax problem

� For most operators, spurious 
interactions increase with 
selection proportion

� Truncation selection most 
consistent

� Top / Bottom selection have 
similar results

� T+B worst for a low 
selection proportion
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What makes a good model?
� With a perfect structure and big population, selection 

operator makes little difference (though top is still best)

� With small population or imperfect structure (more 
realistic), selection helps sharpen fitness information in 
population as well as providing pressure on search

� Thought: If we can build a good model, then there was 
useful information about fitness in the population

� Results indicate that useful information exists in 
wider population

� Can this be used in other algorithms?
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Fitness models: summary
� Example fitness model: the MFM

� Useful for speeding up search

� Can be mined to aid decision making

� Can aid greater understanding of evolutionary 
operators
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Where next?
� Which FM to use for a given problem?

� Modelling different spaces (e.g. permutations)

� Further exploration of selection’s impact on search, 
model building and structure learning

� What do we mean by “structure” in a model, and in a 
problem, and how important is it anyway?

� Can we simplify optimisation problems – especially 
given knowledge of structure?
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Thanks
� Question time

� Happy to discuss further – sbr@cs.stir.ac.uk

� Papers etc. at http://www.cs.stir.ac.uk/~sbr/


