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Outline

• "Adding value"

• Markov network fitness model

• Single-generation examples (recap)

• Multi-generation examples

• Discussion

• (RW Application and some more discussion in 

SAEOpt tomorrow)
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Value-added Optimisation

• A philosophy whereby we provide more than 
simply optimal solutions

• Information gained during optimisation can 
highlight sensitivities and linkage

• This can be useful to the decision maker:

– Confidence in the optimality of results

– Aids decision making

– Insights into the problem

• Help solve similar problems

• Highlight problems / misconceptions in definition
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Value-added Optimisation

• This information can come from

– the trajectory followed by the algorithm

– models built during the run

• If we are constructing a model as part of the 
optimisation process, anything we can learn from it 
comes "for free"

• See also

– M. Hauschild, M. Pelikan, K. Sastry, and C. Lima. Analyzing 
probabilistic models in hierarchical BOA. IEEE TEC 13(6):1199-
1217, December 2009

– R. Santana, C. Bielza, J. A. Lozano, and P. Larranaga. Mining 
probabilistic models learned by EDAs in the optimization of 
multi-objective problems. In Proc. GECCO 2009, pp 445-452
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Markov network fitness model (MFM)

• Originally developed as part of DEUM EDA

• An undirected probabilistic graphical model
– Representation of the joint probability 

distribution (factorises as a Gibbs dist.)

– Node: variables

– Edges: dependencies between variables

• Gibbs distribution of MN is equated to mass 
distribution of fitness in population

• Energy has negative log relationship to 
probability, so minimise U to maximise f
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• Build a set of equations using values from 

population and solve to estimate the α

• Variables are -1 and +1 instead of 0 and 1

• Can then sample to generate new solutions

Markov network example
• For a bit-string encoded problem 

f(x0…x3), model can be represented by:
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Mining the model (1)

• As we minimise energy, we maximise fitness. So to 
minimise energy:

• If the value taken by xi is 1 (+1) in high-fitness 
solutions, then ai will be negative

• If the value taken by xi is 0 (-1) in the high-fitness 
solutions, then ai will be positive

• If no particular value is taken by xi optimal solutions, 
then ai will be near zero
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Mining the model (2)

• As we minimise energy, we maximise fitness. So to 

minimise energy:

• If the values taken by xi and xj are equal (+1) in the 

optimal solutions, then ai will be negative

• If the values taken by xi and xj are opposite (-1) in the 

optimal solutions, then aij will be positive

• Higher order interactions follow this pattern
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Single stage experiments
• Often the model closely fits the fitness 

function in the first generation (see DEUMd)

• Experiments:

1. generate 30 populations of solutions at random 

and evaluate

2. estimate MFM parameters for each population

3. calculate means of each α across the 30 models

• This section mostly a recap of earlier results
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Onemax

• Fitness is the sum of xi set to 1
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BinVal

• Fitness is the weighted sum of xi set to 1 (the 

bit string is treated as a binary number)
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Trap 5

• Bit string is broken into blocks of size u

• The blocks are scored separately: fitness is 

sum of these scores

• Deceptive for algorithms ignoring the blocks
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Trap 5

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0  10  20  30  40  50  60  70  80  90  100

C
oe

ffi
ci

en
t v

al
ue

s

Univariate alpha numbers



14

Trap 5
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Trap 5
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Experiments

• This works well for some problems, but for others 
there is not enough information in a randomly 
generated population

• Need some convergence (c.f. WCCI 2008 paper on 
selection1)

• Here running a GA to cause convergence so it is 
independent of model

1Brownlee, A. E. I., McCall, J. A. W., Zhang, Q. & Brown, D. (2008). Approaches to Selection and their Effect on Fitness Modelling in 
an Estimation of Distribution Algorithm, Proc. of the World Congress on Computational Intelligence 2008, Hong Kong, China, pp. 
2621-2628. IEEE Press
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Leading Ones

• Fitness is the count of contiguous 1s starting 

with x0 in the bit string

• Univariate terms: generation 1, generation 30
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Leading Ones

• Bivariates: terms representing neighbours in 

the bit string chain
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Hierarchical IF-and-only-IF
• Recursively combine blocks to get fitness: fitness 

gained for equal left/right halves of blocks

• Univariates: noise; Bivariates tend to -ve

• Left is generation 1, right is generation 100
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Discussion

• Signs of global optima can appear very early in 

evolutionary process

• Often these become stronger as evolution 

proceeds (what we'd expect)

• Provides guidance to most sensitive variables 

and linkages
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Adding value

• Mining the model…

– Provides some reasoning for why a particular 

solution is optimal

– Highlights errors in the problem definition, such as 

poorly defined objectives

– Allows decision maker to choose optimal solutions 

wrt abstract objectives, e.g. aesthetic 

considerations absent from model

– Helps identify "hitch-hiker" values
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Conclusions

• When using an MBEA, we have explicit models 

of the fitness function

• These can be mined to gain greater insights 

into the problem, (almost) for free so it 

doesn't hurt to at least consider: "adding 

value" to optimisation

• How can we generalise? How might this 

extend to other model types?


