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Outline 

• The software 

• What to improve? 

• A systematic approach: 

– Statistical analysis 

– Single-objective tuning 

– Multi-objective tuning 

• What about GI? 







6 

Software 
• OPiuM – Java based simulator, developed in-house 

at KLM 

• Built on DSOL library, developed at TU Delft 
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Software 
• Simulates aircraft movements given a schedule, 

estimates possible delays 

• One flight schedule:  

– E.g. Europe, 3 months, ~17k flights 

• All KLM flight schedules pass through Opium (soon 
to include Air France too) 
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Software 
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What to improve? 

• Opium software is part of a loop of improving 
and testing schedules 

• so, faster, and at least the same accuracy 
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Parameter tuning 

• We were provided with real-world schedules 
and results covering 2007-2010 

• Starting point: Opium has 14 external 
parameters 

– These have been manually tuned over about 10 
years, and are now mostly "don't touch" 

– Tune these to improve simulation accuracy (fit to 
historical data) and simulation run time 
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Wrapper 

• Needed for any kind of automated improvement 
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A systematic approach 

1. Statistical analysis of the parameters 

2. Single objective tuning & model based analysis 

3. Seeded multi-objective optimisation 

 

Results: 

high-performing configurations, with explanation 
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Stage 1: statistical analysis 

1. Statistical Screening 

– Design of experiments / fractional factorial 

– Uses lower and upper bounds for each parameter 

– Screens out insensitive parameters 

2. Exploring the sensitive parameters 

– Fine-grained exploration of each parameter 

– Exhaustive: accuracy 

– Response surface: time 
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Statistical Screening (Accuracy) 
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Optimal values: Accuracy 
• Exhaustive search 

– Search space of 112 
 
 
 
 
 

• Matches default params acc=271.628) 

• Importance, high to low: 
– Swap Measure On 
– Create Gamma 
– Cancel Measure On (negligible?) 
– Max Legs Cancel (negligible?) 

MLC CMO CG SMO MSE

1 1 1 1 271.6

2 1 1 1 271.6

3 1 1 1 271.6

4 1 1 1 271.6

5 1 1 1 271.6

6 1 1 1 271.6

7 1 1 1 271.6

8 1 1 1 271.6

9 1 1 1 271.6

10 1 1 1 271.6

11 1 1 1 271.6

12 1 1 1 271.6

13 1 1 1 271.6

14 1 1 1 271.6

1...14 0 1 1 271.6

2...14 1 0 1 292.7

1 1 0 1 306.9

1...14 0 0 1 306.9

2...14 1 1 0 366.2

2...14 1 0 0 453.3

1 1 1 0 564.0

1...14 0 1 0 564.0

1 1 0 0 646.9

1...14 0 0 0 646.9
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Time 

• Same process for time, but second stage was a 
response surface experiment (6 params, 520 
solutions) 

• Optimal config: 

– Run time 476.5s (default was 1406.7) 

– Accuracy (MSE) 426.988 (default was 271.628) 

• So some potential for improvement 
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Stage 2: single-objective tuning 

• Automatic Hyper-parameter Optimization 

– Optimization with irace 

– Optimization with SMAC 

– "Optimal" configurations found 

• Best was acc 241.268 vs 271.628  

• Probably because of interactions 

– Functional ANOVA (fANOVA) main/pairwise 
interactions 
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fANOVA main/pairwise effects 

 

Sum of fractions for main effects 68.91% 

Sum of fractions for pairwise interaction effects 16.30% 

54.25% due to main effect  Swap_Measure_On 

4.05% due to interaction  Swap_Measure_On x Cancel_Measure_On 

4.02% due to main effect  Cancel_Measure_On 

3.57% due to main effect  CreateGamma 

3.55% due to main effect  Rounding_off_method 

2.16% due to interaction  Swap_Measure_On x Slack_Selection_BB3 

2.13% due to main effect  Slack_Selection_BB3 

1.35% due to interaction  Slack_Selection_BB3 x Cancel_Measure_On 

1.28% due to interaction  Swap_Measure_On x Rounding_off_method 

0.84% due to interaction  Swap_Measure_On x CreateGamma 

0.82% due to interaction  Slack_Selection_BB3 x CreateGamma 

0.75% due to interaction  CreateGamma x Cancel_Measure_On 

0.63% due to main effect  Ground_Factor_Out 

0.55% due to interaction  Slack_Selection_BB3 x Rounding_off_method 

0.48% due to interaction  Slack_Selection_BB3 x HSF_threshold 

0.44% due to interaction  Slack_Selection_BB3 x HSF_threshold_In 

0.36% due to interaction  Rounding_off_method x CreateGamma 

0.33% due to main effect  HSF_threshold 

0.33% due to main effect  HSF_threshold_In 

0.33% due to interaction  Swap_Measure_On x HSF_threshold_In 

0.31% due to interaction  Swap_Measure_On x Ground_Factor_Out 

0.31% due to interaction  Swap_Measure_On x HSF_threshold 

0.25% due to interaction  Rounding_off_method x Cancel_Measure_On 

0.24% due to interaction  HSF_threshold_In x Cancel_Measure_On 

0.21% due to interaction  HSF_threshold x Cancel_Measure_On 

0.15% due to interaction  Rounding_off_method x HSF_threshold_In 

0.15% due to interaction  HSF_threshold_In x CreateGamma 

0.13% due to interaction  Rounding_off_method x Ground_Factor_Out 

0.12% due to interaction  HSF_threshold x CreateGamma 

0.10% due to interaction  Slack_Selection_BB3 x Ground_Factor_Out 



Integer marginal distributions 



Continuous marginal distributions 
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Stage 3: Multi-objective Optimisation 

• Improvement in 
both objectives! 

• Highlighted params 
correspond with 
statistical analysis 
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Where next? 
• The results are good, but can we do better? 

• Possible deep parameter tuning 
– Hundreds of parameters internally  

– Relatively simple to identify and apply further 
search 

• Genetic improvement 
– DSOL library is open source, currently developing 

a project to explore GI on this 

– Prime candidates are searching the space of Java 
API classes such as containers, and lower-level 
improvements to source code 
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Conclusions 

• Start simple! Having written the wrapper, 
parameter tuning is fairly easy to try 

• The results were better than expected: 
improving both speed and accuracy 

• Value-added optimisation – we added deeper 
analysis of the parameters that has been fed 
back to developers 

• Ready for deeper GI improvement at code level 
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Thanks for listening 

 

 

sbr@cs.stir.ac.uk 

 

Questions? 
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