Fitness modelling for better optimisation and decision making Sandy Brownlee www.cs.stir.ac.uk/~sbr sbr@cs.stir.ac.uk

Who am I?

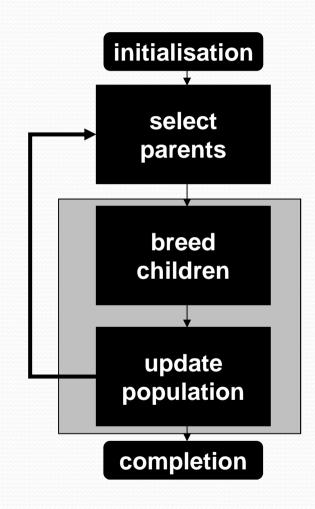
- Started in July, member of CHORDS group
- Airport operations optimisation
- Previous:
 - RA Loughborough University: multi-objective building design optimisation
 - PhD Robert Gordon University: fitness modelling, EDAs

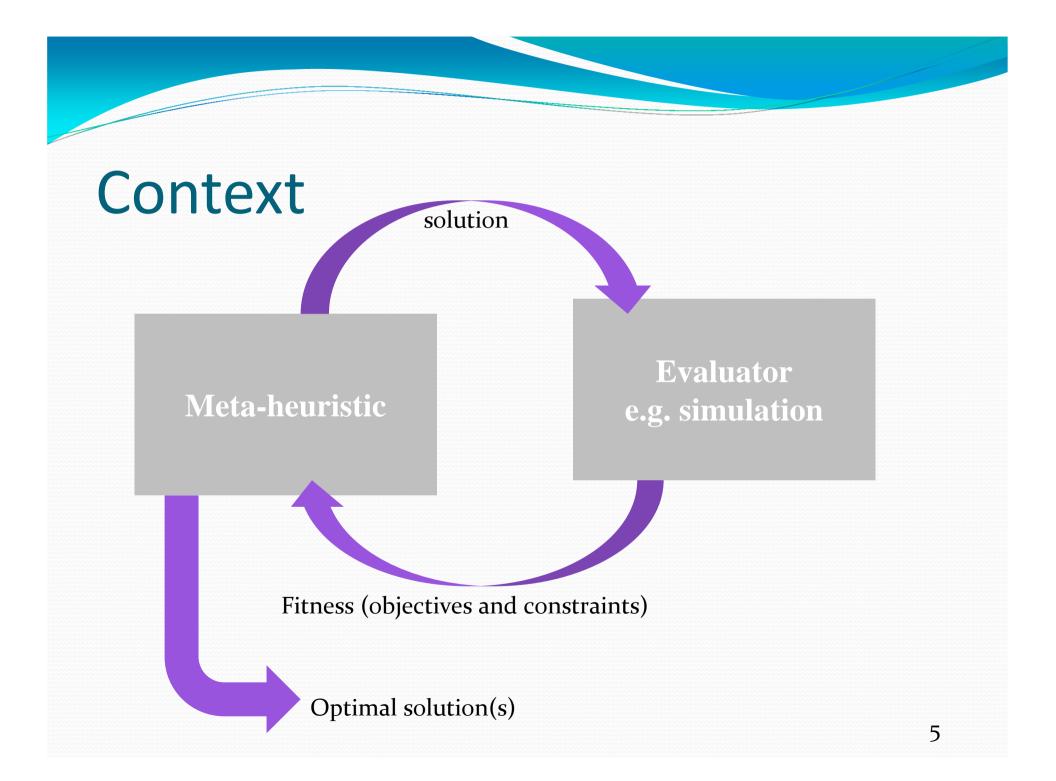
Outline

- Context: optimisation, meta-heuristics, evolutionary algorithms
- Fitness models, the MFM, and DEUM EDA
- Speedup FM as surrogates
- Decision support mining FM
- What makes a good model? and the broader impact

Context

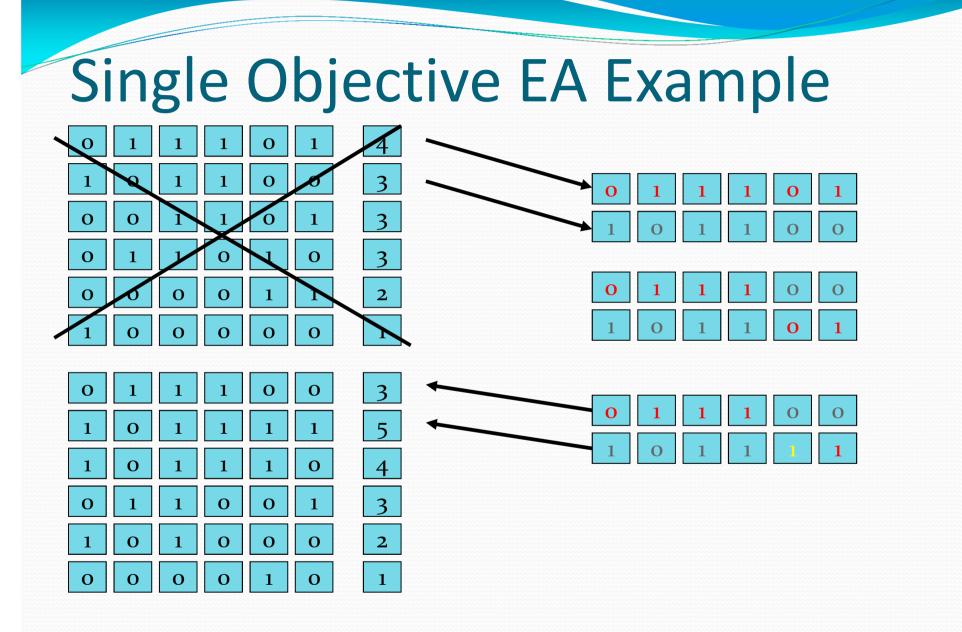
- Meta-heuristics (e.g. EA)
- Explores the space of solutions to a problem (typically quite big)
- Evolution is random, but guided by *fitness* (objectives and constraints)
- Solutions can look quite different: set of bits, integers, real values, trees, programs...





Fitness, objectives, constraints

- "Fitness" / "fitness function": how algorithm compares solutions
- Objectives: things to minimise / maximise
- Constraints: pass / fail particular solutions
- A fitness model attempts to approximate all or some of the above

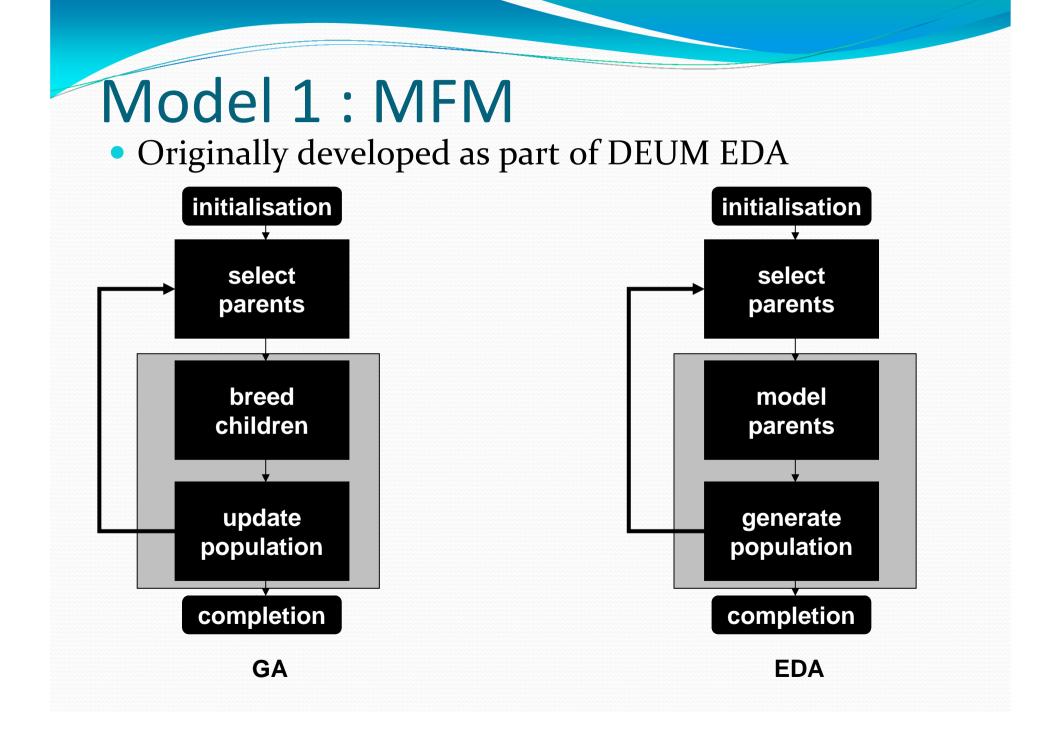


Fitness models

- Try to estimate some or all of the fitness landscape
- a.k.a meta-models, fitness approximations, surrogates, "model of the model"
- Several uses:
 - Reduce cost associated with evaluations
 - Overcome difficult search landscape
 - Noise, multi-modality, plateaux
 - Used if no explicit fitness function (e.g. evolutionary art, real-world measurement)
- Many approaches:
 - Neural networks, support vector machines, Kriging, database, probabilistic model

Example fitness models

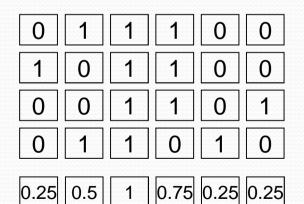
- "A couple" now rounded to "approximately one"
- Markov network fitness model (MFM)
 - Targeted at binary / bit-string representations
- Radial basis function network (RBFN)
 - Targeted at mixed representation (continuous & discrete variables)



Probabilistic models

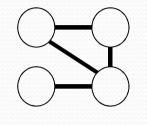
- Solution x a collection of random variables
- Model distribution of x as a joint probability distribution (j.p.d.)
- Could simply use marginal probabilities of variables
- What if there are dependencies between variables?

$$\begin{aligned} \mathbf{x}_{1} \ \mathbf{x}_{2} \ \mathbf{x}_{3} \ \mathbf{x}_{4} \ \mathbf{x}_{5} \ \mathbf{x}_{6} \\ x = x_{1}, x_{2}, \dots, x_{n} \\ p(x) = p(x_{1}, x_{2}, \dots, x_{n}) \end{aligned}$$



Markov Network

An undirected probabilistic graphical model



- Contrast with Bayesian network (directed graph)
- Representation of the joint probability distribution
- Variables become nodes on a graph
- Edges represent dependencies between variables
- Markovianity property
 - distribution of a variable determined by its neighbours
- Hammersley-Clifford theorem
 - j.p.d. factorises as a **Gibbs distribution**, defined over the cliques of the graph
 - (a clique is a set of mutually neighbouring variables)

Markov Network

- Cliques have energy, defined in a *clique potential function*
- MN describes energy U(x) as sum of clique potentials
- In DEUM, Gibbs distribution of MN is equated to mass distribution of fitness in population

$$p(x) = \frac{f(x)}{\sum_{y} f(y)} \equiv \frac{e^{-U(x)/T}}{\sum_{y} e^{-U(y)/T}}$$

$$-\ln(f(x)) = U(x)/T$$

- Energy has negative log relationship to probability, so minimise U to maximise f
- (CPFs correspond to Walsh functions)

Markov network example

• Model can be represented by:

 $\begin{aligned} &\alpha_0 x_0 + \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_{01} x_0 x_1 + \alpha_{02} x_0 x_2 + \alpha_{03} x_0 x_3 \\ &\alpha_{13} x_1 x_3 + \alpha_{23} x_2 x_3 + \alpha_{013} x_0 x_1 x_3 + \alpha_{023} x_0 x_2 x_3 + c \end{aligned} = -\ln(f(x))$

- Variables are -1 and +1 instead of 0 and 1

- Build a set of equations using values from population x_1
- Use least squares fit to solve set of equations and estimate α values
- Also need to determine the cliques (structure)

X₂

 $\mathbf{X}_{\mathbf{0}}$

X₃

Markov network example

Gatopolocification for the solution

 $\begin{array}{l} 1011 \quad f=1 \\ (1)\alpha_{0}+(-1)\alpha_{1}+(1)\alpha_{0}+(2\alpha_{3}+\alpha_{2})(-\alpha_{3}\alpha_{01}\alpha_{01}(1)(1)\alpha_{022}+c=-\ln(1) \\ 1111 \quad f=4 \\ (1)\alpha_{0}+(1)\alpha_{1}+(1)\alpha_{0}+(-1)\alpha_{1}+(-1)\alpha_{0}+(-1)\alpha_{1}+(-1)\alpha_{1}+(-1)\alpha_{0}+(-1)\alpha_{1}+$

 X_0

X₃

 X_2

 (\mathbf{X}_1)

 $\begin{array}{c} 0011 \quad f=2 \\ (-1)\alpha_0 + (-1)\alpha_1 + (t)\alpha_{9} + (\alpha_{2}t)(\alpha_{3})\alpha_0(-t)\alpha_{0}\alpha_{02}} & \alpha_{03}t)(\alpha_{03}t + (\alpha_{2}t)(\alpha_{0})\alpha_{03}} + (\alpha_{2}t)(\alpha_{0})\alpha_{03} + (-1)(1)(1)\alpha_{023} + c = -\ln(2) \\ \alpha_0 = -0.38 \quad \alpha_1 = 0.16 \quad \alpha_2 = 0.02 \quad \alpha_3 = -0.34 \\ \alpha_{01} = -0.07 \quad \alpha_{02} = 0.25 \quad \alpha_{03} = -0.11 \quad \alpha_{13} = -0.11 \\ \alpha_{23} = -0.25 \quad \alpha_{013} = -0.34 \quad \alpha_{023} = -0.02 \quad c = -0.61 \end{array}$

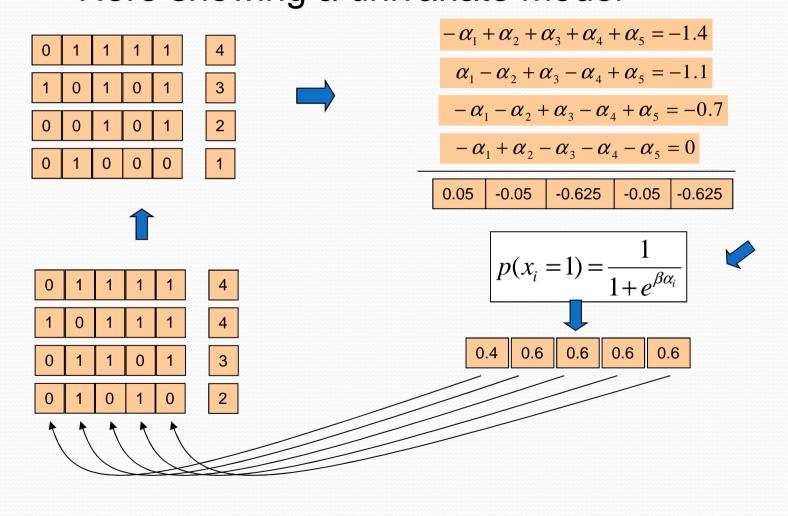
Sampling in DEUM EDA

$$p(x_i = 1) = \frac{1}{1 + e^{2\omega_i/T}}$$

$$p(x_i = -1) = \frac{1}{1 + e^{-2\omega_i/T}}$$

- Decreasing temperature T cools probability to either 1 or 0 depending upon sign and value of ω
- Sampling the probability gives a value for a particular variable - this forms the basis for the optimisation algorithm DEUM_d

Example run of DEUM_d Here showing a univariate model



MN Model Predicts Fitness

- Example; for solution X={1011}
- Substitute variable values into energy function and solve:

 $U(x) = \alpha_0 - \alpha_1 + \alpha_2 + \alpha_3 - \alpha_{01} + \alpha_{02} + \alpha_{03} - \alpha_{13} + \alpha_{23} - \alpha_{013} + \alpha_{023} + c$ $f(x) = e^{-U(x)}$

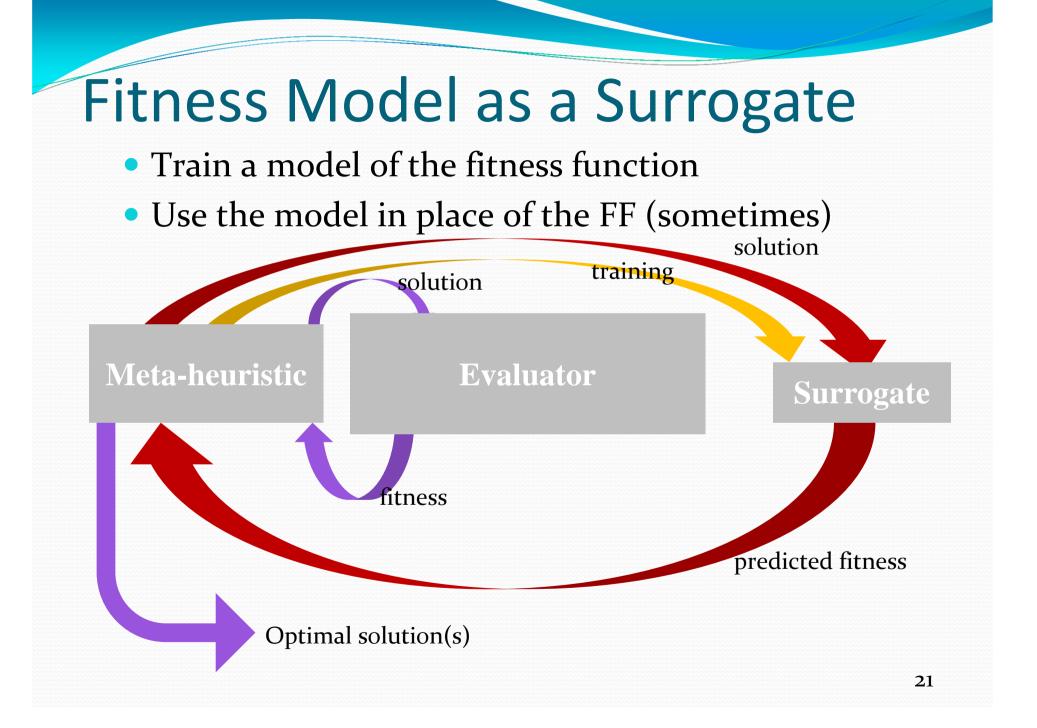
Hence, the Markov network Fitness Model

Outline

- Context: optimisation, meta-heuristics, evolutionary algorithms
- Fitness models, the MFM, and DEUM EDA
- Speedup FM as surrogates
- Decision support mining FM
- What makes a good model? and the broader impact

FMs as surrogates

- Common use of fitness model is to reduce calls to true fitness function
- Function may be costly: e.g. long run-time or human evaluation
- Two broad approaches:
 - Surrogate FM is trained prior to run and used in place of fitness function
 - "Evolution control": some evaluations are replaced with calls to the surrogate, and surrogate may be updated as run proceeds



Example - feature selection

- Feature selection (CBR) costly fitness function
 - Choose features that best distinguish cases
 - Must run through entire case-base counting whether cases were correctly classified
- GA previously applied to FS
 - Bitstring encoding, 1=selected, o=not selected
- Uses two public domain datasets:
 - Sonar 60 features, 208 cases
 - Vehicle 18 features, 946 cases

MFM-GA

Plain EA

- 1. Generate random population
- 2. Compute true *fitness* for members of the population
- 3. Choose the best ones and recombine them to produce *offspring*
- 4. Mutate the offspring
- 5. Repeat 1-5 until we're done

MFM-GA

EA with surrogate

- 1. Generate random population
- **2**. Every nth generation:
 - 1. Compute true *fitness* for members of the population
 - 2. estimate model parameters
- 3. Otherwise:
 - 1. Use model to estimate fitness of population
- 4. Choose the best ones and recombine them to produce *offspring*
- 5. Mutate the offspring
- 6. Repeat 1-5 until we're done

Results

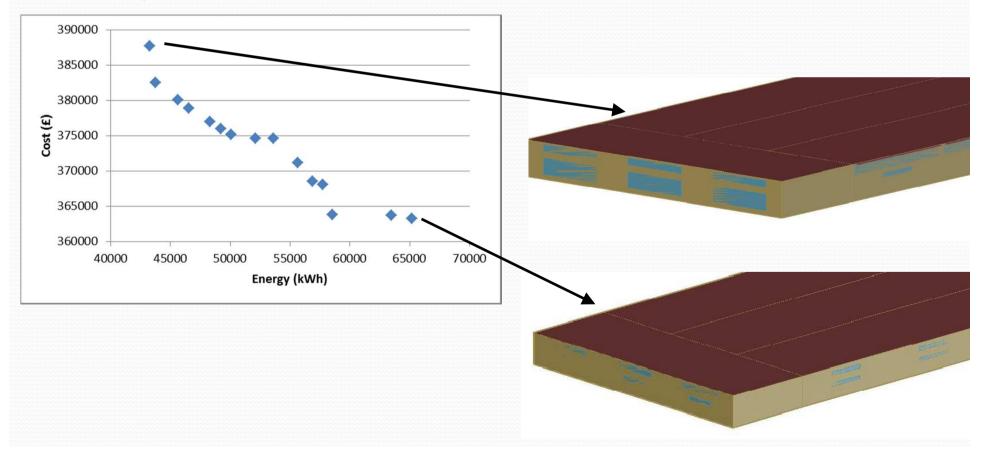
	Sonar		Vehicle	
Algorithm	Best Fitness (SD)	Time (SD)	Best Fitness (SD)	Time (SD)
GA	0.952 (0.010)	796 s (18)	0.756 (0.006)	777 8 s (593)
MFM-GA _o	0.910 (0.012) [-0.042 on GA]	147s (11) [0.18 x GA]	0.721 (0.006) [-0.035 on GA]	283 s (43) [0.04 x GA]
MFM-GA ₁₀	0.908 (0.015) [-0.044 on GA]	272 s (12) [0.34 x GA]	0.726 (0.010) [-0.030 on GA]	1270 s (78) [0.16 x GA]

Results

- Faster, but reduction in final solution quality
- (still higher fitness than CBR-specific filter selection techniques: information gain, SVM, feature subset evaluation)
- Improved by updating model, with a trade-off in speedup

Building optimisation

 Used RBFN as surrogate, with mixed variable types, multiple objectives and constraints



Building optimisation

<u>Plain EA</u>

- 1. Generate random population
- 2. Assign a *fitness* to members of the population
- 3. Choose the best ones and recombine them to produce *offspring*
- 4. Mutate the offspring
- 5. Repeat 1-4 until we're done

Building optimisation

EA with surrogate

- 1. Generate random population
- 2. Assign a *fitness* to members of the population
- 3. Train surrogate
- 4. Choose the best ones and recombine them to produce too many offspring
- 5. Mutate the offspring
- 6. Use surrogate to filter out promising offspring
- 7. Repeat 1-6 until we're done

Results

- Speedup / found higher hypervolume
- NB constraints need special treatment

Algorithm variant	Hypervolume	p-value	SR (%)	Evals
NSGA-II	0.849 (0.028)	n/a	50	4017
NSGA-II _c	0.845 (0.022)	0.969	40	4026
NSGA-II-S	0.856 (0.028)	0.783	83	3817
NSGA-II-S _c	0.860 (0.024)	0.338	63	4002
NSGA-II-S _d	0.881 (0.031)	< 0.001	83	3184
NSGA-II-S _{cd}	0.867 (0.027)	0.034	73	3340

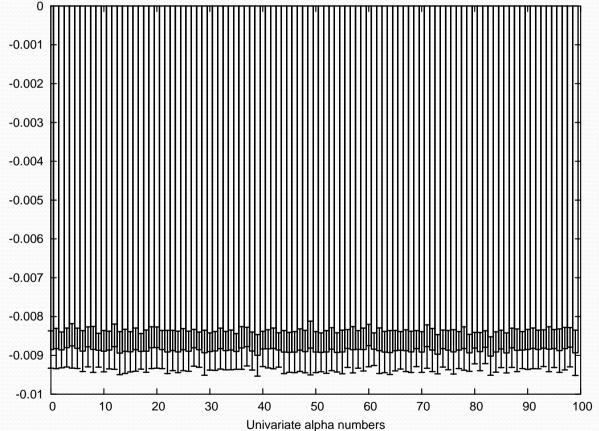
Outline

- Context: optimisation, meta-heuristics, evolutionary algorithms
- Fitness models, the MFM, and DEUM EDA
- Speedup FM as surrogates
- Decision support mining FM
- What makes a good model? and the broader impact

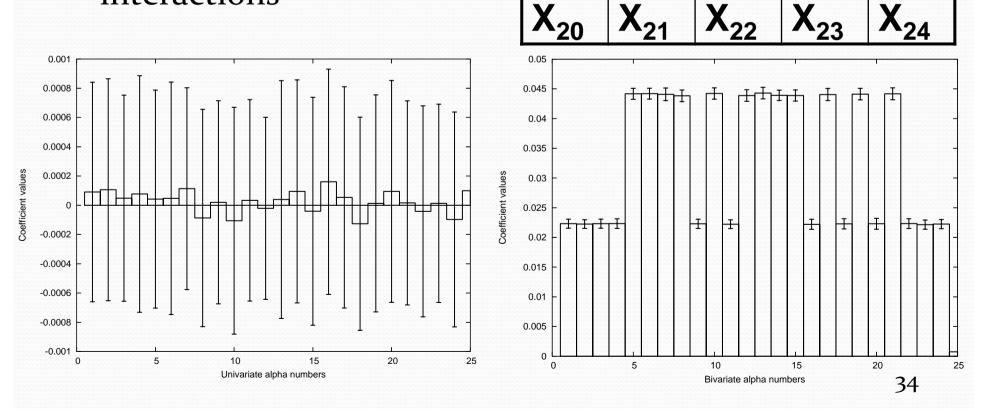
Decision support

- MFM model coefficients
- The model points to solutions that are probably high in fitness
- $\alpha > o$: bit should be o, or bits should differ in value
- $\alpha < 0$: bit should be 1, or bits should be equal in value
- The following are models built using a single randomly generated population – values are mean from 100 runs

- Onemax
- Fitness is count of variables with value 1 (maximise)
- All variables have equal weight and should be 1



- 2D checkerboard
- Maximise neighbours that are different in value
- Includes pairwise interactions



X

 X_5

X₁₀

X₁₅

X₁₆

 X_2

X₁₂

 X_3

X₈

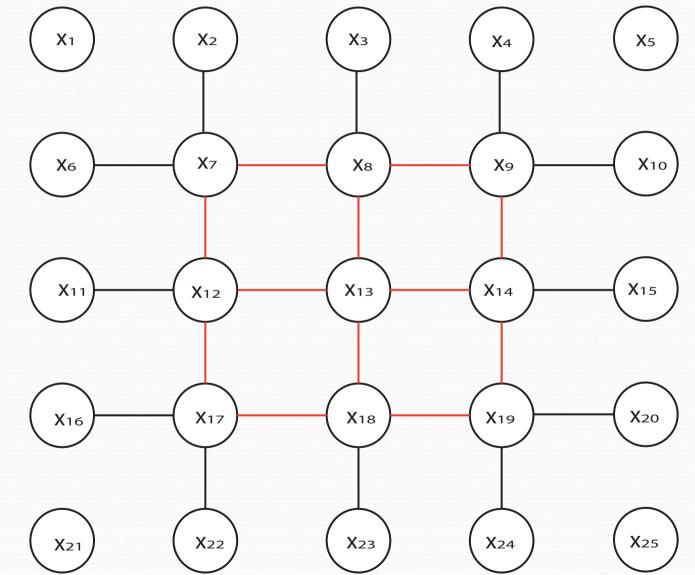
X₁₃

X₁₈

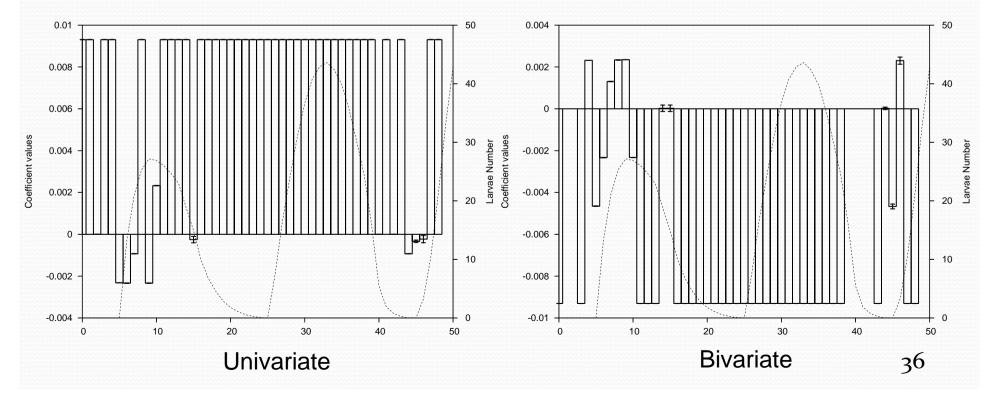
X

Xa

19

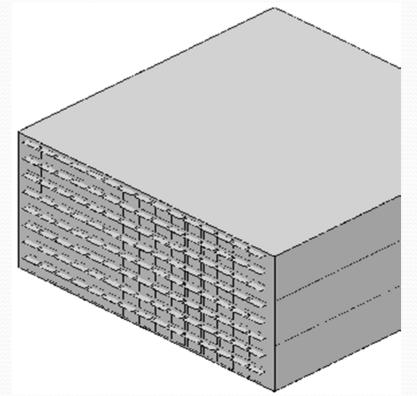


- Bio-control (Mushrooms)
- Predicted intervention point match lifecycle of sciarid larvae



Cellular Windows

 Ideal placement of glazing on a building façade; minimise energy use



0.0170.0160.0160.0150.0150.0150.0160.0160.0150.0150.016

Outline

- Context: optimisation, meta-heuristics, evolutionary algorithms
- Fitness models, the MFM, and DEUM EDA
- Speedup FM as surrogates
- Decision support mining FM
- What makes a good model? and the broader impact

What makes a good model?

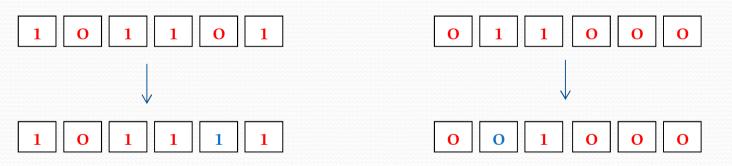
- How do we define "good model"?
- Population size
- Structure (cliques in the model)
- Selection (filtering of solutions)

Fitness Prediction Correlation

- A measure of fitness prediction capability
- Procedure:
 - Construct fitness model
 - Generate population P
 - Predict fitnesses of P
 - Compute true fitnesses of P using fitness function
 - Calculate Spearman's rank correlation between predicted and true fitnesses

Two FPC figures

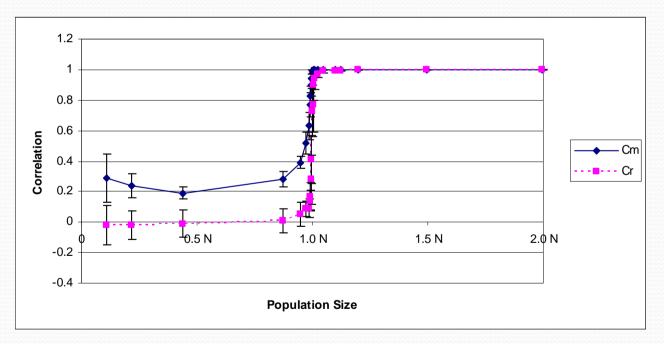
- C_r and C_m
- **C**_{**r**} is the FPC for a randomly generated population
- C_m is the FPC for a "neighbour population" the solutions used to build the model each mutated 1 bit



 C_m is relevant because in one generation an EA moves between two similar populations

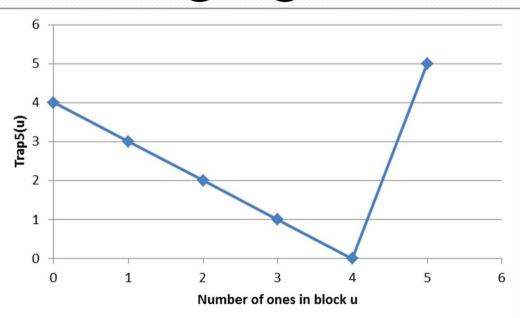
Population size

Number of solutions used to build the model is important



- Underspecified: population size < n
- Fully + over specified: population size >= n

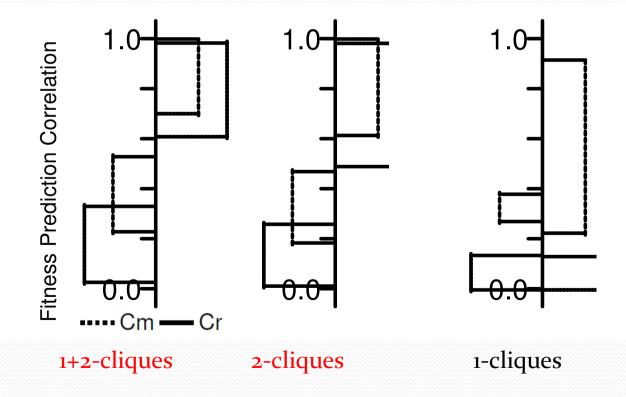
- 1D checkerboard
 - Optima 01010101.... and 10101010....
- Trap-5
 - Bitstring divided into groups of 5
 - Local optimum:
 - 000000....
 - Global optimum:
 - 111111111....



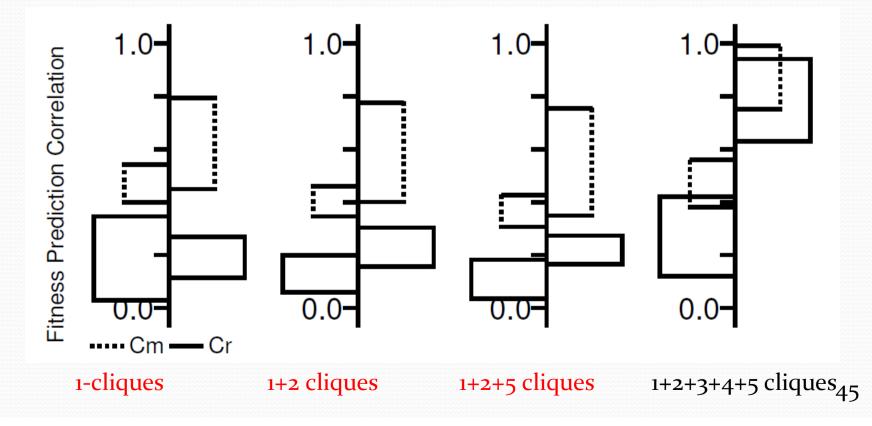
X₁**)**.....**(X**₂**)**

 (X_4)

- 1D checkerboard
- Aggregated over instances from 10-1000 bits



- Trap-5
- Aggregated over instances with 20-100 bits



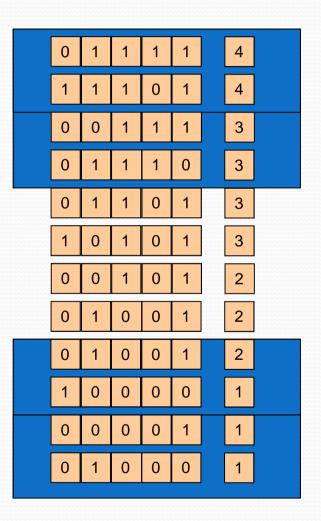
- Different parts of structure more / less important for good model (ranking solutions)
- Recent work: most problems have "structure"
- How much of it do we need to know about to determine ranking?
- Can we use knowledge of problem structure to map hard problems onto easier ones?

Selection

- Selection is not needed to choose population for estimating MFM parameters
 - But nothing to stop us using selection as a filter
- Many EDAs use truncation selection
 - Crude but inexpensive; selects top n individuals and discards the rest
 - This study looked at the impact of selection on fitness information within the population
- Many other selection operators exist, e.g.
 - Fitness proportionate (roulette wheel)
 - Tournament

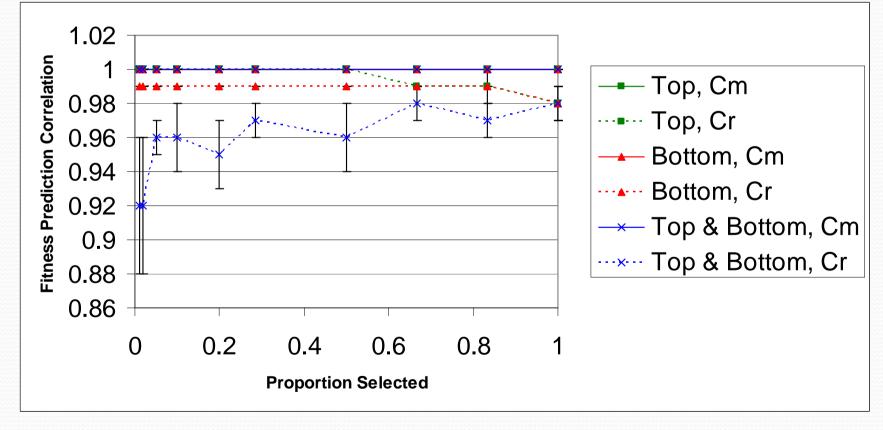
Selection operators

- Top selection
 - Standard Truncation
- Bottom selection
- Top & Bottom selection



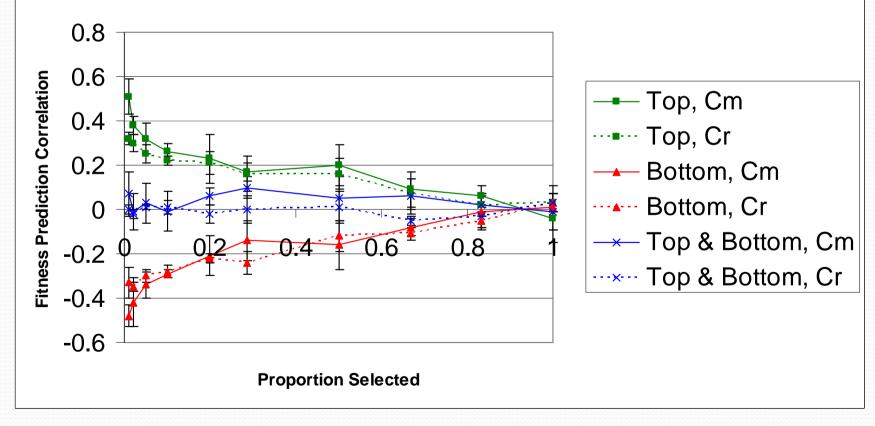
100 bit OneMax

• Fully specified, perfect model structure



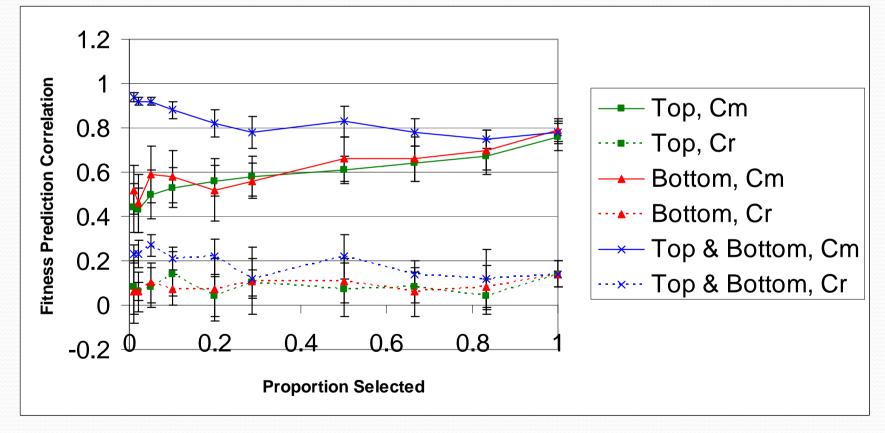
100 bit MaxSAT

• Underspecified, perfect model structure



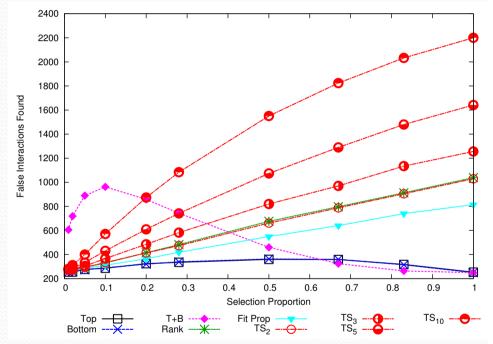
100 bit MaxSAT

• Fully specified, univariate model structure



Selection / structure learning

- Selection often part of structure learning
- Here, learning "structure" for onemax problem
- For most operators, spurious interactions increase with selection proportion
- Truncation selection most consistent
- Top / Bottom selection have similar results
- T+B worst for a low selection proportion



What makes a good model?

- With a perfect structure and big population, selection operator makes little difference (though top is still best)
- With small population or imperfect structure (more realistic), selection helps sharpen fitness information in population as well as providing pressure on search
- Thought: If we can build a good model, then there was useful information about fitness in the population
 - Results indicate that useful information exists in wider population
 - Can this be used in other algorithms?

Fitness models: summary

- Example fitness model: the MFM
- Useful for speeding up search
- Can be mined to aid decision making
- Can aid greater understanding of evolutionary operators

Where next?

- Which FM to use for a given problem?
- Modelling different spaces (e.g. permutations)
- Further exploration of selection's impact on search, model building and structure learning
- What do we mean by "structure" in a model, and in a problem, and how important is it anyway?
- Can we simplify optimisation problems especially given knowledge of structure?

Thanks

- Question time
- Happy to discuss further <u>sbr@cs.stir.ac.uk</u>
- Papers etc. at <u>http://www.cs.stir.ac.uk/~sbr/</u>