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Abstract

Auditory modelling uses the architecture of the auditory system to guide
early sound processing. The advantage of this approach is (i) time-
resolution is better and (ii) many bandpassed channels are available and
can be processed in parallel. Good time-resolution allows sophisticated
across-time processing to be applied to each channel, resulting in the
discovery of features in each channel. Logically each channel can be pro-
cessed simultaneously. The features discovered can be correlated across
channels. We present some early results for processing sound at three
different levels of short-term time structure.

1 Auditory Modelling and Spectral Analysis

From the time of Helmholtz, it has been known that the cochlea, the main com-
ponent of the inner ear, performs a frequency analysis on the pressure wave that
we perceive as sound. This has led workers in speech and sound interpretation
to perform a similar analysis as a first step in sound interpretation. Much of
the work has used a Fourier transform based approach. Such spectral analysis
is usually carried out on short sections of sound (perhaps 40ms long), supply-
ing the Fourier transform with a sound pressure/time vector and resulting in
a power/frequency vector of the sound during that section. (The phase infor-
mation is generally discarded.) This produces a representation consisting of an
N-clement vector (where NV is the order of the Fourier transform) per analysis.
An alternative technique, the one used in this work, is to use auditory mod-
elling, in which the sound signal is filtered into bands, following what is known
of the response of the cochlea. This produces a representation consisting of M
channels, each with the same time-resolution as the original signal. Noting that
the sections to which the Fourier transform is applied may overlap, it becomes
clear that both techniques give rise to representations larger than the original
signal. Downstream representations are strongly influenced by the structure of
this initial representation.

Table 1 summarises the advantages and disadvantages of each approach.
We should point out that Fourier transform based methods can be used to
perform auditory modelling by applying the transform to overlapping segments
of sound, (e.g. to a new 40ms segment every 1lms), and then regrouping the
power vectors to give an appropriate power /frequency distribution. In this way,
both accurate time resolution and frequency resolution can be achieved, though
at the cost of considerable computation.



Auditory modelling

Spectral analysis |

Good time resolution

Poor time resolution

Poor frequency resolution

Good frequency resolution

Near-logarithmic channel
distribution

Linear energy /frequency
spectrum

Computationally
intensive due to presence of
multiple channels

Computationally  intensive
due to initial transform

aVLSI or DSP solutions are

dVLSI or DSP solutions are

possible

possible

Table 1: Comparison of auditory modelling and spectral analysis techniques

Which approach is preferable depends on what one is trying to achieve.
Current commercial systems aim to achieve direct interpretation of a clean in-
coming sound, and use spectral analysis. However, if one needs to stream the
sound to accentuate the source of interest, then we contend that auditory mod-
elling is the better approach because it can permit segregation of features from
differing sources prior to any attempt at interpretation. Generally, interpreta-
tion of sound (specifically speech) processed using spectral analysis techniques
is performed directly, using hidden Markov models or neural networks which
constrain the likely interpretation of some input vector sequence using the
statistics of the target (phonemic) vocabulary. Auditory modelling based ap-
proaches can use the short-term structure of the signal in different channels to
define features: signals from a single source tend to share short-term structure,
and this can be used to group the features, thus allowing signals from other
sources to be ignored. Streaming techniques based on applying correlogram
processing to auditory model processed sounds have been used in [15, 26, 5].

In the current work the features used are onsets, offsets, and amplitude
modulation pulses: other features are certainly possible [4]. We do not use
correlogram based processing, partly because this technique results in even
larger volumes of data, and partly for the reasons outlined in section 2.3. The
auditory modelling approach to streaming can take advantage of the general
characteristics of sound sources, but does not generally use so much high-level
information as is used in direct interpretation. Nonetheless, such information
can be used later in the interpretation process.

In the rest of this paper, we consider three levels of the short—term time
structure of sound, illustrating them graphically and discussing how each of
them can be used.

2 Three levels of short-term structure

We discuss three levels of short-term structure, summarised in table 2. Each
level corresponds to a different level of the time structure of speech. These
are similar to the envelope, periodicity and fine-structure levels discussed in
[22], and resemble the three forms of modulation discussed in [21]. Each level
corresponds to a different type of activity in the early auditory system, namely
firing of onset cells in the cochlear nucleus (CN), firing of chopper cells in the



[ Timescale || Timing | Application |

Coarse 20-50ms Detecting rhythm and
Order of movement of basic sound elements
vocal tract articulators (syllables, phonemes)
in animals Monaural streaming

Medium 3—10ms Detecting voicing
Movement period of glot- | Speaker identification
tal folds Intonation (from

fundamental frequency)
Monaural streaming
Pitch estimation

Fine 0.35-2 ms Speech articulation
Order of period of sound | place and vowel
in sensitive arca of hu- quality
man hearing Direction detection
Auditory nerve spikes Binaural streaming

Pitch estimation

Table 2: Three levels of short-term time structure of sound

CN, and firing of neurons in the auditory nerve [17]. These levels could be
extended to longer times as well, as suggested in [30].

2.1 Across-channel processing

Although the features found in each channel can be used independently, it is the
ability to correlate features across channels that makes the auditory modelling
approach particularly powerful. Signals in different channels which change in
similar ways at the same time usually come from the same source. Indeed,
human subjects tend to group together signals in different parts of the audible
spectrum if they change in similar ways at the same time [3]. We make use of
this by concentrating on those features which are supported by similar features
in adjacent channels at about the same time. We have applied this technique to
the coarse and medium short-term structure of sound, and used this correlation
across features to identify features even in the presence of considerable noise.
However, we have not been able to use this grouping for the fine scale short
term features.

For all of the examples that follow, the Gammatone cochlear filterbank [19]
provides the initial bandpass filtering.

2.2 Coarse short-term time structure

The output of the cochlear filterbank was processed channel by channel. It was
first rectified, then bandpass filtered to emphasise changes in the envelope of
each signal in the 20-50ms window, using a neurally plausible bandpass filter.
This corresponds to across-time processing preceding the across-frequency cor-
relation [1]. The across-frequency integration took the form of applying the
signals to a one-dimensional network of leaky integrate-and-fire neurons [8].



We used two networks. In both networks, each neuron receives excitatory in-
put from one channel, and excites the neurons in adjacent channels when it
fires. In one network, the neural input corresponded to increases in smoothed
envelope (onsets), and in the other network to decreases in the smoothed input
(offsets). In both networks the result was that when one neuron fired, nearby
neurons which were close to threshold fired almost immediately. This results in
temporal and tonotopic clustering, giving a volley of spikes across a number of
channels in response to an increase (decrease) in signal power. The technique
is described in detail in [28]. The onset cell network is loosely modelled on the
onset cells of the cochlear nucleus.

The end result is the detection of features corresponding to the start and
end of bursts of energy of between 20 and 50 ms duration in the sound. These
bursts are characteristic of speech, occurring in plosives, in voiced sounds, even
in sibilances, and can be used to endpoint speech elements even in the presence
of considerable noise, as can be seen in figure 1. An analogue VLSI implemen-
tation of the neural part is under construction [10].

2.3 Medium short-term time structure

There are a number of possible methods for extracting medium short-term
time structure. The autocorrelation function (ACF) was suggested originally
by Licklider [13], and has been used by many others (e.g.[26, 14, 15]). This
provides detailed information of the signal’s periodicity, channel by channel,
and this information can be combined across channels to produce a summary
ACF [14]. We have chosen to use a different technique, one based on amplitude
modulation. We do so (i) because of the amplification and classification of am-
plitude modulated signals which occurs in the cochlear nucleus [12, 17, 11] and
(ii) because the only neurobiological evidence for neurobiological ACF com-
putation occurs in very specialised tasks such as echolocation (e.g. [7]) or
localisation [6].

Initial processing was as for the coarse time structure, except that the
bandpass filter accentuated envelope changes which were in the 3-10ms range.
Low frequency bands were ignored, as their envelope cannot change on this
timescale. We were particularly interested in sounds generated by the combi-
nation of many harmonics of a low-frequency excitation. Voiced speech is one
example of this type of sound.

The major source of amplitude modulation is unresolved harmonics. The
organ of Corti in the cochlea performs a frequency analysis, but the bands are
relatively wideband, with a minimum equivalent rectangular bandwidth (ERB)

ERB = F./Q + 24.7Hz

where F,. is the centre frequency and @ is the sharpness of the filter in the
cochlear model used [19]. Auditory nerve response is complex: at middle and
high frequencies, for a constant intensity tone, it consists of a gradual increase
as the tone frequency increases, followed by a sharp peak at F., followed by a
rapid decline [20]. For the cochlear model used, this is best characterised by
Q = 9.265 [9]. However, this value of Q is for pure tones at low sound pressure
level (SPL), and the selectivity broadens (i.e. @ decreases) for higher SPLs,
particularly once low—threshold auditory nerve fibres are driven into saturation,
and for wideband sounds [16, 24, 23]. The lower value of @ allows unresolved
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Figure 1: Utterance “Say, that’s a nice bike” in motor-bike noise: horizontal
lines mark the utterance itself. The clustered onsets and offsets can be seen
clearly, even although the SNR is poor, as can be seen from the overall enve-
lope of the sound. The leftmost onset volley marks the start of the wideband
motorbike noise.



harmonics to start at a lower F.. The system is modelled functionally on the
chopper cells of the cochlear nucleus, which have been shown to be particularly
responsive to AM signals near their best frequency and best AM frequency [17].

Two techniques have been used to combine the channels: the first technique
consisted of simply adding up all bandpassed envelopes across the channels, and
then detecting amplitude modulation pulses. This requires that the signals in
the different bands are accurately time-aligned. To achieve this, it was neces-
sary to compensate for the variations in delay introduced by the filter. This
addition loses all information about where in the spectrum the amplitude mod-
ulation occurred, so that although the technique can be used to detect voiced
sound, it is not useful for streaming, nor for more detailed feature detection.
It does, however, provide a technique for detecting voicing which ignores low
frequency sound altogether, and can thus achieve good results in the presence
of interfering low frequency noise. This is described in detail in [27]. The
problem with this technique is that it assumes that the amplitude modulation
in different channels is synchronised: this is unlikely to be the case in a real
environment.

The second technique maintains channel information, delaying the across
channel processing. Each channel is processed to find amplitude modulation
pulses, and then pulses which do not conform to the AM expected (i.e. those
with AM frequency too high or too low) are discarded. The combination tech-
nique used was to retain only pulses “supported” by other pulses: that is, only
if there had been a sufficient number of pulses on adjacent channels within a
certain length of time. Details are in [29].

The effect of this processing is shown in figure 2. The AM pulses discovered
do show the voicing structure of the signal. This is clear both with and without
noise (figure 2B-D): retaining only those pulses corresponding to AM between
80 and 140Hz improves the situation (figure 2E-G) for this speaker. The AM
detecting technique renders the formant structure of the voiced sections visible:
this can be seen both in the absence of noise and when noise was added . Using
a simple form of across-frequency processing in which pulses are retained only if
supported by sufficient earlier pulses is effective only if the AM extends across
many channels. In this case, some of the background noise can be removed,
while retaining much of the structure (figure 2F): but if there is much interfering
noise, much of the AM structure of the signal may be lost (not shown). In
particular, the formant structure is lost.

We can select which pulses should be retained, channel by channel, keeping
only those corresponding to some small range of AM frequencies. Figure 3
shows that the frequency of the AM, and hence of the fundamental excitation,
Fy, changes in a reasonably smooth way. Detection of amplitude modulation
allows the movement of Fjy to be tracked: one can use the inter-pulse interval
in each channel as an estimate of the Fy period, and use the median of these
values, thus not requiring the very fine comb-filters which would be needed to
find the precise harmonics present.

The example here is of a male speaker, with a relatively low F;. Female
speakers have a higher Fj, so that with the () used here, unresolved harmonics
do not occur until considerably higher F.. We believe that the wideband nature
of speech is such that for normal SPL, the @ will be decreased due to high
spontaneous-rate AN fibers becoming saturated [23], and to changes in the
action of the outer hair cells. The effect of this would be to reduce the Q) of
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Figure 2: Effect of processing male TIMIT utterance “she had your dark suit
in greasy wash water all year”, dr3/mklsl/sal. (A) dark sections mark voiced
parts of the utterance. (B-D) Amplitude modulation pulses found, using 141
channels, 400-4000Hz. (B) with white noise added to give 5dB SNR. (C) with
white noise added to give 10dB SNR (D) on original TIMIT signal (E-G) Am-
plitude modulation pulses retained when AM constrained to be in 80-140Hz
region. (E) with white noise added to give 5dB SNR. (F) with white noise
added to give 10dB SNR. (G) on original TIMIT signal. Result of retaining
only those pulses corresponding to AM between 80 and 140Hz. (H) Result
of retaining only those pulses supported by 10 others within a radius of +10
channels for original signal with no noise added.
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Figure 3: AM pulses retained for different bands of frequency of amplitude
modulation. Processing is otherwise as in figure 2¢ (white noise, 10dB SNR).



those parts of the response in which the sound energy is concentrated, causing
AM due to unresolved harmonics to occur at lower F.. We have not been able
to test this directly, although we have found that using a lower @ does permit
AM to be found in female speakers speech at lower frequencies [27]. However,
using a low @ throughout the spectrum hides the spectral structure of the
amplitude modulation.

The most similar system is the stabilised auditory image [18]: however, our
system works channel by channel, seeking amplitude modulation (partially a
biologically motivated exercise), rather than buffering and triggering channel
outputs to produce a visually inspectable image displaying the medium short-
term structure of the sound.

Further work is required to find more effective ways of combining the infor-
mation across multiple bands: we would particularly like to retain the formant
structure while discarding isolated AM pulses caused by noise.

2.4 Fine short-term time structure

Fine time structure is used in binaural sound direction-finding [2]. This ap-
pears to be based on the phase locking of auditory nerve spiking for signals
below about 2.5kHz in humans. Although exactly how one might extract use-
ful information from the timing of AN spikes at this level is not clear, Rosen
[22] identifies specific applications for this level of short-term time structure in
speech interpretation.

The use of this level of time structure in the interpretation of sound or
speech in unclear: nonetheless, applying auditory modelling does give some
interesting pictures!

Figure 4 shows the result of applying cochlear filterbank followed by sim-
ple (i.e. half-wave) rectification to some sounds. The branching structure is
characteristic of sounds with many pure sinusoidal frequency components: a
simple tone results in a sequence of near-vertical stripes which are strongest
(darkest) where the filter responds to that frequency. The precise structure
is determined by the way in which the strongest frequency component in the
bandpass filtered signal changes as the centre frequency of the bandpass filter
changes. For wideband noise-based sounds with a flat spectrum, the strongest
frequency component of the bandpass filtered signal will always be at the cen-
tre frequency of the bandpass filter. In this case, the pattern of branching will
appear random. For voiced speech sounds, the branching reflects the strength
of each harmonic: thus the branching has a regular structure and this struc-
ture is determined by the formants of the vocal tract. For bandpassed unvoiced
sounds, like /s/, the branching has some degree of regularity, as can be seen
from the bottom part of figure 4.

3 Discussion

Auditory modelling techniques retain more information about the short-term
time structure of sound than techniques based on Fourier transforms. We have
shown how certain features we believe to be useful in interpretation or streaming
can be adduced from the coarse and medium scale short-term time structure.
We have not identified how such features may be adduced directly from the
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Figure 4: Fine time structure of two vowels and a sibilance. Channel centre
frequencies range from 100Hz (bottom) to 6kHz (top).



fine scale short-term time structure. We note that Rosen [22] identifies more
applications for each level of short-term time structure of speech.

For the coarse-scale time structure, we have shown that performing across-
time processing before across-frequency processing can permit us to perform
temporal and tonotopic clustering of onsets and offsets. Future work should
consider exactly which channels are bracketed by the volleys of onset and offset
firings, and concentrate attention on those channels during that segment. We
note also that even when the spectral information is compressed down to 3 or 4
bands, envelope temporal cues suffice to permit high levels of word recognition
[25], emphasising the importance of this level of structure.

For the medium-scale time structure, we have shown the usefulness of across-
time processing on a channel by channel basis. However, we have yet to produce
an effective method for across-frequency integration, and this is still under in-
vestigation: one possibility is to use lateral inhibition to sharpen the response
profile. Using a cochlear filter/auditory nerve model whose response depends
on the distribution of the energy of the sound in a more biologically realistic
way would we believe, allow sounds with a higher frequency of fundamental
to be processed in the same way as we have processed sounds with lower fun-
damental frequency. In particular, the widening of the peak level response of
auditory nerve fibers with high spontancous rates (reviewed in [23]) would allow
unresolved harmonics to generate amplitude modulation pulses at lower F.’s.
We are also interested in combining the features from different time-scales, with
a view to performing feature-based sound streaming and interpretation.

Processing multiple channels produced by cochlear filtering is time con-
suming when performed with software. We are currently working with the
department of Electrical Engineering at the University of Edinburgh to trans-
fer some of the processing into analogue VLSI, in order to be able to perform
these algorithms in real-time [10].
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