
Department of Computing Science and Mathematics
University of Stirling

APPEL: An Adaptable and Programmable Policy
Environment and Language

Kenneth J. Turner, Stephan Reiff-Marganiec, Lynne Blair,
Gavin A. Cambpell and Feng Wang

Technical Report CSM-161

ISSN 1460-9673

April 2014

Department of Computing Science and Mathematics
University of Stirling

APPEL: An Adaptable and Programmable Policy
Environment and Language

Kenneth J. Turner, Stephan Reiff-Marganiec, Lynne Blair,
Gavin A. Cambpell and Feng Wang

Department of Computing Science and Mathematics
University of Stirling

Stirling FK9 4LA, Scotland

Telephone +44 1786 467 421, Facsimile +44 1786 464 551
Email kjt@cs.stir.ac.uk, srm13@le.ac.uk, lb@comp.lancs.ac.uk,

gac@cs.stir.ac.uk, fw@cs.stir.ac.uk

Technical Report CSM-161

ISSN 1460-9673

April 2014

Abstract

The ACCENT project (Advanced Component Control Enhancing Network Technologies) developed a practical
and comprehensive policy system for call control/Internet telephony. The policy system has subsequently been
extended for management of sensor networks/wind farms and of home care/telecare.

This report focuses on APPEL (Adaptable and Programmable Policy Environment and Language). It provides
an overview of the language, and presents the language in XML schema form. The core language has been
instantiated for call control, for sensor networks, and for home care. Sample goals and policies of different kinds
are provided to illustrate these applications.

Changes in Version 2
Relative to the version of November 2003, this Technical Report has been substantially revised as follows:

• The policy language schema has been presented first in generic form (section 2). It has been significantly
simplified but also extended as described below. The policy language description has been substantially
revised to match the new version of the language.

• The policy language has then been instantiated for the call control domain (section 3.3). The description of
triggers, conditions and actions is now much more precise. These elements have been significantly revised
as described below.

• The example call control policies have been revised to match the new definition of the language (section 3.4).

Changes in Version 3
Relative to version 2 of APPEL, the policy language has been updated in a large number of ways:

• elements are now listed in logical order

• groups have been created for actions, conditions, policy rules, triggers such that a simple or compound
element can be used (e.g. one action or actions containing combinations)

• by convention (i.e. not in the schema) a string may contain substrings preceded by ‘?’ (meaning a template
value to be made actual at definition time) or all in capitals (meaning a policy variable to be instantiated at
run-time)

• action name:

– extracted as a simple type, i.e. no longer a sub-element of action

– removed connect, forward, handle calls, interrupt, make call, make call to, speak to, transfer

– add media(medium)→ add medium(medium), block call→ reject call(reason),
publish availability(addresses,subject)→ note availability(subject)

– added add party(address), confirm bandwidth, fork to(address), log event(message),
note presence(subject), play clip(URL), reject bandwidth(limit), remove medium(medium),
send message(URL,message)

• actions:

– now an action, actions, or combinations of actions

– added an else operator to mean conditional choice of actions immediately after conditions, or an or if
there are none

i

• acts: removed for simplicity

• alwaysnever modality→ relevance

• compop→ operator

– for strings, ‘v1 lt v2’ should mean v1 is a strict substring of v2, etc.

• conditions: now a condition, conditions, or combinations of conditions

• conds: removed for simplicity

• operator:

– earlier and later removed for simplicity and generality (use between, gt, etc. for times)

– in→ between, notin→ not between (use eq, ne)

• param→ parameter

• parameter:

– removed busy, call, caller id, forward target

– callcontent→ call content, calltype→ call type, media→ medium

– added active content, bandwidth, capability set, date, destination address, network type, priority,
signalling address, source address, traffic load

• policy:

– appliesTo→ applies to

– added profile, valid from, valid to attributes

– lastchanged→ changed, and moved from policydoc to policy

• policydoc→ policy document

• policyrule→ policy rule

• policyrules→o policy rules

– guarded choice→ guarded, now with a nested not following condition

– unguarded choice→ unguarded

• polrules: removed for simplicity

• preference opi modality→ preference

– removed obligation, permission, interdiction, authorisation

– prefer to→ prefer, want not→ do not want, wish not→ do not wish

– used underscores instead of spaces in names

• trigger name:

– extracted as a simple type, i.e. no longer a sub-element of trigger

– removed busy, busy incoming, busy outgoing, call, call incoming, call outgoing

– call attempt→ call, incoming/outgoing prefix→ incoming/ outgoing as suffix

– moved event from condition to trigger

– added absent(address), available(address), bandwidth request, present(address),
unavailable(address)

ii

• triggers:

– changed infix or to prefix form

– added and combination

• value:

– a time should now have a colon, i.e. HH:MM:SS

– a list can be a single element or comma-separated values, i.e. not a value in brackets

• variable: added as an alternative to i, with attributes applies to, id, owner, value

Changes in Version 4
Relative to version 3 of APPEL, the following changes have been made:

• actions:

– added add caller(method), with parameter conference, hold, monitor, release or wait

– added remove party(address)

– callee removed as parameter established by event

• relevance: removed

• variable: prefix for variable values changed to ‘:’

Changes in Version 5
Relative to version 4 of APPEL, the following changes have been made:

• xsd:token used in place of xsd:string where it might be convenient to split element contents across lines

• action:

– add caller(method) added

– forward to(Address) action described

– renamed log call as log event, which now takes a message rather than URL as parameter

– reject call(reason) parameter extended in meaning

• operator:

– between and not between renamed in and out

• parameter:

– day added

– priority now defined as a positive real

– use of operators with parameters made explicit

• policy:

– certain characters forbidden in policy identifiers

• preference:

– do not want, do not wish, want, wish removed

iii

• resolution:

– resolution policies added

– resolution associated triggers, conditions and actions defined

– resolution policy examples added

• trigger:

– connect, disconnect, no answer (and their variants) now permit a send message action

• variable:

– certain characters forbidden in variable identifiers

– variables no longer substituted inside applies to

– multiple variables may be substituted in a string by beginning and ending each variable with ‘:’

– the changed attribute has been added

Changes in Version 6
Relative to the version of June 2005, this Technical Report has incorporated only small editorial revisions have
been made.

Changes in Version 7
Relative to version 6 of APPEL, the policy language has been extended as follows to support timing, state, and the
new application domains of sensor networks and home care.

• Chapter 1 now contains a combined introduction to the original ACCENT context and to APPEL.

• Section 2.1 explains how the APPEL schemas have been refactored into three levels to make them more
modular. Most of chapter 2 describes the core level. Sections 2.13 and 2.14 describe how the core language
is extended by regular policies and resolution policies respectively.

• Section 2.3 now clarifies that policies may refer to entities as well as people.

• Section 2.6 now uses a trigger argument type for trigger arguments. A trigger name is now the union of
core, policy and domain definitions. The following changes have also been made:

– A trigger may now have attributes arg1..5; this is to accommodate sensor network policies, where up
to five arguments may be given. The use of this is illustrated in section 5.6.1.

– The trigger timer expiry(identifier) has been added. The use of this is illustrated in section 3.4.9.

• Section 2.7 now defines a parameter name as the union of core, policy and domain definitions. The fol-
lowing changes have also been made:

– A condition now takes two operands (a parameter or a value), so that all parameter and value combi-
nations can be compared.

– Epoch parameters have been removed from call control and defined as core parameters: date, day and
time.

– Days of the week are now numbered from 1 (Monday) to 7 (Sunday) so that time conditions on
weekdays and weekends can be more readily defined.

• Section 2.8 now defines an action name as the union of core, policy and domain definitions. The following
changes have also been made:

– An action may now have attributes arg1..5; this is to accommodate sensor network policies, where up
to five arguments may be given. The use of this is illustrated in section 5.4.3.

iv

– Internal actions have been removed from call control and defined as core actions: log event(message)
and send message(URL,message).

– Actions on variables set variable(identifier,expression) and unset variable(identifier) have been added.
The use of these is illustrated in section 3.4.8.

– Actions on timers start timer(identifier,period), restart timer(identifier) and stop timer(identifier)
have been added. The use of these is illustrated in sections 3.4.9 and 3.6.7.

• Section 2.9 now clarifies where variables may be used.

• Section 2.10 now allows expressions with various operators and functions. The use of these is illustrated in
sections 3.4.8, 3.6.8 and 5.6.2. White space in variable names is now disallowed.

• Section 2.11 adds the ability to have policy timers, and to have policies triggered by time conditions. The
use of these is illustrated in sections 3.4.9 and 3.4.10.

• Section 2.12 adds the ability to store past triggers and actions automatically, and to check this history in
policy conditions. The use of this is illustrated in section 3.4.11.

• Section 2.14 now binds preference0..9 and variable0..9 in resolution policies. This is to accommodate
sensor network policies, where a resolution may have two triggers with up to five arguments each. The use
of this is illustrated in, for example, section 3.6.

• The report has been restructured so that each application domain is now described in one chapter, currently
chapter 3 for call control, chapter 5 for sensor networks, and chapter 4 for home care networks.

Changes in Version 8
Relative to the version of December 2007, this Technical Report has been revised as follows:

• All XML has now been reformatted.

• Times are now given as HH:MM:SS throughout.

• Chapter 1 has been renamed ‘Introduction’. Chapter 6 has been added to give some brief conclusions.

• Section 2.3 introduces new effect and supports goal attributes that support goal refinement.

• Section 2.7 now disallows the use of in/out when comparing a value and a parameter. In the case of a value
preference0..9 or variable0..9, a ‘:’ prefix is now suggested (and has been used throughout).

• Section 2.10 now allows use of the ‘%’ operator on numbers. The division operator ‘/’ has now been defined
explicitly for integer and floating point operands. The interpretation of a string as a floating point number
has been specified. It is explicitly stated that a quoted string will never be interpreted as a number.

• Section 2.14.3 now refers to actions in general rather than to just call actions.

• Section 2.15 introduces prototype policies. Corresponding examples have been introduced for call control
(section 3.7), sensor networks (section 5.7) and home care (section 4.7).

• Section 2.16 introduces goals. Corresponding examples have been introduced for call control (section 3.8),
sensor networks (section 5.8) and home care (section 4.8).

• Section 3.3.2 now contains a common definition of trigger, condition and action parameters.

• Section 3.3.5 introduces a new disconnect action to clear the current call.

• Section 3.6.6 now contains the correct XML for the caller-medium conflict example.

• Sections 4.3.2 and 5.3.2 now define more specific values for triggers and actions in the home care and sensor
network domains.

• The sensor network examples in section 5.4 and 5.6 have been updated.

• The home care examples in section 4.4 and 4.6 have been updated.

v

Changes in Version 9
Relative to the version of April 2009, this Technical Report has been revised as follows:

• Section 2.8 now states that the ‘:’ prefix is optional for an identifier in set variable and unset variable. This
section also now gives explicit message formats for send message.

• Section 2.10 has been revised to describe operator priorities; multiplicative operators now have higher
precedence than additive ones. Full expressions now begin with ‘=’.

• Section 2.11 has been revised to describe the current interpretation of time-based policies.

• Section 2.13 now includes receive message as a regular policy trigger.

• Section 2.16 has been revised to state that a goal measure formula is given as the argument of the goal
action, and to state how the overall evaluation function is defined.

• Section 4.3.2 has been revised to describe more typical trigger and action arguments for home care. (Most,
but not all, of these are supported by the current implementation.) The examples in sections 4.4, 4.6, 4.7
and 4.8 have been changed to be consistent with other changes.

Changes in Version 10
Relative to the version of March 2011, this Technical Report has been revised as follows:

• Sections 4.3.2, 4.3.3 and 4.3.5 have been updated to describe Plugwise support.

Changes in Version 11
Relative to the version of May 2011, this Technical Report has been revised as follows:

• The description of policy combination operators has been clarified in section 2.5.

• Section 2.8 now allows more flexible period formats for start timer. The send message action has now
been extended to allow for outputting synthesised speech and pre-recorded audio clips.

• Section 2.9 now states that variable names must be preceded by ‘:’ when used in a condition parameter as
well as in an expression. It has also been has been clarified how the end of a variable name in an expression
is determined.

• Sections 3.7, 4.7 and 5.7 now define the system variables used in prototype effects and goal measures.

• Sections 4.3.2 and 4.3.3 now describe support for the ACS RFID readers and Cipherlab barcode readers.

Changes in Version 12
Relative to the version of September 2012, this Technical Report has been revised as follows:

• As now stated in sections 2.3, 2.9 and 2.16, an optional description attribute has been added for goals,
policies, prototypes, resolutions and variables.

• Section 4.3.5 now includes actions for blinds and shutters. The say action has been removed as speech
output is now handled by send message(audio:destination,message).

vi

Changes in Version 13
Relative to the version of February 2013, this Technical Report has been revised as follows:

• Sections 2.3 and 2.14.1 now mention that resolution policies must have exactly two triggers.

• Section 2.8 now gives more information about speech markup for spoken messages.

• Sections 2.8, 3.3.5, 4.3.5 and 5.3.5 now include a list of abstract action effects at the core and domain levels.

• Section 2.10.3, 2.10.4 and 2.10.5 have been added to deal with fuzzy and probabilistic triggers, conditions
and actions.

• Section 2.11 now explains the cirumstances in which timer conditions can be mixed.

• Section 2.14.3 now includes apply firmer and apply looser resolution actions.

• System variables are now described separately for each domain in sections 3.1, 4.1 and 5.1.

• The handling of uncertain values is now described separately for each domain in sections 3.2, 4.2 and 5.2.

• In section 3.3.5 the disconnect action has been renamed close to avoid confusion with the disconnect trigger.
This action has also been added for resolution policies in sections 3.5.2 and 3.5.4.

• The home care domain is now described in section 4, while the sensor network domain now appears in
section 5.

• In sections 4.3.2 and 5.3.2, the argument message period has been renamed as message qualifier as it may
now be used for a confidence level as well as a period.

• Sections 4.3.3 and 4.3.5 have been updated to reflect the current system support. Section 4.3.5 now includes
set actions for other kinds of appliances, and volume set now takes a volume percentage as parameter.

• Section 4.4.7 and 4.4.8 illustrate the use of fuzziness and probability in regular policies.

Changes in Version 14
Relative to the version of June 2013, this Technical Report has been revised as follows:

• Section 2.5 now explains that if only one of two parallel rules is applicable then neither is applied. The
operational of sequential rules has also been clarified.

• Section 2.6 now describes trigger matching in more detail, including the use of regular expression patterns
in policy trigger parameters.

• Section 2.8 now describes speech synthesis to a file. Audio action parameters are now discussed for
send message. The use of ‘audio:clip’ has been discontinued as messages may now name policy vari-
ables containing clip data. The set variable and start timer actions may now be duplicated with different
parameters and are subject to partial parameter matching.

• Section 2.9 now allows variable substitution in goal measures and prototype effects.

• Section 2.13.1 now includes audio trigger parameters for receive message.

• Section 2.13.2 now describes the user-friendly variables Date, Day and Time.

• Section 2.12 describes changes to the storage of trigger and action history.

• Section 2.15 now describes prototype effect expressions in more detail.

• Section 2.16 now describes goal measure expressions in more detail, including a restriction on goal identi-
fiers.

• Section 3.3.5 now specifies reject bandwidth without a parameter.

vii

• Section 4.1 now defines the environment variables bed time, calorie intake, exercise time, exterior pollen,
exterior pollution (replacing air quality), fluid intake, flush count, information level, interior pollen, in-
terior pollution, fall risk, reminder level and rise time for home care. Floating point and integer values
are now distinguished.

• Section 4.2 clarifies how entity names are matched to fuzzy set names. Fuzzy input sets pollen and pollution
have been defined. Fuzzy output sets fan and heater have been defined (replacing ventilation and heating
respectively).

• Section 4.3.2 now has a drive select trigger and action for DVD and VCR devices, and gives specific
triggers/actions for doorbell, FitBit, i-Buddy, Nabaztag, Tunstall and TuxDroid devices. The hear trigger
has been removed as speech input is now provided via receive message.

• Section 4.3.3 now describes how user variables are automatically set to record device in triggers. Triggers
have been added for the FitBit, Nabaztag and TuxDroid. Triggers for low battery are now mentioned
for FitBit, Oregon, TuxDroid and Visonic devices. Light level readings are now mentioned only for the
TuxDroid.

• Section 4.3.5 now defines the device out action as being subject to partial parameter matching. Actions
have been added for the i-Buddy, Nabaztag and TuxDroid devices.

viii

Contents

Abstract i

1 Introduction 1
1.1 ACCENT Overview . 1
1.2 APPEL Overview . 1

2 Core Language 3
2.1 Language Introduction . 3
2.2 Policy Document . 4
2.3 Policy . 4
2.4 Policy Modality . 6
2.5 Policy Rules . 6
2.6 Triggers . 8
2.7 Conditions . 10
2.8 Actions . 13
2.9 Variables . 16
2.10 Expressions . 17

2.10.1 Basic Expressions . 17
2.10.2 Confidence Values . 19
2.10.3 Fuzzy Values . 19
2.10.4 Probabilistic Values . 20
2.10.5 Combining Fuzzy and Probabilistic Values . 20

2.11 Timers . 21
2.12 History . 22

2.12.1 Trigger History . 22
2.12.2 Action History . 23

2.13 Extensions for Regular Policies . 23
2.13.1 Triggers . 23
2.13.2 Conditions . 24

2.14 Extensions for Resolution Policies . 25
2.14.1 Triggers . 25
2.14.2 Conditions . 25
2.14.3 Actions . 26

2.15 Extensions for Prototype Policies . 27
2.16 Extensions for Goals . 27

3 Call Control 30
3.1 System Variables . 30
3.2 Uncertain Values . 30
3.3 Regular Policies . 30

3.3.1 Introduction . 30
3.3.2 Common Parameters and Environment Variables . 31
3.3.3 Triggers . 31
3.3.4 Conditions . 33

ix

3.3.5 Actions . 35
3.4 Example Regular Policies . 36

3.4.1 Forward if Busy . 38
3.4.2 Forward Incoming Calls to Grace . 38
3.4.3 Never forward to Mary . 38
3.4.4 Never forward Emergency Calls . 39
3.4.5 Voicemail on Busy or No Answer . 39
3.4.6 Available for Java . 39
3.4.7 Complex Busy and No Answer Handling . 39
3.4.8 Talking Status . 42
3.4.9 Call Timer . 42
3.4.10 Working Period Log . 43
3.4.11 Polite Availability Check . 43

3.5 Resolution Policies . 43
3.5.1 Introduction . 43
3.5.2 Triggers . 43
3.5.3 Conditions . 44
3.5.4 Actions . 44

3.6 Example Resolution Policies . 45
3.6.1 Call Fork-Fork Conflict – Generic Resolution . 45
3.6.2 Call Forward-Forward Conflict – Generic Resolution . 46
3.6.3 Medium Add-Remove Conflict – Generic Resolution . 47
3.6.4 Call Fork-Reject Conflict – Generic Resolution . 47
3.6.5 Bandwidth Confirm-Reject Conflict – Specific Resolution 48
3.6.6 Caller-Medium Add-Add – Specific Resolution . 48
3.6.7 Timer Start-Stop Conflict – Specific Resolution . 49
3.6.8 Variable Set-Set Conflict – Specific Resolution . 49

3.7 Prototype Policies . 50
3.8 Goals . 51

4 Home Care 52
4.1 System Variables . 52
4.2 Uncertain Values . 52
4.3 Regular Policies . 52

4.3.1 Introduction . 52
4.3.2 Common Parameters and Environment Variables . 52
4.3.3 Triggers . 60
4.3.4 Conditions . 60
4.3.5 Actions . 61

4.4 Example Regular Policies . 62
4.4.1 Light Control . 63
4.4.2 Burglar Alarm . 63
4.4.3 Night Light . 64
4.4.4 Night Wandering Reminder . 64
4.4.5 Water Heating Control . 65
4.4.6 Activity Logging . 66
4.4.7 Fuzzy Heating Control . 66
4.4.8 Probabilistic Heating Control . 67

4.5 Resolution Policies . 68
4.5.1 Introduction . 68
4.5.2 Triggers . 69
4.5.3 Conditions . 69
4.5.4 Actions . 69

4.6 Example Resolution Policies . 70
4.6.1 Parameter-Parameter Conflict – Generic Resolution . 70
4.6.2 Power Conflict – Generic Resolution . 71

x

4.6.3 Power Conflict – Specific Resolution . 72
4.7 Prototype Policies . 73
4.8 Goals . 74

5 Sensor Networks 75
5.1 System Variables . 75
5.2 Uncertain Values . 75
5.3 Regular Policies . 75

5.3.1 Introduction . 75
5.3.2 Common Parameters and Environment Variables . 75
5.3.3 Triggers . 78
5.3.4 Conditions . 78
5.3.5 Actions . 79

5.4 Example Regular Policies . 80
5.4.1 High Wind Alert . 80
5.4.2 Low Battery Alert . 81
5.4.3 Sensor Wake-up . 81
5.4.4 Reset All Agents . 81
5.4.5 Retrain Power Agent . 82

5.5 Resolution Policies . 82
5.5.1 Introduction . 82
5.5.2 Triggers . 82
5.5.3 Conditions . 83
5.5.4 Actions . 83

5.6 Example Resolution Policies . 83
5.6.1 Action Parameter Conflict – Generic Resolution . 84
5.6.2 Action Parameter Conflict – Specific Resolution . 85
5.6.3 Resource Conflict – Generic Resolution . 85

5.7 Prototype Policies . 86
5.8 Goals . 87

6 Conclusion 88

xi

List of Figures

2.1 Schema Levels . 3
2.2 Policy Document . 4
2.3 Policy Rules . 7
2.4 Policy Rule . 8
2.5 Triggers . 9
2.6 Conditions . 11
2.7 Actions . 13
2.8 Internal Action Effects . 16
2.9 Fuzzy Values . 20
2.10 Epoch Parameter Operators . 25

3.1 Call Control Controlled System Variables . 30
3.2 Call Control Uncontrolled System Variables . 31
3.3 Relationship between Triggers, Conditions and Actions . 32
3.4 Address, Amount and Description Parameter Operators . 35
3.5 Call Control Action Effects . 37

4.1 Home Care Controlled System Variables . 53
4.2 Home Care Uncontrolled System Variables . 53
4.3 Home Care Fuzzy Inputs 1 . 54
4.4 Home Care Fuzzy Inputs 2 . 55
4.5 Home Care Fuzzy Outputs . 55
4.6 Relationship between Home Care Triggers, Conditions and Actions 56
4.7 Sample Home Care Triggers (‘*’ any value, ‘-’ empty value) . 58
4.8 Sample Home Care Actions (‘*’ any value, ‘-’ empty value . 59
4.9 Common Parameter Operators . 61
4.10 Home Care Action Effects . 62

5.1 Sensor Network Controlled System Variables . 76
5.2 Sensor Network Uncontrolled System Variables . 76
5.3 Relationship between Sensor Network Triggers, Conditions and Actions 77
5.4 Identifier and Value Parameter Operators . 79

xii

Chapter 1

Introduction

1.1 ACCENT Overview
The ACCENT project (Advanced Component Control Enhancing Network Technologies, http://www.cs.stir.ac.uk/
accent) developed a practical and comprehensive policy system for call control/Internet telephony. The policy
system has subsequently been extended for management of sensor networks/wind farms on the PROSEN project
(Proactive Control of Sensor Networks, http://www.prosen.org.uk). The policy system has also been extended for
management of home care/telecare on the MATCH project (Mobilising Advanced Technologies for Care at Home,
http://www.match-project.org.uk).

Other policy description languages exist, and were investigated during the work on APPEL1 (Adaptable and
Programmable Policy Environment and Language, the ‘A’ originally referring to the ACCENT project). An exam-
ple of a well-supported and popular policy language for access control and system configuration is Ponder [5], but
there are many other approaches (e.g. [1, 6]). However, these other languages have not been found to be suitable
for the kinds of domains considered here [7].

This document focuses on the APPEL policy language, and elaborates what is in [7]. The following sections
provide an overview of the language, discuss concepts for various kinds of policies, and discuss syntax and seman-
tics by reference to the XML schemas. In subsequent chapters, the use of APPEL in various application domains
is described and illustrated.

[7, 8, 12] give some general background to the ACCENT project. There are technical reports describing the
ACCENT Policy Server [10] and the APPEL Policy Wizard [11]. Ontologies for the policy wizard are discussed in
[2, 3, 4].

1.2 APPEL Overview
The APPEL policy language is defined by an XML grammar that appears in chapter 2. XML has been chosen due
to its good support with respect to tools and parsers. Also, it is the common standard for interchange of structured
data in distributed systems.

When APPEL was designed, it was hoped that a good language design could rule out many of the possible pol-
icy conflicts. However, it is likely that no policy language can be designed to avoid conflicts while still remaining
sufficiently expressive. Features (in the sense of call control) are different in a number of ways from policies, e.g.
policies are more abstract, higher level, declarative and user-oriented. Policies should also be written by lay end
users and not domain experts (as one might be expected with traditional features).

Another major aspect considered when designing the language was that it should be usable and useful to a
number of users, ranging from lay end users to system administrators to domain experts. The language is as
expressive as deemed necessary to fulfil the requirements of the most knowledgeable users (with respect to the
application domain), while the complexity is hidden behind suitable interfaces for the less knowledgeable users.
User-friendly wizards have been designed for formulating policies [11]. These allow lay users to specify policies
by choosing predefined templates and customising them. A subset of natural language is used rather than XML.
However, more knowledgeable users can work with XML directly.

1The name derives from the French ‘appel’ meaning a call.

1

http://www.cs.stir.ac.uk/accent
http://www.cs.stir.ac.uk/accent
http://www.prosen.org.uk
http://www.match-project.org.uk

Although APPEL was originally aimed at call control, it was designed to be extensible. Indeed, it has now
been used for policy-based management of sensor networks and of home care. The policy language splits the
issues in a relatively clean way. The core of the language is domain-independent, i.e. the structure of policies and
policy rules as well as their combinations. The body of a policy rule defines triggers, conditions and actions. The
general concepts here are domain-independent, though the specific names used in these elements are defined for
each domain.

2

Chapter 2

Core Language

2.1 Language Introduction
The syntax of ACCENT is defined by an XML schema. The semantics is given by the implementation of the
PolicyEvaluate class (see [9]).

A policy grammar is defined using standard XML Schema notation. XML schemas have the same purpose
as XML DTDs, namely specifying what is syntactically legal for a document adhering to the schema. They can
be used for validation purposes. XML schemas allow for richer data types than XML DTDs. The XML schema
notation uses nesting to embed elements in each other. The keyword ref following an element tag shows that
the specific element is defined at another place (in this case, to locations within the same schema). xsd:sequence
indicates that all embedded elements must occur (in the specified order) and xsd:choice indicates that one of the
listed elements has to be chosen. However, these restrictions can be modified by use=required and by allowing
elements to have a cardinality specified by minOccurs and maxOccurs. In the graphical representations (from
XMLSpy), sequences are denoted by a line with several dots,and choice by what looks like a switch.

Schemas for APPEL are defined in a modular fashion at three levels as illustrated in figure 2.1:

Core: The core level defines the framework that applies to all domains. This includes universal triggers, condition
parameters and actions.

Policy: The policy level extends the core level in two directions: for regular policies and for resolution policies.
This mainly adds further triggers, condition parameters and actions, while remaining domain-independent.

Domain: The domain level extends the policy level for specific application domains. This adds further triggers,
condition parameters and actions for particular domains. Examples of application domains are call control,
sensor networks and home care.

Extensions for
Call Control

(appel_regular_call)

Extensions for
Regular Policies
(appel_regular)

Extensions for
Call Control

(appel_resolution_call)

Extensions for
Resolution Policies
(appel_resolution)

Policy Core
(appel)

Extensions for
XXX

(appel_regular_xxx)

Extensions for
XXX

(appel_resolution_xxx)

Figure 2.1: Schema Levels

3

Figure 2.2: Policy Document

The schemas shown in figure 2.1 are available from www.cs.stir.ac.uk/schemas.
This chapter describes the structure of the core and policy schemas. Chapters 3, 5 and 4 respectively describe

the application of the policy language for call control/Internet telephony, sensor network/wind farm management,
and home care/telecare management.

2.2 Policy Document
A policy document (see figure 2.2) is the highest level at which one or more goals, regular policies, prototype
policies, resolution policies and policy variables may be defined.

<xsd:element name=′′policy document′′>
<xsd:complexType>
<xsd:choice maxOccurs=′′unbounded′′>
<xsd:element ref=′′goal′′/>
<xsd:element ref=′′policy′′/>
<xsd:element ref=′′prototype′′/>
<xsd:element ref=′′resolution′′/>
<xsd:element ref=′′variable′′/>

</xsd:choice>
</xsd:complexType>

</xsd:element>

2.3 Policy
A policy is the main object of interest in the policy description language. A policy has a number of attributes:
owner gives the address of the person or entity that the policy belongs to, while applies to gives the address of the
person, entity or group that the policy applies to. The term ‘entity’ is used here to refer to any system component
such as a device or an application.

Normally the owner and applies to attributes are the same. However in an enterprise, this might not be so: a
policy might have been created (and be owned) by a system administrator, but apply to one or more people in the
enterprise.

In general, applies to refers to a domain. It can be one person or entity, one domain, or a list of users, entities
and domains. It can also refer to a domain symbolically by citing its variable name (see section 2.9). The following
examples illustrate the idea:

4

www.cs.stir.ac.uk/schemas

ken@cs.stir.ac.uk: means ‘ken’ as a particular user

@cs.stir.ac.uk: means anyone in the Stirling Computing Science department

@stir.ac.uk: means anyone in Stirling University

ken@cs.stir.ac.uk,lynne@comp.lancs.ac.uk,@accent.org.uk: means users ‘ken’ or ‘lynne’ or anyone in the
accent.org.uk domain

@: means everyone (though the current version of the policy server stops at the top-level domain: @domain)

Each policy has an id to identify it uniquely for each owner. An identifier must not contain the characters ‘?’,
‘/’, ‘[’ or ‘]’. A policy identifier may contain embedded spaces, and may also contain non-Latin characters (i.e.
from the Unicode character set).

The changed attribute indicates when a policy was last altered. (A date/time in XML format has the form of
a date YYYY-MM-DD, the letter ‘T’ (for time), and then a time HH:MM:SS.) Selection of a policy is subject to
the following rules:

• Each policy can be enabled or not, determining whether the system should consider the policy.

• Policies can be optionally associated with a profile. This is simply an identifier that groups policies, e.g.
those for ‘at the office’ or those for ‘at home’. A policy with an empty profile is always applicable, while
one with a non-empty profile must match the user’s current profile.

• The validity of a policy can be specified by a starting date and time (valid from) and a finishing date and
time (valid to). Either or both of the start and finish values may be given; the values are inclusive.

The description attribute allows an optional explanation of the policy to be given. This may include non-Latin
characters.

The effect attribute is optionally used to define the abstract effects of a policy. This is mainly for use with pro-
totype policies, and is described in section 2.15. However because regular policies can be derived from prototype
policies, the attribute is also permitted for regular policies.

The supports goal attribute is optionally used to state the goals to which a policy contributes. Again, this is a
result of goal refinement and is used to distinguish ordinary policies from those created by instantiating prototype
policies. This attribute is a comma-separated list of goal identifiers (white space being irrelevant).

Regular policies have the following structure:

<xsd:element name=′′policy′′>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref=′′preference′′ minOccurs=′′0′′/>
<xsd:group ref=′′policy rule group′′/>

</xsd:sequence>
<xsd:attribute name=′′applies to′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′changed′′ type=′′xsd:dateTime′′ use=′′required′′/>
<xsd:attribute name=′′description′′ type=′′xsd:string′′/>
<xsd:attribute name=′′effect′′ type=′′xsd:string′′/>
<xsd:attribute name=′′enabled′′ type=′′xsd:boolean′′ use=′′required′′/>
<xsd:attribute name=′′id′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′owner′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′profile′′ type=′′xsd:string′′/>
<xsd:attribute name=′′supports goal′′ type=′′xsd:string′′/>
<xsd:attribute name=′′valid from′′ type=′′xsd:dateTime′′/>
<xsd:attribute name=′′valid to′′ type=′′xsd:dateTime′′/>

</xsd:complexType>
</xsd:element>

Resolution policies differ from regular policies in having no effect attribute (used for prototype policies), no
preference attribute (no recursive resolution), no profile attribute (not relevant), and no supports goal attribute
(used only for derived policies). Resolution policies must have exactly two triggers (though this is not enforced in
the schema).

5

<xsd:element name=′′resolution′′>
<xsd:complexType>
<xsd:sequence>
<xsd:group ref=′′policy rule group′′/>

</xsd:sequence>
<xsd:attribute name=′′applies to′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′changed′′ type=′′xsd:dateTime′′ use=′′required′′/>
<xsd:attribute name=′′description′′ type=′′xsd:string′′/>
<xsd:attribute name=′′enabled′′ type=′′xsd:boolean′′ use=′′required′′/>
<xsd:attribute name=′′id′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′owner′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′valid from′′ type=′′xsd:dateTime′′/>
<xsd:attribute name=′′valid to′′ type=′′xsd:dateTime′′/>

</xsd:complexType>
</xsd:element>

Prototype policies differ from regular policies in having a mandatory effect attribute (used to derive policies),
and in having no supports goal attribute (used only for derived policies):

<xsd:element name=′′prototype′′>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref=′′preference′′ minOccurs=′′0′′/>
<xsd:group ref=′′policy rule group′′/>

</xsd:sequence>
<xsd:attribute name=′′applies to′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′changed′′ type=′′xsd:dateTime′′ use=′′required′′/>
<xsd:attribute name=′′description′′ type=′′xsd:string′′/>
<xsd:attribute name=′′effect′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′enabled′′ type=′′xsd:boolean′′ use=′′required′′/>
<xsd:attribute name=′′id′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′owner′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′profile′′ type=′′xsd:string′′/>
<xsd:attribute name=′′valid from′′ type=′′xsd:dateTime′′/>
<xsd:attribute name=′′valid to′′ type=′′xsd:dateTime′′/>

</xsd:complexType>
</xsd:element>

2.4 Policy Modality
A policy may contain a modality in the form of a preference. This modality is principally for use by the conflict
resolution engine. The optional preference of a policy states how strongly the policy definer feels about it. Omit-
ting the preference means that the policy definer is neutral about this. From strongly positive to strongly negative,
the ordering is must, should, prefer, empty, prefer not, should not, must not.

<xsd:element name=′′preference′′>
<xsd:simpleType>
<xsd:restriction base=′′xsd:string′′>
<xsd:enumeration value=′′must′′/>
<xsd:enumeration value=′′must not′′/>
<xsd:enumeration value=′′prefer′′/>
<xsd:enumeration value=′′prefer not′′/>
<xsd:enumeration value=′′should′′/>
<xsd:enumeration value=′′should not′′/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

2.5 Policy Rules
A policy rule group (see figure 2.2) is either a single policy rule or a composite of subsidiary policy rules.

6

Figure 2.3: Policy Rules

<xsd:group name=′′policy rule group′′>
<xsd:choice>
<xsd:element ref=′′policy rule′′/>
<xsd:element ref=′′policy rules′′/>

</xsd:choice>
</xsd:group>

A composite list of policy rules (see figure 2.3) is normally used when an operator governs these rules. How-
ever groups with just one rule may be nested within each other if desired.

Pairs of policy rules may be combined by guarded choice, unguarded choice, parallel application or sequence.
More complex constructions can be obtained by nesting policy rules.

<xsd:element name=′′policy rules′′>
<xsd:complexType>
<xsd:choice>
<xsd:group ref=′′policy rule group′′/>
<xsd:sequence>
<xsd:choice>
<xsd:element name=′′guarded′′/>
<xsd:element name=′′parallel′′/>
<xsd:element name=′′sequential′′/>
<xsd:element name=′′unguarded′′/>
</xsd:choice>
<xsd:group ref=′′policy rule group′′/>
<xsd:group ref=′′policy rule group′′/>

</xsd:sequence>
</xsd:choice>

</xsd:complexType>
</xsd:element>

Policy rules can optionally be combined in pairs with a number of operators:

guarded: When two policy rules are joined by the guarded choice operator, the execution engine will first evaluate
the guard condition. If the guard evaluates to ‘true’, the first of the two rules will be applied, otherwise the
second. Clearly once the guard has been evaluated it is necessary to decide whether the individual rule is
applicable and whether there is no conflict that prohibits enforcement. Once a guarded choice has been
made, it is not undone even if the resulting rule is not applicable.

<xsd:element name=′′guarded′′>
<xsd:complexType>
<xsd:sequence>
<xsd:group ref=′′condition group′′/>

7

Figure 2.4: Policy Rule

</xsd:sequence>
</xsd:complexType>

</xsd:element>

unguarded: Unguarded choice provides more flexibility, as both parts will be tested for applicability. If only one
of the two policy rules is applicable, this will be applied. If both are applicable, the system should choose
one at random. However, the current policy server implementation will select the first rule.

sequential: With sequentially composed policy rules, the rules are checked in the given order. If the first rule is
applicable it is applied. Otherwise if the second rule is applicable it is applied.

parallel: Parallel composition of two rules allows a user to express indifference with respect to the order of
application. If both rules are applicable, they should be applied in an arbitrary order. However, the current
policy server implementation will apply the rules in the order given. If only one of the rules is applicable,
then neither will be applied. An example of parallelism would be a pair of rules that respectively add a
video channel and log this. In principle these could be applied in either order (or even simultaneously).

A policy rule (see figure 2.4) defines a trigger and a condition that need to hold in order to lead to an action
being applied. Triggers are external events such as a call arriving or someone becoming available. Conditions
depend on information derived from the triggering event, such as the caller or the subject of an event. A policy
rule may omit a trigger, i.e. act as a goal. A policy may also omit a condition, i.e. not depend on information
established by a trigger. However, an action always needs to be specified.

<xsd:element name=′′policy rule′′>
<xsd:complexType>
<xsd:sequence>
<xsd:group ref=′′trigger group′′ minOccurs=′′0′′/>
<xsd:group ref=′′condition group′′ minOccurs=′′0′′/>
<xsd:group ref=′′action group′′/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

2.6 Triggers
A trigger group (see figure 2.4) is either a single trigger or a composite of subsidiary triggers.

<xsd:group name=′′trigger group′′>
<xsd:choice>
<xsd:element ref=′′trigger′′/>
<xsd:element ref=′′triggers′′/>

</xsd:choice>
</xsd:group>

8

Figure 2.5: Triggers

A composite list of triggers (see figure 2.5) is normally used when an operator governs these triggers. However
groups with just one trigger may be nested within each other if desired.

One or more triggers might enable a policy. The and and or combinations require both or either of the triggers
to be active. If the combination of actual trigger events permits the policy rule, then its condition is considered.
Goals (which have no triggers) are always implicitly activated. A conflict resolution engine might decide that a
policy, despite having been triggered and satisfying the conditions, might not be applicable as it causes conflicts
with more desirable policies.

<xsd:element name=′′triggers′′>
<xsd:complexType>
<xsd:choice>
<xsd:group ref=′′trigger group′′/>
<xsd:sequence>
<xsd:choice>
<xsd:element name=′′and′′/>
<xsd:element name=′′or′′/>

</xsd:choice>
<xsd:group ref=′′trigger group′′/>
<xsd:group ref=′′trigger group′′/>

</xsd:sequence>
</xsd:choice>

</xsd:complexType>
</xsd:element>

A trigger has a name and optional arguments. The policy language does not statically enforce a match between
a trigger and its arguments. Conventionally, a trigger is named trigger(arg1), trigger(arg1,arg2) and the like. To
be correct, the corresponding arguments must be given.

<xsd:element name=′′trigger′′>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base=′′trigger name′′>
<xsd:attribute name=′′arg1′′ type=′′trigger argument′′/>
<xsd:attribute name=′′arg2′′ type=′′trigger argument′′/>
<xsd:attribute name=′′arg3′′ type=′′trigger argument′′/>
<xsd:attribute name=′′arg4′′ type=′′trigger argument′′/>
<xsd:attribute name=′′arg5′′ type=′′trigger argument′′/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

At core level, trigger arguments are unrestricted strings:

<xsd:simpleType name=′′trigger argument′′>
<xsd:restriction base=′′xsd:string′′/>

</xsd:simpleType>

9

Trigger names are defined for the three levels in figure 2.1. Trigger names at core level are unrestricted tokens.
Trigger names at policy and domain level are unrestricted tokens; these may be redefined as required. Triggers
that are generated by the policy system itself are considered to be internal.

<xsd:simpleType name=′′trigger name′′>
<xsd:union memberTypes=′′trigger core trigger domain trigger policy′′/>

</xsd:simpleType>

<xsd:simpleType name=′′trigger core′′>
<xsd:restriction base=′′xsd:token′′/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name=′′trigger policy′′>
<xsd:restriction base=′′xsd:token′′/>

</xsd:simpleType>

<xsd:simpleType name=′′trigger domain′′>
<xsd:restriction base=′′xsd:token′′/>

</xsd:simpleType>
For a policy to be triggered, the name of its trigger must match that of the incoming event (in a case-insensitive

way). The parameters of a policy trigger must normally also match those of the incoming event (in a case-
insensitive way). However, if the policy parameter is empty then it is considered to match the corresponding event
parameter, irrespective of the latter.

It is also possible for policy parameters to use patterns that match thes literal event parameters (in a case-
insensitive way). This applies only to the first three trigger arguments (arg1 to arg3) since arg4 and arg5 are
treated specially in some domains (e.g. home care or sensor networks).

If the policy trigger parameter starts with ‘∼’, what follows is treated as a regular expression in the style of
Java. If the pattern does not begin with ‘ˆ’, then ‘ˆ.*’ is implicitly added to the start of the pattern. If the pattern
does not end with ‘$’, then ‘.*$’ is implicitly added to the end of the pattern. An event parameter can be required
to not match a regular expression by starting it with ‘!’ instead of ‘∼’. Examples of policy parameters using
regular expressions are as follows:

∼weather: matches an event parameter containing ‘weather’ anywhere, but also ‘Weather’ (due to case insensi-
tivity) and ‘unweathered’ (due to the implicit ‘.*’)

∼\bweather\b: matches an event parameter containing ‘weather’ as a whole word

∼(emergency|help): matches an event parameter containing ‘emergency’ or ‘help’ (as parts of words)

∼ˆhelp(me)?: matches an event parameter starting ‘help’ or ‘help me’

∼off$: matches an event parameter ending ‘off’

∼call\s+\d+: matches an event parameter containing ‘call’ followed by white space and then digits

!urgent: matches an event parameter that does not contain ‘urgent’

2.7 Conditions
A condition group (see figure 2.4) is either a single condition or a composite of subsidiary conditions.

<xsd:group name=′′condition group′′>
<xsd:choice>
<xsd:element ref=′′condition′′/>
<xsd:element ref=′′conditions′′/>

</xsd:choice>
</xsd:group>

A composite list of conditions (see figure 2.6) is normally used when an operator governs these conditions.
However groups with just one condition may be nested within each other if desired.

Conditions may be combined with the usual boolean and, or and not operators.

10

Figure 2.6: Conditions

<xsd:element name=′′conditions′′>
<xsd:complexType>
<xsd:choice>
<xsd:group ref=′′condition group′′/>
<xsd:sequence>
<xsd:element name=′′not′′/>
<xsd:group ref=′′condition group′′/>

</xsd:sequence>
<xsd:sequence>
<xsd:choice>
<xsd:element name=′′and′′/>
<xsd:element name=′′or′′/>

</xsd:choice>
<xsd:group ref=′′condition group′′/>
<xsd:group ref=′′condition group′′/>

</xsd:sequence>
</xsd:choice>

</xsd:complexType>
</xsd:element>

A condition has a first operand, an operator (that performs the check), and a second operand. An operand is
either a parameter (a named value established by a trigger) or a value (a literal or an expression). It is possible to
add further parameters by adding new environment classes to the policy server [9].

All four combinations of parameter and value are permitted syntactically, but special considerations apply:

parameter-parameter: This combination is meaningful only for resolution policies. A parameter must be one
of preference0 to preference9 or variable0 to variable9.

parameter-value, value-parameter: The name of the parameter determines the nature of the condition that is
checked. For example, a day parameter is checked as day number against an integer value.

value-value: In this case, there is no parameter to determine the nature of the condition. If a value is enclosed in
single quotes it is treated as a string, otherwise as an expression (see section 2.10). The result of evaluating
an expression is treated as a number or as a string depending on whether it has the format of a floating-point
number.

The names preference0..9 and variable0..9 are treated specially in that the ’:’ prefix that would normally
indicate a variable is implied can therefore omitted. In the context of a value, it may be preferable to use the ’:’
prefix to make it clear that a variable is being used.

<xsd:element name=′′condition′′>
<xsd:complexType>

11

<xsd:sequence>
<xsd:element ref=′′operand′′/>
<xsd:element ref=′′operator′′/>
<xsd:element ref=′′operand′′/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name=′′operand′′>
<xsd:complexType>
<xsd:choice>
<xsd:element ref=′′parameter′′/>
<xsd:element ref=′′value′′/>

</xsd:choice>
</xsd:complexType>

</xsd:element>

Parameter names are defined for the three levels in figure 2.1. At core level, these are unrestricted tokens
though certain history functions may be used (see section 2.12). The policy and domain levels redefine these
parameter names as required.

<xsd:element name=′′parameter′′ type=′′parameter name′′/>

<xsd:simpleType name=′′parameter name′′>
<xsd:union memberTypes=′′parameter core parameter domain parameter policy′′/>

</xsd:simpleType>

<xsd:simpleType name=′′parameter core′′>
<xsd:restriction base=′′xsd:token′′/>

</xsd:simpleType>

<xsd:simpleType name=′′parameter policy′′>
<xsd:restriction base=′′xsd:token′′/>

</xsd:simpleType>

<xsd:simpleType name=′′parameter domain′′>
<xsd:restriction base=′′xsd:token′′/>

</xsd:simpleType>

The operators that compare parameter values are fixed in the language. The meaning of the operators differs
depending on the arguments they are applied to. The policy server has a flexible approach that allows parameter
classes to be defined as part of the environment package (see [9]). For example, the standard operators have
different meanings for address (e.g. caller) and epoch (e.g. date) values.

Operators are fixed in the language, though their interpretation varies according to context:

• The eq, ge, gt, le, lt, ne operators are equivalent to =, ≥, >, ≤, <, 6=. (In)equality has the obvious meaning.
A comparison between a pair of values in numeric formats is numeric. If one or both values are not numeric,
a string comparison (i.e. character ordering) is used. Thus 13 gt 1 is true (numeric comparison) but 13 gt ′1′

is false (string comparison).

• The in and out operators are provided to check for inclusion or exclusion. For string values and certain
parameters, in/out has the meaning of ‘a substring of’/‘not a substring of’. For other parameters, in/out
has the meaning of ‘among the values in a list’/‘not among the values in a list’. These operators are not
supported when the comparison is between a value and a parameter.

<xsd:element name=′′operator′′>
<xsd:simpleType>
<xsd:restriction base=′′xsd:token′′>
<xsd:enumeration value=′′eq′′/>
<xsd:enumeration value=′′ge′′/>
<xsd:enumeration value=′′gt′′/>
<xsd:enumeration value=′′in′′/>

12

Figure 2.7: Actions

<xsd:enumeration value=′′le′′/>
<xsd:enumeration value=′′lt′′/>
<xsd:enumeration value=′′ne′′/>
<xsd:enumeration value=′′out′′/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

A value is just a (possibly empty) string:

<xsd:element name=′′value′′ type=′′xsd:token′′/>

A list of values may be given, separated by commas without following spaces (e.g. ‘09:00:00,12:00:00’ for a
pair of times, or ‘bob@acme.com,colin@acme.com,donald@acme.com’ for a list of callers). In the case of date,
day or time, a value may also be a range separated by ‘..’ (e.g. 09:00:00..12:00:00 or 2005-02-03..2005-02-10).
Value names can contain policy variables (see section 2.9).

2.8 Actions
An action group (see figure 2.4) is either a single action or a composite of subsidiary actions.

<xsd:group name=′′action group′′>
<xsd:choice>
<xsd:element ref=′′action′′/>
<xsd:element ref=′′actions′′/>

</xsd:choice>
</xsd:group>

A composite list of actions (see figure 2.7) is normally used when an operator governs these actions. However
groups with just one action may be nested within each other if desired.

<xsd:element name=′′actions′′>
<xsd:complexType>
<xsd:choice>
<xsd:group ref=′′action group′′/>
<xsd:sequence>
<xsd:choice>
<xsd:element name=′′and′′/>
<xsd:element name=′′andthen′′/>
<xsd:element name=′′else′′/>
<xsd:element name=′′or′′/>

13

<xsd:element name=′′orelse′′/>
</xsd:choice>
<xsd:group ref=′′action group′′/>
<xsd:group ref=′′action group′′/>

</xsd:sequence>
</xsd:choice>

</xsd:complexType>
</xsd:element>

Operators can be used to define the order in which pairs of actions are applied.

and: This specifies that the policy should lead to the execution of both actions in either order. The current policy
server implementation will execute the actions in the order given. However this is arbitrary, and indeed the
actions could be executed in parallel. The conflict resolution engine can make use of the flexibility provided
by this. However it must rearrange the order prior to execution by the policy server.

andthen: This is a stronger version of and, since the first action must precede the second in any execution. This
means that the conflict resolution engine cannot rearrange the order. This might lead to a conflict resolvable
only by not executing any of the specified actions.

or: This specifies that either one of the actions should be taken. The current policy server implementation will
always execute the first action. Again, the conflict resolution engine could rearrange the order if the first
action is not suitable. As for and, any reordering must occur before execution by the policy server.

orelse: This is the or operator with a prescribed order. It means that a user feels more strongly about the first
action specified. However, or else implies a choice so the conflict resolution engine can decide to reverse
the order.

else: If there is a condition and else is at the top level of actions, this has the effect of a conventional if...else. If
the condition is true then the first action is chosen, otherwise the second action is chosen.

If there is no condition or else does not appear at the top level, else behaves like or. Note that this allows a
single choice at the top level of a policy; multiple else operators cannot be used in a switch-like fashion.

An action has a name and optional arguments. The policy language does not statically enforce a match between
an action and its arguments. Conventionally, an action is named action(arg1), action(arg1,arg2) and the like. To
be correct, the corresponding arguments must be given. Action arguments can refer to policy variables (see
section 2.9).

<xsd:element name=′′action′′>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base=′′action name′′>
<xsd:attribute name=′′arg1′′ type=′′xsd:string′′/>
<xsd:attribute name=′′arg2′′ type=′′xsd:string′′/>
<xsd:attribute name=′′arg3′′ type=′′xsd:string′′/>
<xsd:attribute name=′′arg4′′ type=′′xsd:string′′/>
<xsd:attribute name=′′arg5′′ type=′′xsd:string′′/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

Action names are defined for the three levels in figure 2.1. At core level, universal action names are given.
Action names at policy and domain level are unrestricted tokens; these may be redefined as required. Actions that
are executed by the policy system itself are considered to be internal.

<xsd:simpleType name=′′action name′′>
<xsd:union memberTypes=′′action core action domain action policy′′/>

</xsd:simpleType>

<xsd:simpleType name=′′action core′′>
<xsd:restriction base=′′xsd:token′′>

14

<xsd:enumeration value=′′log event(arg1)′′/>
<xsd:enumeration value=′′restart timer(arg1)′′/>
<xsd:enumeration value=′′send message(arg1,arg2)′′/>
<xsd:enumeration value=′′set variable(arg1,arg2)′′/>
<xsd:enumeration value=′′start timer(arg1,arg2)′′/>
<xsd:enumeration value=′′stop timer(arg1)′′/>
<xsd:enumeration value=′′unset variable(arg1)′′/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=′′action policy′′>
<xsd:restriction base=′′xsd:token′′/>

</xsd:simpleType>

<xsd:simpleType name=′′action domain′′>
<xsd:restriction base=′′xsd:token′′/>

</xsd:simpleType>
Core actions have parameters as follows:

• an identifier parameter (see section 2.9).

• a URL parameter (one prefixed by ‘file:’, ‘ftp:’, ‘http:’, ‘sip:’, etc.).

Core actions are as follows, all of them internal:

log event(Message): This logs the date, time and message. A single line (ended with ‘\n’) is appended to an
event log for the user whose policy invokes this action. Call information may be interpolated into the
message if available, e.g. ‘starting call from :caller: to :callee’. This would result in a log entry such as:

2005-03-07 17:53:52 starting call from grace@cs.stir.ac.uk to ken@cs.stir.ac.uk

typically in a file such as ken@cs.stir.ac.uk.log.

restart timer(Identifier): This immediately restarts a timer with the specified identifier for its original period.
If a timer with this identifier is not already running, the action is ignored. See section 2.11 for more details.

send message(Recipient,Message): This sends a message. The first argument is the address of the recipient,
while the second argument is the message. The form of the address dictates how the message is sent. The
protocols currently supported by the policy language are as follows.

audio: The prefix ‘audio’ is always used. The recipient ‘audio’ or ‘audio:default’ causes text to be spoken
on the default audio device, possibly with speech markup embedded in the text. Any other recipient
(e.g. ‘audio:nabaztag’) causes the speech to be synthesised to a file (named after the recipient and the
current time). The file name is notified by event for consumption by another bundle.
If the message has the form ‘!text’ it is checked whether text is the name of a policy variable. If so,
the value of this is treated as base 64-encoded audio file. Otherwise the message is treated as text to
be synthesised into speech. In this case, the name of a voice (prefixed by ‘!’) may be given at the start
of the message. Pauses of various lengths can also be included, from ‘|’ (shortest) to ‘|||’ (longest).
As an example message with speech markup, consider ‘!Sarah Welcome home, || where the house
temperature is 20 degrees’.

email: The prefix ‘mailto:’ is optional if the rest of the recipient has the form of an email address. Example
recipients include ‘mailto:bob@acme.com’ and ‘ken@house42.stirling.org’. The message is sent as
plain text.

SMS: The prefix ‘sms:’ is optional if the rest of the recipient has the form of a phone number. Example re-
cipients include‘sms:+44-7811-655-979’, ‘07811 655 979’ and ‘sms:ken@stirling.org’. The message
is sent as plain text.

set variable(Identifier,Expression): This sets a variable with the specified identifier to the specified expression.
(A ‘:’ prefix for the identifier is optional.) An identifier-value binding is created if the variable did not exist
previously, or the binding is updated if it did. See section 2.9 for more details.

15

Action Parameters Effects
log event† Message file
restart timer† Identifier timer
send message† URI, Message link
set variable†§ Identifier, Expression variable
start timer†§ Identifier, Period timer
stop timer† Identifier timer
unset variable† Identifier variable

† action that may be duplicated with different parameters
§ action with partial parameter matching

Figure 2.8: Internal Action Effects

start timer(Identifier,Period): This immediately starts a timer with the specified identifier for the specified
period. If a timer with this identifier is already running, the action is ignored. The time period is nominally
in hour-minute-second format HH:MM:SS. However just MM:SS and SS can be given, and each part can
be one or more digits. See section 2.11 for more details of timer behaviour.

stop timer(Identifier): This immediately stops a timer with the specified identifier. If a timer with this identifier
is not already active, the action is ignored. See section 2.11 for more details.

unset variable(Identifier): This removes a variable with the specified identifier. (A ‘:’ prefix for the identifier is
optional.) If the variable did not exist previously, the action is ignored. See section 2.9 for more details.

Abstract effects of internal actions are shown in figure 2.8. These are defined in the general ontology and used
for offline conflict detection. Parameter types start with a capital, while actual parameters start with a small letter.
Actions marked † can be duplicated in a single output response if they have different parameters. Actions marked
§ are subject to partial matching of parameters (all but the last).

2.9 Variables
A policy variable is just a name for a value. By convention, variables may be named in upper case. Policy variables
can be defined by a policy document, can be defined implicitly when an external trigger occurs (see section 2.12),
and can be defined by a policy action (see section 2.8).

The top-level definition of a variable deliberately resembles that of a policy. Each variable has an id to identify
it uniquely for each owner. An identifier must not begin with a digit, must not contain white space, and must not
contain the characters ‘,’, ‘;’, ‘/’, ‘?’, ‘.’, ‘[’, ‘]’ or ‘:’. The identifier ‘*’ is reserved for internal use (to mean all
identifiers). An identifier may contain non-Latin characters (i.e. from the Unicode character set).

The value of a variable is what it stands for. As there is only ever one instance of a variable, assigning a new
value overwrites the previous one. Variables may hold boolean, numeric (integer, floating point) or string values.
Variables are dynamically typed as in scripting languages, i.e. they may hold different kinds of values at different
times.

The owner of a variable is the address of the person or entity that defined the variable. Normally this will
be the same as the applies to attribute, but it could be different if one user (typically an administrator) defines
variables that apply to others (typically ordinary users). As an example, an administrator could define the variable
holidays that lists public holidays for everyone in the current year. The changed and description attributes are as
for policies (see section 2.3).

Within certain policy elements, variable names can appear individually, in ranges or in lists. The value of
a variable is substituted when a policy is executed, not when it is defined. Variable names can be used in the
following cases:

• a trigger arg attribute

• a condition parameter

16

• an action arg attribute

• the second parameter of ideal or threshold in a goal measure

• a prototype effect

• an expression

• as the first argument of set variable and unset variable.

The name of a variable is prefixed by ‘:’ to obtain its value. (In the case of set variable and unset variable, this
prefix is optional as it is implied.) If necessary (particularly when a variable appears inside a larger string), a
variable name may be terminated by ‘:’. Since variables may appear in a range or list, a variable name is also
terminated by the earliest of space, ‘,’, ‘;’, ‘/’, ‘?’, ‘.’ ‘′’ and ‘[’. These are preserved in the substitution, except
that ‘[’ introduces an index. If none of these characters is found, the variable name ends with the next ’:’ (which
is omitted in the substitution) or the end of the string, whichever is earlier.

Apart from policy variables, environment variables defined by the system (e.g. callee, caller, date, day, time,
trigger, user) may also be substituted in the above cases. An environment-defined variable is used in preference
to a user-defined variable of the same name.

<xsd:element name=′′variable′′>
<xsd:complexType>
<xsd:attribute name=′′applies to′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′changed′′ type=′′xsd:dateTime′′ use=′′required′′/>
<xsd:attribute name=′′description′′ type=′′xsd:string′′/>
<xsd:attribute name=′′id′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′owner′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′value′′ type=′′xsd:string′′/>

</xsd:complexType>
</xsd:element>

2.10 Expressions

2.10.1 Basic Expressions
Expression may be used in the following cases:

• as a value

• as the second argument of set variable

If an expression does not begin with ‘=’, it is treated as a literal string. Variable names inside this are replaced
by their current values, e.g.:

<trigger arg1=′′:delay:′′>no answer(arg1)</trigger>

<condition>
<parameter>caller</parameter>
<operator>in</operator>
<value>:family,:friends,:relatives</value>

</condition>

<condition>
<value>:phone call</value>
<operator>eq</operator>
<value>true</value>

</condition>

<action arg1=′′:boss′′ arg2=′′I was at :place: when :caller: called at :time, :date′′>
send message(arg1,arg2)

</action>

17

If an expression begins with ‘=’, it may use the operators below. Variable names inside this are replaced by
their current values; the ‘:’ prefix for a variable name is optional in this case.

A policy may set a variable to an expression by calling the action set variable(identifier,expression). On first
creation, such a variable is given the owner and applies to values of the policy that executes this action. The
expression may be a literal value, the name of a variable, or a general expression:

• boolean: literals are true and false; operators are and, or, not, eq, ne, lt, le, gt, ge.

• numeric: literals are (signed) numbers (floating point and integer values); operators are ‘+’ (unary, binary),
‘−’ (unary, binary), ‘*’, ‘/’, ‘%’ (modulus). Integer division yields an integer (e.g. ‘3/5’ is 0). Division of
other numbers yields a floating point number (e.g. ‘3.0/5.0’ is 0.6).

• string: literals are characters in single quotes (using ′′ for a single quote inside a string) String functions are:

indexOf(given string,search string) returning -1 for not found or ≥ 0 for found

join(separator,string,...) returning the strings joined by the given separator (possibly empty)

length(string) returning 0 for empty

substr(string,start,count) with 0 as the start position

In addition, a comma-separated string may be treated as an indexed list of sub-strings. If a sub-string needs
to contain a comma, it must be given in square brackets; sub-strings may not be nested. Suppose dates
holds the string ‘2007,Sep,[13,21,30]’. Then :dates[0] is the string ‘2007’, :dates[1] is the string ‘Sep’,
and :dates[2] is the string ‘[13,21,30]’. If the string index is out of range (negative, or beyond the end of
the string), the indexed value is an empty string. Thus if day holds ‘Monday’ then :day[0] is the string
‘Monday’ and :day[1] is the empty string. An indexed string element may be used only as a value, and may
not be assigned to (e.g. set variable(:dates[1],Oct) is not allowed).

• variable value: the name of the variable prefixed with ‘:’.

Expression priority from low to high is as follows: or; and; eq, ne; ge, gt, le, lt; unary ‘+’, unary ‘-’; binary
‘+’, binary ‘-’; ‘*’, ‘/’, ‘%’; function calls, indexed variables, literal values, variables. Parentheses can be used for
disambiguation of expression priorities, e.g. ‘1 + (2*3)’ has the same value as ‘1 + 2*3’.

If a variable is used without having been given a value, it is interpreted as an empty (string). The associated
operator or function determines how the value of a variable is interpreted:

• boolean: false, 0 and ′ ′ are interpreted as false; all other values are interpreted as true.

• integer: the leftmost valid integer value is used, e.g. X is interpreted as 0, 42X is interpreted as 42.

• floating point: the leftmost valid double value is used, e.g. 0.1X is interpreted as 0.1, 42.4X is interpreted as
42.4.

• string: all values are permissible as strings. A quoted value such as ′123′ will be interpreted as a string and
not as a number.

Here are examples of variable assignment and use:

set variable(text,′test string′)
set variable(substituted,′substitution of a :text variable value′)
set variable(:hasVowel,=indexOf(:substituted,′aeiou′) ne -1)
set variable(validLength,=(5 le length(:text)) and (length(:text) lt 15))

A policy may remove a variable binding with the action unset variable(identifier), causing any future use of
the variable to act as if undefined.

18

2.10.2 Confidence Values
Accommodating uncertain values in APPEL has a significant affect on the language and its implementation. In
place of truth values, confidences are used in all conditions. In fact there are three kinds of confidence: boolean
(the usual true and false), fuzzy (membership µ of some fuzzy set) and probability. All three kinds of confidence
are measured on a scale from 0.0 (false, no membership, impossible) to 1.0 (true, full membership, certain).

The usual operators behave as normal for boolean confidences. For fuzzy confidences, the operators have the
following definitions:

µ(A and B) = min(µ(A), µ(B))
µ(A or B) = max(µ(A), µ(B))
µ(not(A)) = 1 - µ(A)

In fact there are several interpretations of these operators for fuzzy sets, but the above are the commonest ones.
For probabilistic confidences, the operators have the following definitions:

pr(A and B) = pr(A) × pr(B)
pr(A or B) = pr(A) + pr(B) - pr(A) × pr(B)
pr(not(A)) = 1 - pr(A)

In fact the first two rules are valid only if A and B are independent. Fortunately this is a reasonable assumption for
policies because they almost invariably deal with independent triggers and conditions. Only fairly pathological
policies would violate this assumption.

The APPEL comparison operators are eq, ne, lt, le, gt, ge, in and out. The latter two are used for inclusion
or exclusion of a value from a list (e.g. ‘day in 6, 7’). These operators have a straightforward interpretation
for boolean and probabilistic confidences. However, only the is operator is used for comparison in fuzzy logic
(corresponding to eq in APPEL). For consistency across all kinds of values, the APPEL operators have been given
meanings for fuzzy values as well. As an example 10 is less than cool for outdoor temperature because it is less
than all values in this set.

2.10.3 Fuzzy Values
When numerical information is used in triggers and conditions, the values can be the names of fuzzy sets. These
are defined in the ontology for each domain since they vary according to the application. Sections 3, 4 and 5
discuss the applicability of fuzzy values.. For example, an ontology might define the following fuzzy sets for
outdoor temperature. (The fuzzy sets for indoor temperature are not identical as they are perceived differently.)

freezing:fall(-10,0,1)
cold:triangle(0,7,14)
cool:triangle(11,14,17)
comfortable:triangle(16,19,22)
warm:triangle(21,24,27)
hot:rise(26,30,35)

Such definitions have the form name:distribution. The fuzzy distributions supported are shown in figure2.9; fuzzy
set membership µ is on a scale from 0 to 1. Most of these distributions are common in fuzzy logic systems.
The fall distribution notionally extends all the way to the left, but in practice is given a lower bound. The rise
distribution is similarly bounded in practice. The single distribution has just one value.

For home care, fuzzy input sets are normally associated with <entity instance> <entity name> so they
are linked to particular entities. For example, cool can have different meanings for indoor temperature and
outdoor temperature. However, fuzzy input sets may be associated with just <entity name> if they are generic.
For example, dry has the same definition for both indoor and outdoor humidity.

When a definite trigger value is matched against a fuzzy input set, the crisp trigger value is fuzzified. The
resultant triggering confidence is therefore fuzzy. In a comparison, one parameter/value may be a fuzzy set so the
comparison results in a fuzzy value.

As examples from home care, the following device inputs are fuzzy triggers:
device in(reading,temperature,interior,,low)
device in(report,power,kitchen,,moderate)

Fuzzy output sets are also associated with <entity instance> <entity name> or <entity name>. However,
the latter is more common as actions are usually generic across all entity instances (e.g. various heating actions).

As examples from home care, the following device outputs are fuzzy actions:
device out(set,heating,,,very high)
device out(dim,light,hall,,low)

19

µ

fall(left,mid,right)

1.0

x

µ

triangle(left,mid,right)

1.0

x

µ

trapezoid(left,mid1,mid2,right)

1.0

x

µ

normal(mean,std_dev)

1.0

x

µ

single(value)

1.0

x
rise(left,mid,right)

µ
1.0

x

Figure 2.9: Fuzzy Values

2.10.4 Probabilistic Values
When numerical information is used in triggers and conditions, the values can be associated with probabilities.
This is discussed in each domain as appropriate. For a trigger, the message qualifier can give a single probability.
For a trigger or a condition, a value can be associated with a normal distribution.

As examples from home care, the following device inputs are probabilistic triggers (with confidence 0.8 and a
normally distributed value respectively):

device in(active,movement,hall,0.8)
device in(reading,temperature,interior,,normal(21.5,0.7))

Besides trigger parameters, variables can also have probabilistic values. A system variable can be given a
probabilistic value implicitly through a trigger. A probabilistic value may also be assigned explicitly to a variable,
e.g. set variable(temperature,normal(21.5,0.7)). Note that variables with probabilistic values can not be used
inside expressions (e.g. temperature+5 is disallowed).

When a probabilistic trigger is matched, the resultant triggering confidence is probabilistic. In a comparison,
one parameter/value may be probabilistic and so result in a probabilistic confidence.

Actions can also be probabilistic. As examples from the home care domain, the following device outputs are
probabilistic actions (with confidence 0.7 and 0.4 respectively):

device out(set,heating,,0.7,80)
device out(dim,light,hall,0.4,65)

This may be used to indicate the confidence with which an action should be performed, and hence how the action
is realised. For example, a high-confidence action to send a message might be repeated to ensure it is noticed.

2.10.5 Combining Fuzzy and Probabilistic Values
The confidences associated with multiple triggers or conditions can be combined with the usual operators. Using
and and or, boolean confidences can be combined with fuzzy or probabilistic confidences; the result is fuzzy or
probabilistic. However, fuzzy and probabilistic confidences cannot be combined as they are conceptually different.
If probable and fuzzy values are compared, the mean of the probability is used as a definite value.

Trigger and condition confidences are combined with and to obtain a confidence for the policy being acti-
vated. This confidence is then associated with the policy’s actions. To avoid policies being activated by unlikely
circumstances, its activation confidence must exceed a small threshold before it is considered to be relevant.

The equivalent of conflict handling for fuzzy actions is the usual procedure of fuzzy logic: accumulation and
defuzzification. If a number of fuzzy actions refer to the same entity and fuzzy output set, a single membership

20

for that fuzzy output is determined by the Root Sum Square method. This calculates the square root of the squares
for all contributing membership values.

Fuzzy actions for the same device are then combined using the Centre of Gravity method, resulting in a single
definite action. This means that the centroid value for each fuzzy output set is weighted by its membership.

In home care, for example, fuzzy actions might simultaneously request that the heating be set to low and also
to moderate. Based on the definitions of the fuzzy output sets, a centre of gravity is calculated for the combined
fuzzy actions. This will result in a crisp value for the heating level to be set.

Probabilistic actions are not combined like fuzzy ones: they are analysed for conflicts as usual. If two incom-
patible probabilistic actions are found, a resolution policy can be defined to choose the more probable action, say.
Suppose one policy wishes to turn on a light with probability 0.8 and another wishes to turn it off with probability
0.4. Choosing the more probable action would be an obvious strategy and is, in fact, the default resolution.

Section 4.4.7 and 4.4.8 illustrate the use of fuzziness and probability in regular policies.

2.11 Timers
Policies may make use of interval (count-down) timers. Each timer has an identifier that must be different from the
identifiers used by variables. There is only ever one instance of a timer. A timer becomes active when it is started,
and ceases to exist when it counts down to zero. At this point, an expiry event occurs for the timer identifier. An
active timer may be restarted or stopped.

The policy server keeps track of all active timers. Each timer is associated with its identifier, its starting time
and period, and with the owner and profile of the defining policy. If the policy server shuts down (accidentally or
deliberately), on a restart it checks the status of all timers. Timers that would have expired in the meantime are
discarded. All other timers are treated as if time had passed normally.

In addition to explicit timers, policies with time conditions imply repeating timer triggers. Policies like this
are said to be time-based. They must have a non-negative preference (i.e. the preference has to be must, should,
prefer, empty), no triggers, and conditions for epochs (date, day, time). When such a policy is defined, the policy
server infers the time intervals during which the policy may be executed. An internal trigger at the start of each
time interval causes such policies to be considered for execution. The associated owner and profile of such a
trigger are determined by the defining policy. Whether a policy actually executes depends on its period of validity
and on whether its condition holds. Timer resolution is presumed to be one second. However, due to scheduling
constraints in the policy server, a timer trigger may not be processed to this level of accuracy.

When a policy is added to the policy store or is enabled, it is checked whether an internal timer should be
created for it. Conversely, such a timer is removed when a policy is disabled or deleted. Time-based policies have
timers started when the policy server starts; these are stopped when the policy server stops.

In deciding whether to trigger a time-based policy, the policy server assumes that all time conditions can be
met. As an example, suppose a policy condition requires the time to be 12:15:00 or 12:30:00. The policy server
will infer that these are important times when the policy should be triggered; on both occasions the policy will
execute. However, suppose the policy condition requires the time to be 12:15:00 and 12:30:00. Although the
policy server will again trigger the policy at these times, the condition cannot in fact hold. To avoid the policy
server having to make a full determination of timing considerations, it just determines a set of simple trigger times
that should be used.

A time-based policy normally specifies a number of discrete epoch values with the eq and in operators, and
epoch ranges with the in operator. The ne and out operators are not allowd. As a convenience, le, ge, lt and gt and
can be used with time: the first two are treated as eq, the second two are treated as eq but for a slightly earlier or
later time. For example time lt 17:00:00 is treated as time eq 16:59:55, and time gt 17:00:00 as time eq 17:00:05.

A time condition may use only the and and or operators (i.e. not is disallowed). The reason for the restrictions
is to ensure that all epoch ranges are well defined. A date or day parameter implies a triggering hour of 00:00:00,
and eligibility for execution at any hour of that day.

As well as being triggered at the start of each time interval, a time-based policy must considered for execution
whenever any external trigger occurs for the same owner. The time condition (and other factors) will determine
whether the policy is actually executed. A time condition may lead to a policy being triggered multiple times (e.g.
day eq 3 or hour eq 12:00:00). Care must be taken to ensure to ensure that repeated execution is appropriate.

Policies that should trigger at the same time will share the same internal timer and are therefore triggered as
a group. In the current policy server implementation, this works for day triggers (at midnight) and time triggers
(which might also be set for midnight). This is achieved by repeating day triggers every 24 hours instead of every

21

week. However, date triggers (at midnight) are not currently combined with day or time triggers (at midnight). A
condition such as day eq 4 and date eq 2011-03-17 will therefore trigger twice at midnight (as this date is also
day 4).

The current implementation of the policy server imposes a limitation on how timer triggers are handled. A
top-level pair of conditions combined with and is checked for a combination of a date or day condition with a
time condition. If this is found, a combined timer is set up. In all other cases (a single condition, more than two
conditions, or an or combination of top-level conditions) then individual timers are set up for each timer-related
condition.

Below are examples of time conditions in informal notation (rather than XML). Triggering refers to when
an internal trigger occurs, eligibility refers to when an external trigger occurs. Although the policy wizard allows
short forms for times and dates (e.g. 23, 23:15, 2007, 2007-02), the policy wizard converts these to full HH:MM:SS
and YYYY-MM-DD format (e.g. 23:00:00, 23:15:00, 2007-01-01, 2007-02-01).

• time eq 12:15:30 – triggered at 12:15:30 each day; eligible at 12:15:30 on any day.

• time in 09:00:00,11:00:00 – triggered at 09:00:00 and 11:00:00 each day; eligible at 09:00:00 and 11:00:00
on any day.

• time in 23:00:00..08:00:00,20:00:00 – triggered at 23:00:00 and 20:00:00 each day; eligible from 23:00:00
to 08:00:00 and at 20:00:00 on any day.

• time eq 07:00:00 or time in 16:30:45,21:15:45 – triggered at 07:00:00, 16:30:45 and 21:15:45 each day;
eligible at 07:00:00, 16:30:45 and 21:15:45 on any day.

• time eq 09:15:00 or time eq 11:30:00 – triggered at 09:15:00 and 11:30:00 each day; eligible at 09:15:00
and 11:30:00 on any day.

• time eq 09:15:00 and time eq 11:30:00 – triggered at 09:15:00 and 11:30:00 each day, though the condition
can never hold; never eligible, as the condition is always false.

• (date in 2006-12-01..2007-03-31) or (day eq 1) – triggered at 00:00:00 on 1st December 2006, and at
00:00:00 every Monday; eligible at any hour from 1st December 2006 to 31st March 2007, and at any hour
on a Monday.

• (date in 2006-12-01..2007-03-31) and (day eq 1) – triggered at 00:00:00 on 1st December 2006 (no effect
as this was not a Monday), and at 00:00:00 every Monday (effective on 4th December 2006, ..., 26th March
2007); eligible at any hour on any Monday from 1st December 2006 to 31st March 2007 (i.e. 4th December
2006, ..., 26th March 2007).

• (date eq 2006-12-15) or ((day eq 1) and (time eq 16:17:18)) – triggered at 00:00:00 on 15th December
2006, at 00:00:00 every Monday, and at 16:17:18 every day (the latter two combining to be effective at
16:17:18 on Mondays); eligible at any hour on 15th December 2006, and at 16:17:18 on Mondays.

2.12 History

2.12.1 Trigger History
External triggers are automatically recorded by the policy server as they are received (and prior to trigger process-
ing). This includes the time the trigger occurred, the trigger name, and the trigger parameters. Such triggers are
held in the policy store as variables within a single policy document (indexed as <domain>*trigger). The policy
server limits the number of recorded triggers according to the server.records property.

All such variables are named trigger. The owner and applies to values are the domain name (e.g. ‘home care’).
The changed value is an XML date-time for when the trigger was received by the policy system. The value of
such a trigger variable is a copy of the trigger and its parameters.

Suppose a device in trigger carries as parameters the message type temperature value, the entity name ‘gear-
box’, the entity instance ‘turbine23’, the reporting period ‘15’, and a list of temperatures since the last reading:
minimum 12.3◦C, average 14.5◦C, and maximum 19.2◦C. The value of the recorded history variable will be:

device in(temperature value,gearbox,turbine23,15,[12.3,14.5,19.2])

22

The collection of stored trigger values constitutes a history that can be checked in a policy condition. This
may use the following functions in a condition parameter:

trigger count(trigger,period): This counts the number of matching triggers in the state history for the given
period. The trigger has the same form as a policy trigger, except that an empty trigger parameter may be
used to mean that any value is acceptable. For convenience, trailing empty parameters are omitted entirely.
The period is either a non-negative integer n (during the last n minutes) or a time in HH:MM:SS format
(since this time). An absolute time reference spans a maximum of 24 hours, e.g. if the time is currently
12:00:00 then 11:00:00 means ‘since 11AM today’ and 13:00:00 means ‘since 1PM yesterday’.

Here are some examples of policy conditions that check the trigger history. These assume the same temperature
trigger example as above.

• trigger count(device in(),15) – the number of device inputs during the past 15 minutes.

• trigger count(device in(temperature value),09:00:00) – the number of temperature readings since 9AM.

• trigger count(device in(temperature value,gearbox,turbine23),30) – the number of gearbox temperature
readings for identifier ‘turbine23’ during the past 30 minutes.

• trigger count(device in(temperature value,,,20),22:30:00) – the number of temperature readings for a pe-
riod of 20 minutes since 10.30PM.

• trigger count(device in(temperature value,,turbine23,,[11.1]),15) – the number of temperature readings
for identifier ‘turbine23’ and minimum value 11.1◦C during the past 15 minutes.

• trigger count(device in(,,,,[,,28]),00:00:00) – the number of inputs from any device with a third parameter
value of 28 since midnight (this would mean a maximum of 28◦C for a temperature reading).

2.12.2 Action History
Policy actions are automatically recorded by the policy server as they are issued (subsequent to conflict resolution).
This includes the time the action occurred, the action name, and the action parameters. Such actions are held in
the policy store as variables within a single policy document (indexed as <domain>*action). The policy server
limits the number of recorded actions according to the server.records property.

All such variables are named action. The owner and applies to values are the domain name (e.g. ‘home care’).
The changed value is an XML date-time for when the action was issued by the policy system. The value of such
an action variable is a copy of the action and its parameters.

Suppose a device out action carries as parameters the message type set rule, the entity name ‘anemometer’,
the entity instance ‘3’, the action period ‘20’, and the action parameters ‘wind speed,15,alert operator’. The
value of the recorded history variable will be:

device out(set rule,anemometer,3,20,wind speed,15,alert operator)
The collection of stored action values constitutes a history that can be checked in a policy condition. This may

use the following functions in a condition parameter:

action count(action,period): This counts the number of matching actions in the state history for the given period.
The action has the same form as a policy action, except that an empty action parameter may be used to mean
that any value is acceptable. This function is very similar to trigger count and is not illustrated here.

2.13 Extensions for Regular Policies

2.13.1 Triggers
Regular policies have triggers as follows:

<xsd:simpleType name=′′trigger policy′′>
<xsd:restriction base=′′trigger policy′′>
<xsd:enumeration value=′′timer expiry(arg1)′′/>

</xsd:restriction>
</xsd:simpleType>

23

Regular policy triggers are as follows, all of them internal:

receive message(Sender,Message): This indicates reception of a message. The first argument is the address of
the sender, while the second argument is the message. The form of address indicates how the message has
been received. The The protocols currently supported by the policy language are as follows.

audio: The prefix ‘audio’ is always used. The sender ‘audio’ or ‘audio:default’ indicates the default audio
input device. Any other sender (e.g. ‘audio:nabaztag’) indicates the source device. The message is
received as plain text that has been converted from audio using a speech recogniser.

email: The prefix ‘mailto:’ is optional if the sender has the form of an email address. Example senders
include ‘mailto:bob@acme.com’ and ‘ken@house42.stirling.org’. The message is received as plain
text. Note, however, that the current system implementation does not support email input.

SMS: The prefix ‘sms:’ is optional if the sender has the form of a phone number. Example senders
include‘sms:+44-7811-655-979’, ‘07811 655 979’ and ‘sms:ken@stirling.org’ (mapped from the phone
number to an email address). The message is received as plain text.

Besides the sender and message arguments, environment variables are set up as follows: call content (same
as message), call type (‘Email’, ‘SMS’ or ‘Speech’), caller (same as sender), and topic (‘Email message’,
‘Speech message’ or ‘Text message’).

timer expiry(Identifier): This occurs when a timer with the specified identifier has counted down to zero (see
section 2.9. See section 2.11 for more details.

2.13.2 Conditions
Regular policies have condition parameters as follows:

<xsd:simpleType name=′′parameter policy′′>
<xsd:restriction base=′′parameter policy′′>
<xsd:enumeration value=′′date′′/>
<xsd:enumeration value=′′day′′/>
<xsd:enumeration value=′′time′′/>

</xsd:restriction>
</xsd:simpleType>

Regular policy conditions have parameters as follows. The basic versions are suitable for comparisons in
policies, while the user-friendly versions are for presentation to end users (e.g. in a speech or text message).
These variables can also be substituted inside expressions.

date: This means a date (format YYYY-MM-DD).

Date: A user-friendly date (e.g. ‘21st February’).

day: This means a day of the week (numbered from 1 as Monday to 7 as Sunday, so that a weekday is 1..5 and
the weekend is 6..7).

Day: A user-friendly day (e.g. ‘Tuesday’).

time: This means the current moment (format HH:MM:SS).

Time: A user-friendly time (e.g. ‘1:04 AM’, ‘12:23 PM’).

The operators permitted for each parameter are listed in figure 2.10. Some special rules for values are as
follows:

• All parameters can be compared with a single value.

• An epoch value may also be a range of the form start..finish.

• For the epoch category, in and out are used with a comma-separated list of values to mean ‘among’ and ‘not
among’. That is, the parameter is checked for presence or absence in a list of values.

24

Category Parameter Operator
epoch date, day, time eq, in (time-based policy)

eq, ne, lt, le, gt, ge, in, out (other policy)

Figure 2.10: Epoch Parameter Operators

2.14 Extensions for Resolution Policies

2.14.1 Triggers
Resolution policies have exactly two triggers as follows, all of them internal. Since resolution policies are triggered
by regular actions, the resolution triggers are identical to the core actions in section 2.8.

<xsd:simpleType name=′′trigger policy′′>
<xsd:restriction base=′′trigger policy′′>
<xsd:enumeration value=′′log event(arg1)′′/>
<xsd:enumeration value=′′restart timer(arg1)′′/>
<xsd:enumeration value=′′send message(arg1,arg2)′′/>
<xsd:enumeration value=′′set variable(arg1,arg2)′′/>
<xsd:enumeration value=′′start timer(arg1,arg2)′′/>
<xsd:enumeration value=′′stop timer(arg1)′′/>
<xsd:enumeration value=′′unset variable(arg1)′′/>

</xsd:restriction>
</xsd:simpleType>

Resolution policies have restricted trigger arguments. variable0 to variable9 are explicitly bound to the ac-
tual arguments of resolution triggers. preference0 to preference9 are implicitly bound to the preferences of the
corresponding policies that triggered a resolution. Preferences are numbered from 0 in the same order as triggers
appear in a resolution policies. Thus, preference0 will be assigned the preference associated with the first res-
olution trigger (i.e. the preference associated with this action), and preference1 to that of the second resolution
trigger.

<xsd:simpleType name=′′trigger argument′′>
<xsd:restriction base=′′trigger argument′′>
<xsd:pattern value=′′variable[0-9]′′/>

</xsd:restriction>
</xsd:simpleType>

2.14.2 Conditions
Resolution policies have condition parameters as follows. These are the values that are bound by resolution
triggers.

<xsd:simpleType name=′′parameter policy′′>
<xsd:restriction base=′′parameter policy′′>
<xsd:pattern value=′′preference[0-9]′′/>
<xsd:pattern value=′′variable[0-9]′′/>

</xsd:restriction>
</xsd:simpleType>

Resolution operators are the standard ones, but interpreted for preference and variable values:

• If the first operator argument is preference0 to preference9, the parameter and value are converted from
preference names to numerical values. Preference names are numerically ranked as +3 for must, +2 for
should, +1 for prefer, 0 for empty, -1 for prefer not, -2 for should not, -3 for must not. The operators eq,
ne, lt, le, gt and ge then perform a numerical comparison. The in and out operators should be read as ‘in
keeping with’ and ‘out of keeping with’, i.e. similar and opposite respectively.

Positive and negative preference values are considered to be opposites. A zero value is similar to a positive
or a negative value. Thus must is similar to should or empty (operator in), and is opposite to should not or
must not (operator out). Similarly must not is similar to should not or empty (operator in), and is opposite
to should or must (operator out).

25

• If the first operator argument is variable0 to variable9, the eq and ne operators may be used. The in and out
operators are used with a text string to mean ‘includes’ and ‘excludes’. That is, the value is checked to be a
substring or not of the parameter.

2.14.3 Actions
Resolution policies have actions as follows that are added to the core ones defined in section 2.8. The following
are generic resolution actions that apply in any domain, all of them internal.

<xsd:simpleType name=′′action policy′′>
<xsd:restriction base=′′action policy′′>
<xsd:enumeration value=′′apply default′′/>
<xsd:enumeration value=′′apply firmer′′/>
<xsd:enumeration value=′′apply inferior′′/>
<xsd:enumeration value=′′apply looser′′/>
<xsd:enumeration value=′′apply negative′′/>
<xsd:enumeration value=′′apply newer′′/>
<xsd:enumeration value=′′apply older′′/>
<xsd:enumeration value=′′apply one′′/>
<xsd:enumeration value=′′apply positive′′/>
<xsd:enumeration value=′′apply stronger′′/>
<xsd:enumeration value=′′apply superior′′/>
<xsd:enumeration value=′′apply weaker′′/>

</xsd:restriction>
</xsd:simpleType>

Although conflicting actions are handled pairwise, a list of conflicting actions may be under consideration so
the effect is to make a choice from an arbitrarily long list. A fundamental principle is that resolution selects just
one of the conflicting actions. It is up to the policy server to make sure this happens, even if it requires making an
arbitrary choice when resolution does not yield a unique result.

A resolution action is either specific (applicable in some domain) or generic (making a choice among the
conflicting actions). Generic resolution actions are as follows:

apply default: Although this action can be called explicitly, it is mainly intended for internal use by the policy
server when resolution does not select just one of the conflicting actions. The default resolution is first to
call apply stronger. If this does not yield a unique action, apply newer is called. If this does not yield a
unique action, apply firmer is called. If this still does not yield a unique action, apply one is called.

apply firmer: This chooses the action with the greater degree of confidence (a Boolean, fuzzy or probability
value).

apply inferior: This chooses the action associated with the inferior domain. For example, an action specified
by kjt@cs.stir.ac.uk will be chosen in preference to an action for bob@stir.ac.uk. The notion of ‘inferior’
is that the higher-level domain is a suffix of the lower-level domain (dividing the domain into parts at ‘.’).
If the domains are identical or incomparable (e.g. the second party is lb@comp.lancs.ac.uk), this resolution
will not eliminate either action.

apply looser: This chooses the action with the lesser degree of confidence (a Boolean, fuzzy or probability
value).

apply negative: This chooses the action associated with the more negative preference. If the preferences are
identical, this resolution will not eliminate either action.

apply newer: This chooses the action associated with the more recently defined policy. If the timestamps are
identical, this resolution will not eliminate either action.

apply older: This is the opposite of apply newer.

apply one: This arbitrarily chooses one of the actions. (The current implementation of the policy server in fact
chooses the first action in the list.)

apply positive: This is the opposite of apply negative.

26

apply stronger: This chooses the action associated with the stronger preference (disregarding the sign of the
preference). For example, must not will be selected over should. If the preferences are exact opposites,
the more positive preference is selected. For example, should will be selected over should not. If the
preferences are identical, this resolution will not eliminate either action.

apply superior: This is the opposite of apply inferior.

apply weaker: This is the opposite of apply stronger, except that the more negative preference is selected in the
case of exact opposites.

2.15 Extensions for Prototype Policies
Prototype policies are used to realise goals (see section 2.16). Prototype policies have almost the same structure
as regular policies, except that the effect attribute is mandatory, and the supports goal attribute does not apply.
Triggers, conditions and actions are otherwise common to regular and prototype policies.

The effect attribute is used to define the abstract effects of a prototype policy. An effect is a comma-separated
list of effect elements (white space being irrelevant). Each effect element has the form: variable operator expres-
sion (e.g. duration += 10):

variable: The system managed by policies is presumed to have a number of state (‘environment’) variables.
(These are different from policy variables that are substituted in the body of a policy.) A controlled variable
is one that the policy system can affect (e.g. the length of a call). An uncontrolled variable is one that the
policy system cannot affect (e.g. the time of day). A derived variable is one that is defined in terms of the
others (usually controlled and uncontrolled variables). These variables are documented in the later sections
dealing with each application domain.

operator: The basic effect operators are ‘=’ (set variable), ‘+=’ (augment variable) and ‘-=’ (diminish variable).
In the special case that simultaneously enabled policies are not allowed to affect the same variable, the ‘+∼’
and ‘-∼’ variants are used to mean an exclusive change.

expression: An effect expression defines the numeric effect of a prototype in one of the following forms:

numeric value: a literal numeric value in integer or floating-point form (e.g. ‘-2’, ‘+1.0’ or ‘43.71’).

policy variable: a variable name prefixed with ‘:’ (e.g. :interior temperature). The policy variable must be
defined at the point that the (instantiated) prototype is executed.

prototype parameter: a variable name prefixed with ‘$’ (e.g. $seconds). Such a parameter is given an
optimal value during goal refinement. Its value can be used only in actions of the prototype.

binary operation: a binary operation value operator value (e.g. hours += 4/3.2 or time += 2.3*$seconds).
Normally this form is used only when one value is a prototype parameter. The operator that performs
a floating-point calculation is one of ‘+’, ‘-’, ‘*’ and ‘/’.

2.16 Extensions for Goals
Goals are similar to regular policies, but with certain changes and restrictions. Because goals are persistent, they
have no trigger. Although a goal can have conditions, the absence of a trigger means that only generic conditions
can be used (i.e. those described in section 2.13.2). A goal has a single action that maximises or minimises a goal
measure.

The attributes of a goal are similar to those of regular policies, but omitting effect (used only to derive policies),
profile (not relevant), and supports goal (used only for derived policies). In addition, goal identifiers are restricted
to start with a letter or question mark, followed by zero or more instances of a letter, digit, space, ‘+’, ‘-’, ‘:’, ‘(’,
‘)’, ‘.’ or ‘!’. For example, this allows the goal identifiers ‘?Goal - Be comfortable.’ and ‘Goal: Save energy 365
(+ 1)!’. Although not statically enforced, ‘+’ and ‘-’ may not be followed by a digit as this would look like a
signed number. See section 2.3 for the other relevant attributes.

27

<xsd:simpleType name=′′goal id′′>
<xsd:restriction base=′′xsd:token′′>
<xsd:pattern value=′′[?a-zA-Z][-+:().!a-zA-Z0-9]*′′/>

</xsd:restriction>
</xsd:simpleType>

<xsd:element name=′′goal′′>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=′′policy rule′′>
<xsd:complexType>
<xsd:sequence>
<xsd:group ref=′′condition group′′ minOccurs=′′0′′/>
<xsd:element name=′′action′′>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base=′′action goal′′>
<xsd:attribute name=′′arg1′′ type=′′xsd:string′′/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name=′′applies to′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′changed′′ type=′′xsd:dateTime′′ use=′′required′′/>
<xsd:attribute name=′′description′′ type=′′xsd:string′′/>
<xsd:attribute name=′′enabled′′ type=′′xsd:boolean′′ use=′′required′′/>
<xsd:attribute name=′′id′′ type=′′goal id′′ use=′′required′′/>
<xsd:attribute name=′′owner′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′valid from′′ type=′′xsd:dateTime′′/>
<xsd:attribute name=′′valid to′′ type=′′xsd:dateTime′′/>

</xsd:complexType>
</xsd:element>

A goal maximises or minimises a goal measure. This is a numerical quantity defined by a formula given as
an argument to the goal action. In principle, the formula is an arbitrary calculation using the system variables
discussed in section 2.15. However, in practice goal measures are linear weighted sums: a sequence of terms
in the form weight * value. The weight is a numeric literal in signed integer or floating-point form (e.g. ‘-5’
or ‘+8.3’). A negative weight is used if a system variable has an adverse effect, or a positive weight if it has a
beneficial effect. The value takes on of the following forms:

system variable: a system variable without a prefix (e.g. medication level).

function call: A function call takes a system variable as the first parameter and, in some cases, a value as the
second parameter. The value may be a numeric literal in integer or floating-point form. The value of a
policy variable prefixed by ‘:’ may also be used; this must exist at the point the goal is defined. The
supported functions are as follows:

ideal(variable,value): This is the amount by which the system variable deviates from the target value,
whether below or above. The result is zero at the target value and negative for other values, e.g.
ideal(25,25) is 0, ideal(25,20) is -5, and ideal(25,34) is -9.

inverse(variable): This is the numeric inverse of the system variable (e.g. inverse(0.2) is 5.0). It is useful for
converting reporting intervals (e.g. log data every 0.2 minutes) into reporting frequencies (e.g. log data
5 times per minute). Note that the web-based policy wizard currently does not support this function.

threshold(variable,value): This is the amount by which the system variable exceeds the threshold value.
The result is zero at or below the threshold value and positive for higher values (e.g. threshold(40,70)
and threshold(70,70) are 0, while threshold(93,70) is 23).

28

As an example, a goal might aim to maximise a user activity measure. This could be defined in terms of the
controlled variables awake time (number of hours awake per day), social contact (number of calls or visits per
day), and viewing time (number of hours spent watching TV per day). The definition of this measure might be as
follows. The ideal value for social contact is 2, while viewing time does not contribute unless it exceeds 1.0:

+0.6*awake time +10.0*ideal(social contact,2) -5.0*threshold(viewing time,1.0)

Scaling factors such as 0.6 above are chosen so that all goal measures have similar values for typical values of
the state variables. (The web-based policy wizard automates the choice of scaling factors on this basis.) The sign
of the contribution indicates whether a state variable improves or worsens the goal measure.

Typically, multiple goals have to be satisfied; these may conflict with each other. Goal measures are therefore
combined in an overall evaluation function. In principle this can be an arbitrary formula, but in practice is a linear
weighted sum: a sequence of terms in the form weight * goal. Goal measures to be maximised have a positive
weight, while those to be minimised have a negative weight. Goal weights may be be chosen according to their
relative priority, though analysis of various domains has shown that a weight of 1.0 is usually satisfactory. The
goal is indicated by its identifier, where spaces are replaced by underscores. As an example, the goal identifier
‘Goal - Save energy (24x7)’ would appear in the evaluation function as ‘Goal - Save energy (24x7)’). As noted
above, goal identifiers are restricted to ease parsing of the evaluation function.

The overall evaluation function is defined by the system variable evaluation function that is held in the policy
store. An example might be:

-1.5*Manage allergen exposure
-2.3*Control energy consumption
+0.8*Maximise security level
+3.1*Improve user activity

29

Chapter 3

Call Control

3.1 System Variables
System variables are used in prototype effects and can also appear in conditions. The controlled and uncontrolled
system variables used in effects are described in figures 3.1 and 3.2. The minimum, typical and maximum values
of each variable are given. Derived system variables are currently not defined for this domain.

3.2 Uncertain Values
Fuzzy input sets for system variables and fuzzy output sets for actions are currently not defined for this domain.
Devices associated with this domain also do not currently report or act on probabilistic values.

3.3 Regular Policies

3.3.1 Introduction
This section is specific to regular policies for call control, as it discusses the triggers, conditions and actions that
are used in this domain. The policy server employs a terminology mapping between information in the underlying
communications system and information in the policy system [9]. If the policy language were used in a context
different from call control, it would be these elements that were adapted.

For call control, regular policies are extended with domain-specific triggers, conditions and actions. The
relationship among these is shown in figure 3.3. Core triggers (section 2.6), condition parameters (section 2.7)
and actions (section 2.8) are also applicable. Certain elements (marked ‡) apply to only some communications
layers. The combination rules are as follows:

• Triggers may be combined with and or or. Internal triggers (marked † in figure 3.3) may be combined with
any other triggers. At most one external trigger (no † in figure 3.3) may appear underneath an and.

• Triggers establish environment variables that are used as condition parameters. If a combination of triggers
is provided, and establishes the union of the environment variables, while or establishes their intersection.

Variable Description Min Typ Max
call bandwidth call bandwidth in kbits/sec 16 64 1024
call duration call duration in seconds 0 300 600
calls handled number of calls handled/day 0 5 100
calls received number of calls received/day 0 5 100

Figure 3.1: Call Control Controlled System Variables

30

Variable Description Min Typ Max
call quality call quality on a range from 0 (bad) to 10 (good) 0 8 10
call rate call charge in pence/ minute 0.05 0.1 0.5

Figure 3.2: Call Control Uncontrolled System Variables

• The environment variables established by one of the connect or no answer triggers depend on the underly-
ing communications layer.

• Triggers allow certain actions to occur. If a combination of triggers is provided, and allows the union of the
actions, while or allows their intersection.

3.3.2 Common Parameters and Environment Variables
Regular policy conditions can use the following parameters: date, day and time (section 2.13.2). Regular policies
for call control can also use a common set of parameters within triggers, conditions and actions. These parameters
are outlined below together with examples of their use:

address: This identifies a user through an email-like address (e.g. ken@cs.stir.ac.uk).

Address: This identifies a user through an email-like address or a telephone-like number (e.g. 1235678, 94723*,
441786467423).

3.3.3 Triggers
Regular policies for call control have triggers as follows. These are added to the regular policy triggers in sec-
tion 2.13.1. Where triggers also exist in outgoing and incoming forms, the plain form means both situations.
‘Outgoing’ means that a user governed by the policy server has initiated something. ‘Incoming’ means that a
user governed by the policy server has to respond to something. Normally these correspond to ‘local request’ and
‘remote request’ respectively. However if both users are governed by the same policy server, ‘outgoing’ refers to
the initiator and ‘incoming’ refers to the responder.

<xsd:simpleType name=′′trigger domain′′>
<xsd:restriction base=′′trigger domain′′>
<xsd:enumeration value=′′absent(arg1)′′/>
<xsd:enumeration value=′′available(arg1)′′/>
<xsd:enumeration value=′′bandwidth request′′/>
<xsd:enumeration value=′′connect′′/>
<xsd:enumeration value=′′connect incoming′′/>
<xsd:enumeration value=′′connect outgoing′′/>
<xsd:enumeration value=′′disconnect′′/>
<xsd:enumeration value=′′disconnect incoming′′/>
<xsd:enumeration value=′′disconnect outgoing′′/>
<xsd:enumeration value=′′event′′/>
<xsd:enumeration value=′′no answer(arg1)′′/>
<xsd:enumeration value=′′no answer incoming(arg1)′′/>
<xsd:enumeration value=′′no answer outgoing(arg1)′′/>
<xsd:enumeration value=′′present(arg1)′′/>
<xsd:enumeration value=′′register′′/>
<xsd:enumeration value=′′register incoming′′/>
<xsd:enumeration value=′′register outgoing′′/>
<xsd:enumeration value=′′unavailable(arg1)′′/>

</xsd:restriction>
</xsd:simpleType>

Regular policy triggers for call control are as follows:

absent(address): This is triggered when the presence variable for the specified address becomes ‘false’. An
empty address means the user to whom the policy applies.

31

Trigger Parameters Established Actions Permitted
internal† note availability, note presence,

send message
absent† log event, note presence,

send message
available† topic (empty if availability variable

is ‘true’)
connect to, log event,
note availability, send message

bandwidth request‡ bandwidth‡, callee, caller, medium,
network type

confirm bandwidth‡,
reject bandwidth‡

connect,
connect incoming,
connect outgoing,
no answer,
no answer incoming,
no answer outgoing

active content‡, bandwidth‡,
call content, call type, callee,
caller, capability, capability set‡,
cost, destination address‡, device,
location, medium, network type,
priority, quality, role,
signalling address‡,
source address‡, topic,
traffic load‡

add caller‡, add medium,
add party, fork to, forward to,
log event, note availability,
note presence, play clip,
reject call, remove medium,
remove party, send message

disconnect,
disconnect incoming,
disconnect outgoing

callee, caller, medium,
network type

log event, note availability,
note presence, play clip,
send message

event caller, network type, topic note availability, note presence,
send message

present† location (empty if presence
variable is ‘true’)

connect to, log event,
note presence, send message

register,
register incoming,
register outgoing

caller, network type note presence, reject call

timer expiry† log event, note presence,
send message

unavailable† log event, note availability,
send message

† internal trigger that may be combined with any other
‡ available with only certain communications systems

Figure 3.3: Relationship between Triggers, Conditions and Actions

32

available(address): This is triggered when the availability variable for the specified address becomes something
other than ‘false’. The value ‘true’ means generally available for an unspecified topic, while a string value
defines a specific topic. An empty address means the user to whom the policy applies. If multiple available
triggers appear in the same policy rule, it is undefined which topic value is set.

bandwidth request: This occurs if the policy server is informed of a bandwidth request (by an H.323 gate-
keeper).

connect, connect incoming, connect outgoing: These occur if the policy server is informed by the communi-
cations layer of a request to establish a connection.

disconnect, disconnect incoming, disconnect outgoing: These occur if the policy server is informed by the
communications layer of a request to break an established connection.

event: This is a catch-all for any event provided by an agency external to the policy system. For example a
security system might generate an event due to a security violation.

no answer(period), no answer incoming(period), no answer outgoing(period): These occur if the policy
server is informed by the communications layer that a connection attempt has been not been answered
within some period. The argument is the timeout period (measured in seconds).

present(address): This is triggered when the presence variable for the specified address becomes something
other than ‘false’. The value ‘true’ means generally present in an unspecified location, while a string value
defines a specific location. An empty address means the user to whom the policy applies. If multiple present
triggers appear in the same policy rule, it is undefined which location value is set.

register, register incoming, register outgoing: These occur if the policy server is informed by the communi-
cations layer of a request to register with the communications system.

unavailable(address): This is triggered when the availability variable for the specified address becomes ‘false’.
An empty address means the user to whom the policy applies.

3.3.4 Conditions
Regular policies for call control have condition parameters as follows:

<xsd:simpleType name=′′parameter domain′′>
<xsd:restriction base=′′parameter domain′′>
<xsd:enumeration value=′′active content′′/>
<xsd:enumeration value=′′bandwidth′′/>
<xsd:enumeration value=′′call content′′/>
<xsd:enumeration value=′′call type′′/>
<xsd:enumeration value=′′callee′′/>
<xsd:enumeration value=′′caller′′/>
<xsd:enumeration value=′′capability′′/>
<xsd:enumeration value=′′capability set′′/>
<xsd:enumeration value=′′cost′′/>
<xsd:enumeration value=′′destination address′′/>
<xsd:enumeration value=′′device′′/>
<xsd:enumeration value=′′location′′/>
<xsd:enumeration value=′′medium′′/>
<xsd:enumeration value=′′moment′′/>
<xsd:enumeration value=′′network type′′/>
<xsd:enumeration value=′′priority′′/>
<xsd:enumeration value=′′quality′′/>
<xsd:enumeration value=′′role′′/>
<xsd:enumeration value=′′signalling address′′/>
<xsd:enumeration value=′′source address′′/>
<xsd:enumeration value=′′topic′′/>
<xsd:enumeration value=′′traffic load′′/>

</xsd:restriction>
</xsd:simpleType>

Regular policy condition parameters for call control are as follows:

33

active content: This means the active media content. It is defined only for H.323.

bandwidth: This is the requested bandwidth as a positive real (measured in Kbps). It is currently defined only
for H.323.

call content: This is the content of a call (e.g. ‘Beatles Album’, ‘Shrek video’). This is an open-ended string that
will be defined only if the caller provides it.

call type: This is the type of a call (e.g. ‘emergency’, ‘long-distance’). This is an open-ended string that will be
defined only if the caller provides it.

callee: This is the responder to a call, identified by address.

caller: This is the initiator of a call or an event, identified by address.

capability: This is the capability of the caller to engage in a call (e.g. ‘short discussion only’, ‘English speaker’).
This is an open-ended string that will be defined only if the caller provides it.

capability set: This is the set of technical functions supported by the caller’s equipment. It is defined only for
H.323.

cost: This is the cost per minute of a call as a positive real. The unit of currency is arbitrary, but must be known
to the caller or the callee. This value will be defined only if the communications layer provides it.

destination address: This is the destination system, identified by domain name or IP address (e.g. gw.acme.com
or 192.168.0.1). It is defined only for H.323.

device: This is the device being used for a call (e.g. ‘cell phone’, ‘PDA’). This is an open-ended string that will
be defined only if the caller provides it.

location: This is the location of the caller (e.g. ‘downtown’, ‘Stirling’). This is an open-ended string that will be
defined only if the caller provides it.

medium: This is the medium being used for the call. The permissible value is a list of ‘audio’, ‘video’, ‘white-
board’. This is typically provided by the communications layer.

network type: This is the type of the underlying communications layer (e.g. ‘H.323’, ‘7000’ (Mitel 7000 ICS),
‘SIP’). This is an open-ended string defined by the specific communications layer.

priority: This is the priority assigned to a call as a positive real. Priorities conventionally range from 1 (lowest)
to 9 (highest), but no particular values are enforced. This value will be defined only if the caller provides it.

quality: This is the quality of service expected of a call (e.g. ‘loss rate below 1%’, ‘response time below 20ms’).
This is an open-ended string that will be defined only if the communications layer provides it.

role: This is the role assumed by the caller (e.g. ‘boss’, ‘spouse’). This is an open-ended string that will be
defined only if the caller provides it.

signalling address: This is the signalling system, identified by domain name or IP address (e.g. gw.acme.com
or 192.168.0.1). It is defined only for H.323.

source address: This is the source system, identified by domain name or IP address (e.g. gw.acme.com or
192.168.0.1). It is defined only for H.323.

topic: This is the subject of a call or an event (e.g. ‘project budget’ or ‘intruder alert’). This is an open-ended
string that will be defined only if the caller or event system provides it.

traffic load: This is the current traffic load as a positive real (measured in Kbps). It is defined only for H.323.

The operators permitted for each parameter are listed in figure 3.4; the use of other operators will yield a result,
but this may not be useful. Some special rules for values are as follows:

• For the address category, in and out are used with a comma-separated list of values to mean ‘among’ and
‘not among’. That is, the parameter is checked for presence or absence in a list of values.

• For the description category, in and out are used with a text string to mean ‘includes’ and ‘excludes’. That
is, the value is checked to be a substring or not of the parameter.

34

Category Parameter Operator
address callee, caller, caller id, destination address,

signalling address, source address
eq, ne, in, out

amount bandwidth, cost, priority, traffic load eq, ne, lt, le, gt, ge
description active content, call content, call type,

capability, capability set, device, event, location,
medium, network type, quality, role, topic

eq, ne, in, out

Figure 3.4: Address, Amount and Description Parameter Operators

3.3.5 Actions
Regular policies for call control have actions as follows. These are added to the regular policy actions in sec-
tion 2.8. Actions are requests to the underlying communications layer. If the policy preference is must not,
an action argument can be omitted to mean any argument value. This allows an easy way to state policies like
‘emergency calls must not be forwarded’ using forward to without a specific destination argument.

<xsd:simpleType name=′′action domain′′>
<xsd:restriction base=′′action domain′′>
<xsd:enumeration value=′′add caller(arg1)′′/>
<xsd:enumeration value=′′add medium(arg1)′′/>
<xsd:enumeration value=′′add party(arg1)′′/>
<xsd:enumeration value=′′close′′/>
<xsd:enumeration value=′′confirm bandwidth′′/>
<xsd:enumeration value=′′connect to(arg1)′′/>
<xsd:enumeration value=′′fork to(arg1)′′/>
<xsd:enumeration value=′′forward to(arg1)′′/>
<xsd:enumeration value=′′note availability(arg1)′′/>
<xsd:enumeration value=′′note presence(arg1)′′/>
<xsd:enumeration value=′′play clip(arg1)′′/>
<xsd:enumeration value=′′reject call(arg1)′′/>
<xsd:enumeration value=′′reject bandwidth′′/>
<xsd:enumeration value=′′remove medium(arg1)′′/>
<xsd:enumeration value=′′remove party(arg1)′′/>

</xsd:restriction>
</xsd:simpleType>

Regular policy actions for call control are as follows:

add caller(Method): This adds a new caller to an existing call using the specified method. The action is ignored
if the callee is not in an existing call. The argument is the method for adding the caller: conference (con-
ference in new caller), hold (other party held, new caller connected), monitor (new caller listens to current
call), release (other party disconnected, new caller connected) or wait (new caller not connected until call
clears). The effect is to modify the current call. Suppose A calls B while B is talking to C. A might be
conferenced into the call, C might be held and A connected to B, A might silently monitor the call from B
to C, C might be disconnected and A connected to B, or A might be connected to B only after the call from
B to C clears.

add medium(Medium): This adds a new medium to the call (or ignores the request if the medium is already
in use). The argument is the medium name; see the medium parameter in section 3.3.4 for the permissible
values. For example, video might be added to an audio call.

add party(Address): This adds a new party to the call (or ignores the request if the party is already in the call).
The argument is the callee address. The effect is to bring about a conference call. For example when A calls
B, then B might add C to the call.

close: This forcibly disconnects the current call (if any).

confirm bandwidth: This confirms that the requested bandwidth has been allocated. It applies to H.323 only.

35

connect to(Address): This initiates a new and independent call. The caller is the user executing the policy; the
argument is the callee address.

fork to(Address): This adds an alternative leg to the call. The argument is a caller address (if this is an outgoing
call) or a callee address (if this is an incoming call). The effect is that both the current call leg and the
alternative call leg are tried in order to reach the party. Whether these are tried in sequence or in parallel
depends on the underlying communications layer. However only one can be successful in completing the
call.

forward to(Address): This changes the destination of the call. The argument is the new callee address, as if
this had been chosen explicitly by the caller. The forwarding address might identify a program (e.g. an
auto-attendant or a voicemail inbox) rather than a person.

note availability(Topic): This updates the availability variable for the user whose policy is being executed. The
argument is just a topic as a string; see the available parameter in section 3.3.3 for the permissible values.

note presence(Location): These update the presence variable for the user whose policy is being executed. The
argument is a location as a string; see the present parameter in section 3.3.3 for the permissible values.

play clip(URI): This plays the specified media clip to the caller (e.g. a recorded audio message or a video
clip). The argument may be the audio data (raw binary encoded in ‘base 64’ format) or a URL (e.g.
‘file:/tmp/message.wav’ or ‘http://www.acme.com/hello.avi’).

reject call(Reason): This rejects a call, i.e. prevents it from completing. This is used to refuse an incoming call
or to abandon an outgoing call. In this context, a call means a call attempt or a registration attempt. The
argument is an open-ended string providing a reason for the rejection (e.g. ‘too busy currently’). An empty
string may be used, perhaps because the precise reason for rejection should not be given. The interpretation
of the argument depends on the communications layer. It might be sent as text in a response (e.g. SIP),
might be spoken (using Text-To-Speech), or might identify an auto-attendant extension number to speak a
message (e.g. Mitel 7000).

reject bandwidth: This reports the requested bandwidth has not been allocated. It applies to H.323 only.

remove medium(Medium): This removes a medium from the call (or ignores the request if the medium is not
already in use). The argument is the medium name; see the medium parameter in section 3.3.4 for the
permissible values. For example, video might be removed from a videoconference call.

remove party(Address): This removes a conference party from the call (or ignores the request if the party is not
already in the call or is the sole other party). The argument is the party address. The effect is to prevent a
conference call. For example when A conferences in B and then calls C, then B might remove C from the
call before accepting the call from A.

Abstract effects of call control actions are shown in figure 3.5. These are defined in the domain ontology and
used for offline conflict detection. Parameter types start with a capital, while actual parameters start with a small
letter. Actions marked † can be duplicated in a single output response if they have different parameters.

3.4 Example Regular Policies
The following call control policies illustrate what can be done with the language. They should provide an insight
in the use of the policy language for real examples. The examples are chosen such that they highlight the main
aspects of the language and still appear realistic, rather than being contrived.

Each example is introduced briefly by its natural language meaning. This introduction also draws attention to
some details of the policy language where appropriate.

An XML wrapper is required for a call control policy in the following form:

<?xml version=′′1.0′′ encoding=′′UTF-8′′?>
<policy document
xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=

36

Action Use Parameters Effects
add caller add new caller conference availability, party,

privacy
hold availability, party,

privacy
monitor availability, party,

privacy
release availability, party,

privacy
wait availability, party,

privacy
add medium† add new medium audio audio, bandwidth

video bandwidth, privacy,
video

whiteboard bandwidth, white-
board

add party† add third party Address availability, party,
privacy

close disconnect a call – audio, availability,
bandwidth, call,
party, route, video,
whiteboard

confirm bandwidth confirm bandwidth request – bandwidth
connect to connect to destination Address route
fork to† try parallel destinations Address route
forward to redirect call Address route
note availability note user availability Topic availability
note presence note user presence Location presence
play clip play audio clip URI audio
reject bandwidth reject bandwidth request Limit bandwidth
reject call reject call attempt Reason call
remove medium† remove medium audio audio

video bandwidth, privacy,
video

whiteboard bandwidth, white-
board

remove party† remove third party Address availability, party,
privacy

† action that may be duplicated with different parameters

Figure 3.5: Call Control Action Effects

37

′′http://www.cs.stir.ac.uk/schemas/appel regular call.xsd′′>
...

</policy document>

3.4.1 Forward if Busy
Forward to bob@cs.stir.ac.uk if there is an incoming connection to ken@cs.stir.ac.uk while this user is busy. The
empty argument for unavailable means the current user is unavailable, i.e. busy.

<policy owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

id=′′Forward if busy′′ enabled=′′true′′ changed=′′2004-08-02T11:20:05′′>
<policy rule>
<triggers>
<and/>
<trigger>connect incoming</trigger>
<trigger arg1=′′′′>unavailable(arg1)</trigger>

</triggers>
<action arg1=′′bob@cs.stir.ac.uk′′>forward to(arg1)</action>

</policy rule>
</policy>

3.4.2 Forward Incoming Calls to Grace
This policy specifies that incoming connections for ken@cs.stir.ac.uk should be forwarded to grace@cs.stir.ac.uk
during the dates 24th December 2004 to 5th January 2005 inclusive.

<policy owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

id=′′Forward Incoming to Grace′′ enabled=′′true′′

valid from=′′2004-12-24T00:00:00′′ valid to=′′2005-01-05T23:59:00′′

changed=′′2004-08-12T11:33:00′′>
<preference>should</preference>
<policy rule>
<trigger>connect incoming</trigger>
<action arg1=′′grace@cs.stir.ac.uk′′>forward to(arg1)</action>

</policy rule>
</policy>

3.4.3 Never forward to Mary
This policy applies to everyone in the cs.stir.ac.uk domain. It says that calls from anyone or by ken@cs.stir.ac.uk
must not be forwarded to mary@plc.co.uk.

<policy owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

id=′′Never forward to Mary′′ enabled=′′true′′ changed=′′2004-08-12T11:43:00′′>
<preference>must not</preference>
<policy rule>
<trigger>connect</trigger>
<conditions>
<or/>
<condition>
<parameter>caller</parameter>
<operator>eq</operator>
<value>@</value>

</condition>
<condition>
<parameter>callee</parameter>
<operator>eq</operator>
<value>ken@cs.stir.ac.uk</value>

</condition>
</conditions>
<action arg1=′′mary@plc.co.uk′′>forward to(arg1)</action>

38

</policy rule>
</policy>

3.4.4 Never forward Emergency Calls
This policy specifies that emergency calls must not be forwarded. This policy applies to @cs.stir.ac.uk, i.e. anyone
in this domain. Note also that the forwarding address (arg1) is irrelevant and is omitted.

<policy owner=′′ken@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

id=′′Never forward Emergency Calls′′ enabled=′′true′′

changed=′′2004-08-12T11:46:00′′>
<preference>must not</preference>
<policy rule>
<trigger>connect</trigger>
<condition>
<parameter>call type</parameter>
<operator>eq</operator>
<value>emergency</value>

</condition>
<action arg1=′′′′>forward to(arg1)</action>

</policy rule>
</policy>

3.4.5 Voicemail on Busy or No Answer
This policy states that incoming calls should be forwarded to my voicemail when I am busy or don’t answer within
5 rings. This policy has two combinations of trigger events but does not specify any conditions.

<policy owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

id=′′Voicemail on Busy or No Answer′′ enabled=′′true′′

changed=′′2004-08-02T11:19:00′′>
<policy rule>
<triggers>
<or/>
<trigger arg1=′′′′>unavailable(arg1)</trigger>
<trigger arg1=′′5′′>no answer incoming(arg1)</trigger>

</triggers>
<action arg1=′′http://voicemail.co.uk/∼ken′′>forward to(arg1)</action>

</policy rule>
</policy>

3.4.6 Available for Java
This policy states that lecturers (domain @lecturers.cs.stir.ac.uk) are available for discussions about Java. Note
that this policy has no triggers and no conditions, i.e. it is executed immediately on definition.

<policy owner=′′ken@cs.stir.ac.uk′′ applies to=′′@lecturers.cs.stir.ac.uk′′

id=′′Available for Java′′ enabled=′′true′′

changed=′′2004-07-28T23:18:00′′>
<policy rule>
<action arg1=′′Java′′>note availability(arg1)</action>

</policy rule>
</policy>

3.4.7 Complex Busy and No Answer Handling
The next example is deliberately complex. It defines variables for use in the policy, though these might be defined
separately rather than statically. By convention, policy variables could be named in upper case (as is common in
programming languages for macros).

39

Acme jo@acme.com or bob@acme.com

home 01786 832 999, reached via a PSTN gateway (prefix 9)

hours 9AM to 5PM

mobile 0778 012 3456, reached via a PSTN gateway (prefix 9)

office 7423, reached via a PSTN gateway (prefix 9, then a short dialling code)

voicemail 2004*, the format for the voicemail inbox of extension 2004

This policy uses sequential and parallel policies to do the following:
when I am busy

and
when there is a call

do forward the call to voicemail

failing that

when an incoming call is not answered after 5 seconds
if the caller is not Acme

and
if the caller is not tom@uni.edu
do forward the call to home

else
do forward the call to office

or else
do forward the call to mobile

simultaneously

when there is a call
if the call type is business

and
if the hour is between hours
do log an office hours call

else
do log an out of hours call

A period for the validity of this policy is set: from 24th February 2007 4PM to 4th March 2007 4PM. It will
not be triggered outside this period.

<policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=
′′http://www.cs.stir.ac.uk/schemas/appel regular call.xsd′′>

<variable id=′′Acme′′ owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

value=′′jo@acme.com,bob@acme.com′′ changed=′′2007-02-23T23:50:00′′/>

<variable id=′′home′′ owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

value=′′9901786832999′′ changed=′′2007-02-23T23:50:00′′/>

<variable id=′′hours′′ owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

value=′′09:00:00..17:00:00′′ changed=′′2007-02-23T23:50:00′′/>

<variable id=′′mobile′′ owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

value=′′9907780123456′′ changed=′′2007-02-23T23:50:00′′/>

<variable id=′′office′′ owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

value=′′97423′′ changed=′′202007-02-23T23:50:00′′/>

<variable id=′′voicemail′′ owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

40

value=′′7423*′′ changed=′′2007-02-23T23:50:00′′/>

<policy owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

id=′′Busy, No Answer, Log′′ enabled=′′true′′

valid from=′′2007-02-24T16:00:00′′ valid to=′′2007-03-04T16:00:00′′

changed=′′2007-02-23T23:50:00′′>
<policy rules>
<sequential/>
<policy rule>
<triggers>
<and/>
<trigger arg1=′′′′>unavailable(arg1)</trigger>
<trigger>connect</trigger>

</triggers>
<action arg1=′′:voicemail′′>forward to(arg1)</action>

</policy rule>
<policy rules>
<parallel/>
<policy rule>
<trigger arg1=′′5′′>no answer incoming(arg1)</trigger>
<conditions>
<and/>
<condition>
<parameter>caller</parameter>
<operator>ne</operator>
<value>:Acme</value>

</condition>
<condition>
<parameter>caller</parameter>
<operator>ne</operator>
<value>tom@uni.edu</value>

</condition>
</conditions>
<actions>
<else/>
<action arg1=′′:home′′>forward to(arg1)</action>
<actions>
<orelse/>
<action arg1=′′:office′′>forward to(arg1)</action>
<action arg1=′′:mobile′′>forward to(arg1)</action>

</actions>
</actions>

</policy rule>
<policy rules>
<policy rule>
<trigger>connect</trigger>
<conditions>
<and/>
<condition>
<parameter>call type</parameter>
<operator>eq</operator>
<value>business</value>

</condition>
<condition>
<parameter>time</parameter>
<operator>in</operator>
<value>:hours</value>

</condition>
</conditions>
<actions>

41

<else/>
<action arg1=′′office hours call′′>log event(arg1)</action>
<action arg1=′′out of hours call′′>log event(arg1)</action>

</actions>
</policy rule>

</policy rules>
</policy rules>

</policy rules>
</policy>

</policy document>

3.4.8 Talking Status
Suppose that bob@cs.stir.ac.uk wishes to note he is talking whenever a connection is made. The first rule below
sets the talking variable to true when a call connects. The second rule unsets this variable on disconnection.

<policy owner=′′bob@cs.stir.ac.uk′′ applies to=′′bob@cs.stir.ac.uk′′

id=′′Talking status′′ enabled=′′true′′ changed=′′2007-02-23T23:18:10′′>
<policy rules>
<sequential/>
<policy rule>
<trigger>connect</trigger>
<action arg1=′′talking′′ arg2=′′true′′>set variable(arg1,arg2)</action>

</policy rule>
<policy rule>
<trigger>disconnect</trigger>
<action arg1=′′talking′′>unset variable(arg1)</action>

</policy rule>
</policy rules>

</policy>

3.4.9 Call Timer
Suppose that ken@cs.stir.ac.uk likes to log calls that exceed 10 minutes. The first rule below states than on
connection a duration timer is started for 10 minutes. The second rule states that on disconnection this timer is
stopped. The third rule says that if the duration timer expires, a lengthy call from the caller is logged.

<policy owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

id=′′Lengthy call timer′′ enabled=′′true′′ changed=′′2007-02-23T23:08:41′′>
<policy rules>
<sequential/>
<policy rule>
<trigger>connect</trigger>
<action arg1=′′duration′′ arg2=′′00:10:00′′>start timer(arg1,arg2)</action>

</policy rule>
<policy rules>
<sequential/>
<policy rule>
<trigger>disconnect</trigger>
<action arg1=′′duration′′>stop timer(arg1)</action>

</policy rule>
<policy rule>
<trigger arg1=′′duration′′>timer expiry(arg1)</trigger>
<action arg1=′′Lengthy call from :caller′′>log event(arg1)</action>

</policy rule>
</policy rules>

</policy rules>
</policy>

42

3.4.10 Working Period Log
Suppose that don@cs.stir.ac.uk has working hours from 9AM to 5PM every day. At 9AM he wishes to log that
he has started work. If an external trigger occurs (e.g. a connection), he wishes to log that he was working at
this point. This policy does not log the end of the working hours at 5PM, but could be extended to do so with an
additional policy rule that is triggered at this point.

Note that the following policy rule has no external trigger. It is initially triggered at 9AM to log the start of
work. If any external trigger for the user occurs between 9AM and 5PM, this rule is eligible and logs that the user
was working at this time.

<policy owner=′′don@cs.stir.ac.uk′′ applies to=′′don@cs.stir.ac.uk′′

id=′′Working period log′′ enabled=′′true′′ changed=′′2007-02-23T23:21:59′′>
<policy rule>
<condition>
<parameter>time</parameter>
<operator>in</operator>
<value>09:00:00..17:00:00</value>

</condition>
<action arg1=′′Working at :time on :date′′>log event(arg1)</action>

</policy rule>
</policy>

3.4.11 Polite Availability Check
Suppose that kjt@cs.stir.ac.uk prefers not to disturb bob@cs.stir.ac.uk unless it appears he is not very busy. If Bob
announces his availability, Ken’s policy checks how many times Bob has done this in the past two hours. If it is
more than twice, then Bob is probably not having a busy day. In this case, a message is sent to Bob asking if Ken
can drop by for a chat.

<policy owner=′′kjt@cs.stir.ac.uk′′ applies to=′′kjt@cs.stir.ac.uk′′

id=′′Polite availability check′′ enabled=′′true′′ changed=′′2007-03-06T13:42:25′′>
<policy rule>
<trigger arg1=′′bob@cs.stir.ac.uk′′>available(arg1)</trigger>
<condition>
<parameter>count(available(bob@cs.stir.ac.uk),00:02:00)</parameter>
<operator>gt</operator>
<value>2</value>

</condition>
<action arg1=′′bob@cs.stir.ac.uk′′ arg2=′′Can I drop by for a chat?′′>

send message(arg1,arg2)
</action>

</policy rule>
</policy>

3.5 Resolution Policies

3.5.1 Introduction
This section is specific to resolution policies for call control, as it discusses the triggers, conditions and actions
that are used in this domain.

For call control, resolution policies are extended with domain-specific triggers, conditions and actions. The
relationship among these is much simpler than for regular policies. Any action may be associated with a trigger.
The actual parameters of these actions must be literal values, or the values of variable0 to variable9 (if a trigger
has bound them).

3.5.2 Triggers
Resolution policies for call control have triggers as follows. These are added to the resolution policy triggers in
section 2.14.1 and to the core triggers in section 2.6. Since resolutions are triggered by actions, resolution policy
triggers are identical to regular policy actions for call control (see section 3.3.5).

43

<xsd:simpleType name=′′trigger domain′′>
<xsd:restriction base=′′trigger domain′′>
<xsd:enumeration value=′′add caller(arg1)′′/>
<xsd:enumeration value=′′add medium(arg1)′′/>
<xsd:enumeration value=′′add party(arg1)′′/>
<xsd:enumeration value=′′close′′/>
<xsd:enumeration value=′′confirm bandwidth′′/>
<xsd:enumeration value=′′connect to(arg1)′′/>
<xsd:enumeration value=′′fork to(arg1)′′/>
<xsd:enumeration value=′′forward to(arg1)′′/>
<xsd:enumeration value=′′note availability(arg1)′′/>
<xsd:enumeration value=′′note presence(arg1)′′/>
<xsd:enumeration value=′′play clip(arg1)′′/>
<xsd:enumeration value=′′reject call(arg1)′′/>
<xsd:enumeration value=′′reject bandwidth(arg1)′′/>
<xsd:enumeration value=′′remove medium(arg1)′′/>
<xsd:enumeration value=′′remove party(arg1)′′/>

</xsd:restriction>
</xsd:simpleType>

3.5.3 Conditions
Resolution policies for call control have the same condition parameters as resolution policies in section 2.14.2.

3.5.4 Actions
Resolution policies for call control have actions as follows. These are added to the resolution policy actions in
section 2.14.3 and to the core actions in section 2.8.

<xsd:simpleType name=′′action domain′′>
<xsd:restriction base=′′action domain′′>
<xsd:enumeration value=′′add caller(arg1)′′/>
<xsd:enumeration value=′′add medium(arg1)′′/>
<xsd:enumeration value=′′add party(arg1)′′/>
<xsd:enumeration value=′′apply callee′′/>
<xsd:enumeration value=′′apply caller′′/>
<xsd:enumeration value=′′close′′/>
<xsd:enumeration value=′′confirm bandwidth′′/>
<xsd:enumeration value=′′connect to(arg1)′′/>
<xsd:enumeration value=′′fork to(arg1)′′/>
<xsd:enumeration value=′′forward to(arg1)′′/>
<xsd:enumeration value=′′note availability(arg1)′′/>
<xsd:enumeration value=′′note presence(arg1)′′/>
<xsd:enumeration value=′′play clip(arg1)′′/>
<xsd:enumeration value=′′reject call(arg1)′′/>
<xsd:enumeration value=′′reject bandwidth(arg1)′′/>
<xsd:enumeration value=′′remove medium(arg1)′′/>
<xsd:enumeration value=′′remove party(arg1)′′/>

</xsd:restriction>
</xsd:simpleType>

Most of these actions are those of regular policies for call control in section 3.3.5. However, the following
actions are additional for resolution:

apply callee: This chooses the callee’s call action.

apply caller: This chooses the caller’s call action.

44

3.6 Example Resolution Policies
The following call conflict policies illustrate what can be done with the language. They should provide an insight
in the use of the policy language for real examples. The examples are chosen such that they highlight the main
aspects of the language and still appear realistic, rather than being contrived.

Each example is introduced briefly by its natural language meaning. This introduction also draws attention to
some details of the policy language where appropriate.

An XML wrapper is required for a call conflict policy in the following form:

<?xml version=′′1.0′′ encoding=′′UTF-8′′?>
<policy document
xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=
′′http://www.cs.stir.ac.uk/schemas/appel resolution call.xsd′′>
...

</policy document>

A resolution policy typically contains two triggers, each of which defines explicitly a variable and implicitly a
preference. In general, there are four cases to be considered by a resolution depending on whether the variables are
equal/unequal and whether the preferences are similar/opposite. This can often be simplified. In some cases it is
sufficient to check for the equal/similar combination; the other combinations are handled by default. In other cases,
the equal/opposite and unequal/similar combinations may be handled. In unusual cases, all four combinations
may need individual treatment. Since the else operator can be used with only two alternative actions, multiple
resolutions may therefore be required for the same trigger combination.

There are other variations on the basic case. Resolution policies may have triggers with no or two arguments,
so there may not be exactly two variable values. Resolution policies may also have more than two triggers.

3.6.1 Call Fork-Fork Conflict – Generic Resolution
Virtually any call control action may conflict with itself if its arguments are the same and the preferences of each
party are opposite. As an example, suppose one party wishes to fork the call to an alternative address (e.g. to try
a home number in addition to the dialled office number). Suppose the other party does not wish to fork the call
to this address (e.g. because the callee must be called only in the office). The following detects this conflict, and
resolves it by choosing the stronger of the two preferences.

This resolution explicitly deals with only the equal/opposite case. The equal/similar case is not explicitly
handled; ‘must fork to address A’ and ‘should fork to address A’, for example, will result in forking to A since
one of the two equivalent actions will be selected by default. The unequal/opposite case is not explicitly handled;
‘must fork to address A’ and ‘should not fork to address B’, for example, will result in forking to only A since
actions with negative preferences are not performed. The unequal/similar case is not explicitly handled; ‘must
fork to address A’ and ‘should fork to address B’, for example, will result in forking to both A and B since both
actions are compatible.

<resolution id=′′Call fork-fork conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2008-07-10T20:40:00′′>
<policy rule>
<triggers>
<and/>
<trigger arg1=′′variable0′′>fork to(arg1)</trigger>
<trigger arg1=′′variable1′′>fork to(arg1)</trigger>

</triggers>
<conditions>
<and/>
<condition>
<parameter>variable0</parameter>
<operator>eq</operator>
<parameter>variable1</parameter>

</condition>
<condition>
<parameter>preference0</parameter>

45

<operator>out</operator>
<value>:preference1</value>

</condition>
</conditions>
<action>apply stronger</action>

</policy rule>
</resolution>

Similar resolutions could be defined for pairs of add caller, add party, add medium, etc.

3.6.2 Call Forward-Forward Conflict – Generic Resolution
Call forwarding is another example of a call control action conflicting with itself. However, the resolution is
more complex. There is conflict if the forwarding addresses are the same and the preferences are opposite
(equal/opposite case), or if the forwarding addresses differ and the preferences are similar (unequal/similar case)
The resolution given here is to apply the caller’s preference. The equal/similar and unequal/opposite cases are
handled by default much as described in section 3.6.1.

<resolution id=′′Call forward-forward conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2008-07-10T20:40:00′′>
<policy rule>
<triggers>
<and/>
<trigger arg1=′′variable0′′>forward to(arg1)</trigger>
<trigger arg1=′′variable1′′>forward to(arg1)</trigger>

</triggers>
<conditions>
<or/>
<conditions>
<and/>
<condition>
<parameter>variable0</parameter>
<operator>eq</operator>
<parameter>variable1</parameter>

</condition>
<condition>
<parameter>preference0</parameter>
<operator>out</operator>
<value>:preference1</value>

</condition>
</conditions>
<conditions>
<and/>
<condition>
<parameter>variable0</parameter>
<operator>ne</operator>
<parameter>variable1</parameter>

</condition>
<condition>
<parameter>preference0</parameter>
<operator>in</operator>
<value>:preference1</value>

</condition>
</conditions>

</conditions>
<action>apply stronger</action>

</policy rule>
</resolution>

Similar resolutions could be defined for pairs of note availability, note presence, reject call, etc.

46

3.6.3 Medium Add-Remove Conflict – Generic Resolution
A number of call control actions are inverses of each other, and are an obvious source of conflict. For example, a
conflict arises if one party wishes to add some medium to the call while the other party wishes to remove this. The
following checks if the medium in question is the same for both actions, and whether the associated preferences
are similar. If so, it selects the weaker preference.

This resolution explicitly deals with only the equal/similar case. The equal/opposite case is not explicitly
handled; ‘must add medium M’ and ‘should not remove medium M’, for example, will result in adding M since
actions with negative preferences are not performed. The unequal cases are handled by default much as described
in section 3.6.1.

<resolution id=′′Medium add-remove conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2008-07-10T20:40:00′′>
<policy rule>
<triggers>
<and/>
<trigger arg1=′′variable0′′>add medium(arg1)</trigger>
<trigger arg1=′′variable1′′>remove medium(arg1)</trigger>

</triggers>
<conditions>
<and/>
<condition>
<parameter>variable0</parameter>
<operator>eq</operator>
<parameter>variable1</parameter>

</condition>
<condition>
<parameter>preference0</parameter>
<operator>in</operator>
<value>:preference1</value>

</condition>
</conditions>
<action>apply weaker</action>

</policy rule>
</resolution>

Similar resolutions could be defined for add party vs. remove party, confirm bandwidth vs. reject bandwidth,
etc.

3.6.4 Call Fork-Reject Conflict – Generic Resolution
Sometimes, conflicting actions are not simple inverses. For example, a conflict arises if one party wishes to fork
the call while the other wishes to reject it. Only the preferences of the parties are relevant to resolution: if they are
similar, the superior party’s action is selected by the following:

This resolution explicitly deals with only the equal/similar case. The equal/opposite case is not explicitly
handled; ‘must fork to address A’ and ‘should not reject call for reason R’, for example, will result in forking to
A since actions with negative preferences are not performed. The unequal cases are irrelevant since the variable
values need not be checked.

<resolution id=′′Call fork-reject conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2008-07-10T20:40:00′′>
<policy rule>
<triggers>
<and/>
<trigger arg1=′′variable0′′>fork to(arg1)</trigger>
<trigger arg1=′′variable1′′>reject call(arg1)</trigger>

</triggers>
<condition>
<parameter>preference0</parameter>

47

<operator>in</operator>
<value>:preference1</value>

</condition>
<action>apply stronger</action>

</policy rule>
</resolution>

Similar resolutions could be defined for fork to vs. forward to, forward to vs. reject call, etc.

3.6.5 Bandwidth Confirm-Reject Conflict – Specific Resolution
This example is a straightforward conflict: one party wishes to confirm the requested bandwidth, while the other
wishes to reject the request. The resolution this time is specific: the bandwidth request is confirmed, and the
conflict is noted in the confirmer’s event log. This resolution explicitly deals with only the equal/similar case.
Other cases are handled by default much as described in section 3.6.1.

<resolution id=′′Bandwidth confirm-reject conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2008-07-10T20:40:00′′>
<policy rule>
<triggers>
<and/>
<trigger>confirm bandwidth</trigger>
<trigger arg1=′′variable1′′>reject bandwidth(arg1)</trigger>

</triggers>
<condition>
<parameter>preference0</parameter>
<operator>in</operator>
<value>:preference1</value>

</condition>
<actions>
<and/>
<action>confirm bandwidth</action>
<action arg1=′′Overruled bandwidth conflict of :caller: and callee′′>

log event(arg1)
</action>

</actions>
</policy rule>

</resolution>

3.6.6 Caller-Medium Add-Add – Specific Resolution
Suppose that one party wishes to add video to the call, while the other wishes include a third party in the call
(add caller). This might be considered undesirable, since the third party would be able to view the call parties
and their workplaces. The resolution is to allow both actions, but to conference in bob@cs.stir.ac.uk to oversee
the call (add party). Note that the triggers and actions are all of different types. This resolution explicitly deals
with only the equal/similar case. Other cases are handled by default much as described in section 3.6.1.

<resolution id=′′Caller-Medium add-add conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2008-07-10T20:40:00′′>
<policy rule>
<triggers>
<and/>
<trigger arg1=′′variable0′′>add caller(arg1)</trigger>
<trigger arg1=′′variable1′′>add medium(arg1)</trigger>

</triggers>
<conditions>
<and/>
<condition>
<parameter>variable1</parameter>

48

<operator>eq</operator>
<value>video</value>
</condition>
<condition>
<parameter>preference0</parameter>
<operator>in</operator>
<value>:preference1</value>

</condition>
</conditions>
<actions>
<and/>
<actions>
<and/>
<action arg1=′′variable0′′>add caller(arg1)</action>
<action arg1=′′variable1′′>add medium(arg1)</action>

</actions>
<action arg1=′′bob@cs.stir.ac.uk′′>add party(arg1)</action>

</actions>
</policy rule>

</resolution>

3.6.7 Timer Start-Stop Conflict – Specific Resolution
Timer actions can give rise to conflicts. The following checks if the timer identifier is the same for both actions,
and whether the associated preferences are similar. If so, it chooses to start the timer identified by variable0.

This resolution explicitly deals with only the equal/similar case. The equal/opposite case is not explicitly
handled; ‘must start timer T’ and ‘should not stop timer T’, for example, will result in timer T being started. The
unequal cases are handled by default much as described in section 3.6.1.

<resolution id=′′Timer start-stop conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2008-07-10T20:40:00′′>
<policy rule>
<triggers>
<and/>

<trigger arg1=′′variable0′′ arg2=′′variable2′′>start timer(arg1,arg2)</trigger>
<trigger arg1=′′variable1′′>stop timer(arg1)</trigger>
</triggers>
<conditions>
<and/>
<condition>
<parameter>variable0</parameter>
<operator>eq</operator>
<parameter>variable1</parameter>

</condition>
<condition>
<parameter>preference0</parameter>
<operator>in</operator>
<value>:preference1</value>

</condition>
</conditions>
<action arg1=′′:variable0′′ arg2=′′:variable2′′>start timer(arg1,arg2)</action>

</policy rule>
</resolution>

Similar resolutions could be defined for start timer vs. start timer, start timer vs. restart timer, etc.

3.6.8 Variable Set-Set Conflict – Specific Resolution
Setting variables can give rise to conflicts. The following checks if the variable identifier is the same for both ac-
tions, but the values being assigned are different. If so it logs the situation and performs no assignment, otherwise
it performs both assignments (even if the same variable is involved in both cases).

49

This resolution explicitly deals with the equal and unequal cases. Note that no preferences are taken into
account as an assignment conflict is considered to be a fundamental problem.

<resolution id=′′Variable set-set conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2007-12-13T20:40:00′′>
<policy rule>
<triggers>
<and/>
<trigger arg1=′′variable0′′

arg2=′′variable2′′>set variable(arg1,arg2)</trigger>
<trigger arg1=′′variable1′′

arg2=′′variable3′′>set variable(arg1,arg2)</trigger>
</triggers>
<conditions>
<and/>
<condition>
<parameter>variable0</parameter>
<operator>eq</operator>
<parameter>variable1</parameter>

</condition>
<condition>
<parameter>variable2</parameter>
<operator>ne</operator>
<parameter>variable3</parameter>

</condition>
</conditions>
<actions>
<else/>
<action arg1=′′Incompatible assignment to :variable0′′>log event(arg1)</action>
<actions>
<and/>
<action arg1=′′:variable0′′ arg2=′′:variable2′′>

set variable(arg1,arg2)
</action>
<action arg1=′′:variable1′′ arg2=′′:variable3′′>

set variable(arg1,arg2)
</action>

</actions>
</actions>

</policy rule>
</resolution>

Similar resolutions could be defined for set variable vs. unset variable, and unset variable vs. unset variable.

3.7 Prototype Policies
An XML wrapper is required for a call control prototype policy in the following form:

<policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel regular call.xsd′′>
...

</policy document>

Because a prototype policy is instantiated as a regular policy, the relevant schema is that of the latter.
As an example of a prototype policy, the following aims to limit call duration. The call length is determined

by a parameter ($duration) that is optimised during goal refinement. The policy has three sequential rules that
are tried in order until the one with a matching trigger is found. When a call is connected, a call timer is started.
When the call is disconnected, this timer is stopped. If the timer expires, the call is forcibly disconnected.

<prototype owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

effect=′′call duration = $duration′′ id=′′Parameterised call duration′′

50

enabled=′′true′′ changed=′′2009-01-03T17:18:00′′>
<policy rules>
<sequential/>
<policy rule>
<trigger>connect</trigger>
<action arg1=′′call timer′′ arg2=′′$duration′′>

start timer(arg1,arg2)
</action>

</policy rule>
<policy rules>
<sequential/>
<policy rule>
<trigger>disconnect</trigger>
<action arg1=′′call timer′′>stop timer(arg1)</action>

</policy rule>
<policy rule>
<trigger arg1=′′call timer′′>timer expiry(arg1)</trigger>
<action>disconnect</action>

</policy rule>
</policy rules>

</policy rules>
</prototype>

The abstract effect of this policy on controlled variables is to limit the call duration to the optimal value of the
$duration parameter.

3.8 Goals
An XML wrapper is required for a call control goal in the following form:

<policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel.xsd′′>
...

</policy document>

The system variables that appear in goal measures are described in section 3.7.
As an example of a goal for call control, the following applies only when the day is Monday to Friday:

<goal owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

id=′′Maximise multimedia use′′ enabled=′′true′′ changed=′′2009-01-03T17:18:00′′>
<policy rule>
<condition>
<parameter>day</parameter>
<operator>in</operator>
<value>1..5</value>

</condition>
<action arg1=′′0.03*call bandwidth + 1.2*call quality′′>maximise(arg1)</action>

</policy rule>
</goal>

This goal aims to maximise a goal measure that is defined in terms of the call bandwidth and call quality con-
trolled variables.

51

Chapter 4

Home Care

4.1 System Variables
System variables are used in prototype effects and can also appear in conditions. The controlled and uncontrolled
system variables are described in figures 4.1 and 4.2. The minimum, typical and maximum values of each variable
are given. Floating point values are shown with a decimal point, while integer values are shown as whole numbers.
Derived system variables are currently not defined for this domain.

4.2 Uncertain Values
Fuzzy input sets for system variables are defined in tables 4.3 and 4.4, while fuzzy output sets for actions are
defined in table 4.5.

Note that entity names in fuzzy inputs and outputs must be as stated or have the table names as suffixes. For
example the entity name interior humidity matches the humidity fuzzy input, while entity name extractor ,fan
matches the fan fuzzy output. The entity instance bedside light matches the light fuzzy output, but bedside lamp
would not.

Devices associated with home care do not currently report or act on probabilistic values.

4.3 Regular Policies

4.3.1 Introduction
This section describes regular policies for the domain of home care. It discusses the triggers, conditions and
actions used to specialise the language for this field.

For home care, regular policies are extended with domain-specific triggers, conditions and actions. The rela-
tionship among these is shown in figure 4.6. Core triggers (section 2.6), condition parameters (section 2.7) and
actions (section 2.8) are also applicable. The combination rules are as follows:

• Internal triggers (marked † in figure 4.6) may be combined with any other triggers. Currently in home care
at most one external trigger (no † in figure 4.6) is allowed.

4.3.2 Common Parameters and Environment Variables
Regular policy conditions can use the following parameters: date, day and time (section 2.13.2). Regular policies
for home care can also use a common set of parameters within triggers, conditions and actions. These parameters
are outlined below together with examples of their use.

message type: This identifies the type of trigger or action. This parameter is mandatory. Normally the message
type is an adjective for a trigger (describing a new state, e.g. ‘occupied’), and an a verb for an action
(describing something to be done, e.g. ‘record’).

52

Variable Description Min Typ Max
additive intake additive intake in gm/day 0.0 3.0 10.0
audio volume audio-visual equipment volume in dB 40.0 60.0 100.0
awake time number of waking hours/day 14.0 16.0 20.0
bed time time when the user goes to bed in hours (24-hour clock) 20 22 24
calorie intake food energy consumption in MCals/day (thousands of ‘calo-

ries’)
1.0 2.25 5.0

chill risk chill risk on a range from 0 (low) to 10 (high) 0 2 10
energy consumption home energy consumption in kWh/day 0.0 8.0 20.0
exercise time time spent on exercise in hours/day 0.0 2.0 8.0
fall risk fall risk on a range from 0 (low) to 10 (high) 0 1 10
fluid intake fluid intake in litres/day 0.0 1.0 4.0
flush count number of toilet flushes/day 0 4 16
information level how well the system has kept the user informed on a scale from

0 (poor) to 10 (good)
0 5 10

interior humidity air humidity inside the home in percent 0 50 100
interior pollen pollen level inside the house on a scale from 0 (none) to 3 (very

high)
0.0 0.5 3.0

interior pollution air pollution inside the home on a scale from 0 (none) to 10
(very high)

0 1 10

interior temperature air temperature inside the home in Centigrade 10.0 20.0 35.0
medication level medication compliance level on a scale from 0 (poor) to 10

(good)
0 5 10

night movement home night-time movement on a scale from 0 (none) to 10
(high)

0 2 10

reminder level how well the system has reminded the user on a scale from 0
(poor) to 10 (good)

0 5 10

rise time time when the user gets up in hours (24-hour clock) 5 8 12
safety level home safety level on a scale from 0 (low) to 10 (high) 0 8 10
security level home security level on a scale from 0 (low) to 10 (high) 0 8 10
social contact social contact (e.g. phone calls, visits) in hours/day 0.0 2.0 10.0
user outing time spent out of the home in hours/day 0.0 1.0 5.0
viewing time time spent watching television in hours/day 0.0 4.0 16.0

Figure 4.1: Home Care Controlled System Variables

Variable Description Min Typ Max
exterior humidity air humidity outside the home in percent 0 60 100
exterior pollen pollen level outside the house on a scale from 0 (none) to 3

(very high)
0.0 1.0 3.0

exterior pollution air pollution outside the home on a scale from 0 (none) to 10
(very high)

0 3 10

exterior temperature air temperature outside the home in Centigrade -10.0 15.0 35.0

Figure 4.2: Home Care Uncontrolled System Variables

53

Entity Name Fuzzy Value Distribution
additive intake low fall(0,2,4)

medium triangle(3,5,7)
high rise(6,9,20)

audio volume very quiet fall(20,35,45)
quiet triangle(40,50,60)
comfortable triangle(55,65,75)
loud triangle(70,80,90)
very loud rise(85,95,110)

awake time short fall(10,13,15)
normal triangle(14,16,18)
long rise(17,19,21)

chill risk low fall(0,2,4)
medium triangle(3,5,7)
high rise(6,9,10)

energy consumption low fall(0,3,5)
medium triangle(4,8,12)
high rise(11,13,20)

exterior temperature freezing fall(-10,0,1)
cold triangle(0,7,14)
cool triangle(11,14,17)
comfortable triangle(16,19,22)
warm triangle(21,24,27)
hot rise(26,30,35)

fall risk low fall(0,1,2)
medium triangle(2,4,6)
high rise(6,9,10)

humidity dry fall(0,10,35)
comfortable triangle(30,50,70)
damp rise(65,90,100)

interior temperature cold fall(5,10,15)
cool triangle(12,15,18)
comfortable triangle(17,20,23)
warm triangle(22,25,28)
hot rise(27,30,35)

Figure 4.3: Home Care Fuzzy Inputs 1

54

Entity Name Fuzzy Value Distribution
medication level low fall(0,2,4)

acceptable triangle(3,5,7)
high rise(6,9,10)

night movement low fall(0,1,2)
acceptable triangle(1,2,3)
high rise(2,4,8)

pollen none fall(0,0.5,1)
low triangle(0.5,1,1.5)
high triangle(1.5,2,2.5)
very high rise(2,2.5,3)

pollution low fall(0,2,4)
moderate triangle(3,5,7)
high triangle(6,8,10)
very high rise(9,9.5,10)

safety level low fall(0,4,6)
acceptable triangle(5,8,9)
high rise(8,9,10)

security level low fall(0,4,6)
acceptable triangle(5,8,9)
high rise(8,9,10)

social contact low fall(0,0.5,1.5)
normal triangle(1,2,3)
high rise(2.5,4,8)

user outing low fall(0,0.5,1)
acceptable triangle(0.5,1.5,2.5)
high rise(1.5,4,6)

viewing time low fall(0,1,3)
normal triangle(2,4,6)
high rise(5,7,10)

Figure 4.4: Home Care Fuzzy Inputs 2

Entity Name Fuzzy Value Distribution
fan low fall(0,20,40)

moderate triangle(30,50,70)
high rise(60,80,100)

heater low fall(0,20,40)
moderate triangle(30,50,70)
high rise(60,80,100)

light very dim fall(0,20,30)
dim triangle(20,30,40)
moderate triangle(30,50,70)
bright triangle(60,70,80)
very bright rise(70,80,100)

volume very quiet fall(0,20,30)
quiet triangle(10,30,50)
moderate triangle(30,50,70)
loud triangle(50,70,90)
very loud rise(80,90,100)

Figure 4.5: Home Care Fuzzy Outputs

55

Trigger Parameters Established Actions Permitted
internal† device out, log event, restart timer,

send message, set variable, start timer,
stop timer, unset variable

device in entity name,
entity instance,
message qualifier,
message type,
parameter values

device out, log event, restart timer,
send message, set variable, start timer,
stop timer, unset variable

timer expiry† timer instance device out, log event, restart timer,
send message, set variable, start timer,
stop timer, unset variable

† internal trigger that may be combined with any other

Figure 4.6: Relationship between Home Care Triggers, Conditions and Actions

entity name: This identifies an external entity that may have policies associated with it. The entity name must
agree with the message type, i.e. this entity must be capable of processing this kind of message. An entity
name may be unnecessary if it is implied by the message type (e.g. all log messages are handled by a
system-wide logger). If this parameter is omitted, its default is an empty string.

entity instance: This identifies a particular instance of an entity name. For example, an instance of entity door
might be the identifier front, while an instance of a window might be bedroom 1. If there is a unique instance
of an entity (e.g. a system-wide database), the instance may be omitted. If this parameter is omitted, its
default is an empty string.

message qualifier: This is normally the time period to which a trigger or action refers. The period is either
a non-negative integer n (during the last n minutes for a trigger, in n minutes for an action) or a time
in HH:MM:SS format (since this time for a trigger, at this time for an action). Due to transmission and
processing delays, this time period is unlikely to be respected exactly. An absolute time reference spans a
maximum of 24 hours. Suppose the time is currently 12:00:00. For a trigger, 11:00:00 means ‘since 11AM
today’ and 13:00:00 means ‘since 1PM yesterday’. For an action, 11:00:00 means ‘at 11AM tomorrow’ and
13:00:00 means ‘at 1PM today’.

However, the message qualifier may alternatively be used to indicate the confidence of a trigger or action.
The value takes the form of a probability in the form single(probability). This allows an input device
to indicate the level of confidence associated with a signal (e.g. a fall detector might report only 70%
confidence when it is activated). It also allows the confidence in an action to be provided to an output
device (e.g. an alert message should be sent with 90% confidence). This output confidence may be used by
the device to decide how best to handle the action (e.g. a high-confidence action might use a more urgent
form of communication).

If the message qualifier is omitted its default is ‘just occurred’ or ‘fully confident’ for a trigger, and ‘now’
or ‘fully confident’ for an action.

parameter values: This is an open-ended string that may be a literal value like ‘log success’, a name-value
pair like period=01:00:00, or a comma-separated list of values like ‘[20,30]’ (possibly including sub-lists).
In the case of a probabilistic input, the value takes the form normal(mean,standard deviation). If this
parameter is omitted, its default is an empty value.

The policy system establishes environment variables on the occurrence of each trigger. The parameters above
double as environment variables. This is a flexible approach, allowing each parameter to appear explicitly in a
trigger or action, as well as being defined implicitly as an environment variable. Environment variables may also
be used to output parameter values literally in an action, such as inserting the entity instance of a sensor in a
warning message to care centre staff. The example policies in sections 4.4.5 and 4.4.6 demonstrate the use of
environment variables.

56

As far as the policy server is concerned, these parameters are simply uninterpreted strings whose meaning is
given only by the external system. The following are concrete examples of interfaces that are currently supported.
The configuration, addressing and parameters of home care devices are outside the scope of the policy system.
Typical message type and parameter values arguments are shown for these in figures 4.7 and 4.8. ‘*’ indicates
any value and ‘-’ indicates an empty value.

ACS (http://www.acs.com) make a range of RFID (Radio Frequency Identification) readers. The entity name is
always ‘rfid’. The entity instance is not used. The card/tag UID (Unique Identifier) is translated into a
description for the parameter values (or is reported literally as hex if not mapped in the configuration file).

Cipherlab (http://www.cipherlab.co.uk) make a range of barcode readers. The entity name is always ‘barcode’.
The entity instance is normally ‘single’, but is reported as ‘multiple’ if the same barcode is scanned twice or
more within the defined delay period. The barcode is translated into a description for the parameter values
(or is reported literally as digits if not found in the configuration file or in the defined online database).

FitBit (http://www.fitbit.com) make a range of fitness monitors such as the Flex, typically equipped with an
accelerometer, a (simple) display, input by tapping the monitor, and vibration output. The monitors can be
used to record lifestyle factors such as the number of steps taken per day and sleep patterns.

i-Buddy is an ‘Internet Buddy’ for user-friendly interaction. The entity name is always ‘ibuddy’. The en-
tity instance is used if required to distinguish sub-components (e.g. head, heart, wings).

IRTRans (http://www.irtrans.com) make a range of infrared output devices that can emulate remote controls (e.g.
for domestic appliances). The entity name is a user-friendly identifier for the actuator (e.g. air conditioner,
CD, TV). The entity instance is used if required to distinguish multiple instances of these (e.g. kitchen,
sitting room, study).

Nabaztag (http://en.wikipedia.org/wiki/Nabaztag) is an ‘Internet Buddy’ for user-friendly interaction. The en-
tity name is always ‘nabaztag’. The entity instance is used if required to distinguish sub-components (e.g.
left ear, head, nose).

Oregon Scientific (http://www.oregonscientific.com) make a range of sensors including measurement of environ-
mental and meteorological values. The entity name is a user-friendly identifier (e.g. greenhouse, lounge,
outdoor). The entity instance is the measurement type (e.g. humidity, pressure, temperature).

Plugwise (http://www.oregonscientific.com) make a range of sensors including measurement of environmental
and meteorological values. The entity name is a user-friendly identifier (e.g. greenhouse, lounge, outdoor).
The entity instance is the measurement type (e.g. humidity, pressure, temperature).

Tunstall (http://www.tunstall.co.uk) make a range of telecare sensors and actuators. The entity name is a user-
friendly identifier for the sensor (e.g. bed, lifeline, medication). The entity instance is used if required to
distinguish multiple instances of these (e.g. bedroom, red, mary).

TuxDroid (http://en.wikipedia.org/wiki/Tux Droid) is an ‘Internet Buddy’ for user-friendly interaction. The en-
tity name is always ‘tuxdroid’. The entity instance is used if required to distinguish sub-components (e.g.
beak, eyes, wings).

Visonic (http://www.visonic.com) make a range of home security sensors and actuators. The entity name is a
user-friendly identifier for the sensor or actuator (e.g. CO2, flood, window). The entity instance is used if
required to distinguish multiple instances of these (e.g. main bedroom, kitchen, lounge).

X10 (http://www.x10community.com) is a standard for controlling appliances connected to the electrical mains.
X10 is mostly used for output (off, on), though it can also be used to set an intermediate value (e.g. to dim
a light). Some X10 input devices also exist (e.g. movement sensors). The entity name is a user-friendly
identifier for the device (e.g. cooker, heating, light). The entity instance is used if required to distinguish
multiple instances of these (e.g. all, exterior, kitchen, microwave, upstairs).

57

http://www.acs.com
http://www.cipherlab.co.uk
http://www.fitbit.com
http://www.irtrans.com
http://en.wikipedia.org/wiki/Nabaztag
http://www.oregonscientific.com
http://www.oregonscientific.com
http://www.tunstall.co.uk
http://en.wikipedia.org/wiki/Tux_Droid
http://www.visonic.com
http://www.x10community.com

Type Message Type Entity Parameter Values
Name Instance

ACS reading rfid tag text (hex if un-
recognised)

Cipherlab reading barcode multiple,
single

text (digits if un-
recognised)

FitBit battery fitbit - -
reading fitbit sleep sleep hours during

the previous night
steps number of steps for

the current day
IRTRans channel down, channel up dvb, dvd, radio, tv, vcr * -

channel set dvb, dvd, radio, tv, vcr * digits
drive select dvd, vcr * -
fast forward, fast reverse,
forward, pause, play, reverse,
stop

cd, dvd, vcr * -

off, on cd, dvb, dvd, radio, tv, vcr * -
volume down, volume mute,
volume up

cd, dvb, dvd, hifi, radio, tv, vcr *

record cd (recorder), dvd (recorder), vcr * -
track previous, track next cd * -
track set cd * digits
volume set cd, dvb, dvd, hifi, radio, tv, vcr * digits

Nabaztag click, double click nabaztag head -
moved nabaztag left ear,

right ear
back, down, for-
ward, out, up

reading nabaztag tag text (or hex)
Oregon battery * * -

reading humidity * 0-100 (%)
pressure * float (mB)
temperature * float (◦C)

Plugwise energy entity (empty for all) * integer (Wh)
power entity (empty for all) * integer (W)

Tunstall active movement, pendant, wrist alarm * -
active, clear co, co2, flood, gas, smoke * -
click lifeline green,

red,
yellow

-

free, occupied bed, chair, mat * -
missed, taken medication * -
open, shut cupboard, door, window * -

TuxDroid battery tuxdroid - -
click tuxdroid head -

wing left, right
reading tuxdroid light 0-100

Visonic active, clear doorbell, movement, pendant,
flush, wrist

* -

active, clear co, co2, flood, gas, smoke * -
battery * * -
exit, open, shut cupboard, door, window * -

X10 active movement * -

Figure 4.7: Sample Home Care Triggers (‘*’ any value, ‘-’ empty value)

58

Type Message Type Entity Parameter Values
Name Instance

i-Buddy flash ibuddy head blue, cyan, green,
purple, red, yellow
(all ‘+white’)

flash, off, on ibuddy heart -
off, on ibuddy head blue, cyan, green,

purple, red, yellow,
white

reset ibuddy - -
rotate ibuddy body left, right, spin
set ibuddy wings down, flap fast,

flap slow, up
IRTRans channel down, channel up dvb, dvd, radio, tv, vcr * -

channel set dvb, dvd, radio, tv, vcr * digits
drive select dvd, vcr * -
fast forward, fast reverse,
forward, pause, play,
reverse, stop

cd, dvd, vcr * -

off, on cd, dvb, dvd, radio, tv, vcr * -
record cd (recorder), dvd (recorder), vcr * -
track down, track up cd * -
track set cd * digits
volume down,
volume mute, volume up

cd, dvb, dvd, hifi, radio, tv, vcr * -

volume set cd, dvb, dvd, hifi, radio, tv, vcr * 0–100 (%)
Nabaztag flash, off, on nabaztag belly,

bottom,
centre,
left,
nose,
right

blue, green, or-
ange, purple, red,
white, yellow

move nabaztag both ears,
left ear,
right ear

back, down, for-
ward, out, up

Plugwise off, on air conditioning, alarm,
central heating, cooker, fan,
heating, light, security camera

* -

TuxDroid blink, open, shut tuxdroid eyes -
off, on, flash tuxdroid eyes both, left, right
open, shut, speak tuxdroid beak -
reset tuxdroid - -
rotate tuxdroid body left, right,

spin left,
spin right

X10 close, open blind, curtain, shutter * -
dim light * 0–100 (%)
off, on air conditioning, burglar alarm,

central heating, cooker, fan,
heating, light, security camera

* -

set air conditioning, blind,
central heating, shutter

* 0–100 (%)

Figure 4.8: Sample Home Care Actions (‘*’ any value, ‘-’ empty value

59

4.3.3 Triggers
Regular policies for home care have triggers as follows. (The somewhat lengthy definition simply says that a
mandatory arg1 is followed by optional trailing arguments.) These are added to the regular policy triggers in
section 2.13.1.

<xsd:simpleType name=′′trigger domain′′>
<xsd:restriction base=′′trigger domain′′>
<xsd:enumeration value=′′device in(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,arg3)′′/>
<xsd:enumeration value=′′device in(arg1,arg2)′′/>
<xsd:enumeration value=′′device in(arg1)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3)′′/>
<xsd:enumeration value=′′device in(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device in(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,,arg4)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

Regular policy triggers for home care are structured as follows:

device in(type,entity,instance,period,parameters): This arises from any external device. Only the type is manda-
tory; section 4.3.2 explains these values.

For a device input to match such a trigger in a policy, arguments 1 to 3 (message type, entity name, entity
instance) must be identical to the values in the policy. However, policy arguments are considered to match
implicitly if they are empty. Argument 4 (message qualifier) is not used when matching a device input and
a policy.

Normally argument 5 (parameter values) is matched literally. If argument 4 in the device input is a confi-
dence level (see section 2.10.4), only literal values are allowed in argument 5 of the device input and the
policy; if these match, the result is a probability for triggering. If argument 4 in the device input is empty
or is a time period, argument 5 of the device input may be a literal value and argument 5 of the policy may
be the name of a fuzzy set (see section 2.10.3). In this case, comparison of the device input and the policy
results in a fuzzy confidence for triggering.

The policy server automatically stores key information from device in events in user variables, thus automat-
ically recording trigger occurrences. If arg3 is non-empty this variable is called arg3 arg2, otherwise it is called
arg2. If arg5 is non-empty the variable value is arg5, otherwise it is arg1. Examples of this are as follows:

• device in(open,door,front) will set variable front door to open

• device in(shut,fridge) will set variable fridge to shut

• device in(reading,temperature,interior,,20) will set variable interior temperature to 20

4.3.4 Conditions
Regular policies for home care have condition parameters as follows:

<xsd:simpleType name=′′parameter domain′′>
<xsd:restriction base=′′parameter domain′′>
<xsd:enumeration value=′′entity instance′′/>
<xsd:enumeration value=′′entity name′′/>
<xsd:enumeration value=′′message type′′/>

60

<xsd:enumeration value=′′parameter values′′/>
<xsd:enumeration value=′′message qualifier′′/>

</xsd:restriction>
</xsd:simpleType>

A detailed explanation of each parameter is given in section 4.3.2. The operators permitted for each parameter
are listed in figure 4.9; the use of other operators will yield a result, but this may not be useful. Some special rules
for values are as follows:

• For the identifier category, in and out are used with a comma-separated list of values to mean ‘among’ and
‘not among’. That is, the parameter is checked for presence or absence in a list of values.

• For the value category, in and out are used with a comma-separated list of values to mean ‘among’ and ‘not
among’. That is, the parameter is checked for presence or absence in a list of values.

In the case of date, day or time, a value may also be a range (e.g. 09:00:00..12:00:00 or 2005-02-03..2005-
02-10).

In the case of parameter values, a comma-separated list is given in brackets. A list index is given in brackets,
e.g. parameter values[2] refers to the third element in the list. For convenience with single values, omitting
the index implies an index of 0 (so parameter values means parameter values[0]).

The semantics of the condition operator depend on the types of its operands. Suppose the operator is gt is used
with parameter operand parameter values[2] and value operand ‘12’. If the parameter operand is ‘20’ (i.e. is in
numerical format), the condition will be treated as numerical comparison. If the parameter operand is ‘on’ (i.e. a
string), the condition will be treated as string comparison.

Category Parameter Operator
identifier entity name, entity instance, message type eq, ne, in, out
value message qualifier, parameter values eq, ne, in, out, gt, ge, lt, le

Figure 4.9: Common Parameter Operators

4.3.5 Actions
Regular policies for home care have actions as follows. (The somewhat lengthy definition simply says that a
mandatory arg1 is followed by optional trailing arguments.) These are added to the regular policy actions in
section 2.8. Actions are requests to the underlying communications layer. If the policy preference is must not, an
action argument can be omitted to mean any argument value.

<xsd:simpleType name=′′action domain′′>
<xsd:restriction base=′′action domain′′>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,arg2)′′/>
<xsd:enumeration value=′′device out(arg1)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

61

Action Message Entity Effects
device out†§ channel down,

channel set,
channel up

dvb, dvd, radio, tv, vcr channel

close, open blind, curtain, door, shutter,
window

opening, security

dim, off, on lamp, light light
fast forward,
fast reverse,
forward, pause, play,
reverse, record, stop

cd, dvd, vcr position

off, on air conditioning, central heating,
heater

humidity, power, temperature

off, on burglar alarm security
off, on drier, washer power
off, on extractor, fan ventilation
track next,
track previous,
track set

cd, dvd, vcr track

volume down,
volume mute,
volume up

cd, dvb, dvd, hifi, radio, tv, vcr volume

† action that may be duplicated with different parameters
§ action with partial parameter matching

Figure 4.10: Home Care Action Effects

Regular policy actions for home care are structured as follows:

device out(type,entity,instance,period,parameters): This controls or configures an entity external to the policy
system. Only the type is mandatory; section 4.3.2 explains these values.

Abstract effects of home care actions are shown in figure 4.10. These are defined in the domain ontology and
used for offline conflict detection. Parameter types start with a capital, while actual parameters start with a small
letter. Actions marked † can be duplicated in a single output response if they have different parameters. Actions
marked § are subject to partial matching of parameters (all but the last).

4.4 Example Regular Policies
The following home care policies illustrate the capabilities of the language. They should provide insight into the
policy language for real examples in this domain. They demonstrate the possibilities of supporting older people in
their everyday life and promotiong independent living. Examples include policies to support users in medical care,
home assistance, safety, communication and entertainment. Home care systems make use of situations detected
by ‘sensors’ (including software components such as a reminder service), and interact with the user by controlling
‘actuators’ (including software components such as a speech synthesiser).

Each example policy is introduced briefly by its natural language meaning. This introduction also draws
attention to some details of the policy language where appropriate.

An XML wrapper is required for a home care policy in the following form:

<?xml version=′′1.0′′ encoding=′′UTF-8′′?>
<policy document
xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=
′′http://www.cs.stir.ac.uk/schemas/appel regular home.xsd′′>
...

62

</policy document>

4.4.1 Light Control
The following policy sets the bedroom light to 60% brightness whenever the bedroom motion sensor is activated
between 10PM and 8AM.

<policy owner=′′ken@stirling.org′′

applies to=′′@house4.stirling.org′′

id=′′Activate bedroom light on movement′′

enabled=′′true′′ changed=′′2011-03-25T15:12:43′′>
<preference>should</preference>
<policy rule>
<trigger arg1=′′active′′ arg2=′′movement′′ arg3=′′bedroom′′>

device in(arg1,arg2,arg3)
</trigger>
<condition>
<parameter>time</parameter>
<operator>in</operator>
<value>22:00:00..08:00:00</value>

</condition>
<action arg1=′′dim′′ arg2=′′light′′ arg3=′′bedroom′′ arg5=′′60′′>

device out(arg1,arg2,arg3,,arg5)
</action>

</policy rule>
</policy>

4.4.2 Burglar Alarm
The following policy activates an alarm and a security camera for 20 minutes if there is movement in the hall or
lounge between midnight and 6AM.

<policy owner=′′feng@stirling.org.uk′′

applies to=′′@house2.cornton.stirling.org.uk′′

id=′′Burglar alarm′′ enabled=′′true′′ changed=′′2011-03-25T14:26:13′′>
<policy rule>
<triggers>
<or/>
<trigger arg1=′′active′′ arg2=′′movement′′ arg3=′′hall′′>

device in(arg1,arg2,arg3)
</trigger>
<trigger arg1=′′active′′ arg2=′′movement′′ arg3=′′lounge′′>

device in(arg1,arg2,arg3)
</trigger>

</triggers>
<condition>
<parameter>time</parameter>
<operator>in</operator>
<value>00:00:00..06:00:00</value>

</condition>
<actions>
<and/>
<action arg1=′′on′′ arg2=′′alarm′′ arg5=′′20′′>

device out(arg1,arg2,,,arg5)
</action>
<action arg1=′′on′′ arg2=′′security camera′′ arg5=′′20′′>

device out(arg1,arg2,,,arg5)
</action>

</actions>
</policy rule>

</policy>

63

4.4.3 Night Light
The following policy switches on the toilet light at night (10PM to 8AM) if the user gets out of bed. When an
occupancy sensor reports the bed is unoccupied, the toilet light is switched on. When the bed is occupied, the
toilet light is switched off.

Two policy rules are tried in sequence, checking first for a bed ‘free’ trigger and then for a bed ‘occupied’
signal.

<policy owner=′′ken@stirling.org′′ applies to=′′@house2.stirling.org′′

id=′′Night light′′ enabled=′′true′′

changed=′′2011-03-25T15:12:31′′>
<policy rules>
<sequential/>
<policy rule>
<trigger arg1=′′free′′ arg2=′′bed′′>

device in(arg1,arg2)
</trigger>
<condition>
<parameter>time</parameter>
<operator>in</operator>
<value>22:00:00..08:00:00</value>

</condition>
<action arg1=′′on′′ arg2=′′light′′ arg3=′′toilet′′>

device out(arg1,arg2,arg3)
</action>

</policy rule>
<policy rule>
<trigger arg1=′′occupied′′ arg2=′′bed′′>

device in(arg1,arg2)
</trigger>
<condition>
<parameter>time</parameter>
<operator>in</operator>
<value>22:00:00..08:00:00</value>

</condition>
<action arg1=′′off′′ arg2=′′light′′ arg3=′′toilet′′>

device out(arg1,arg2,arg3)
</action>

</policy rule>
</policy rules>

</policy>

4.4.4 Night Wandering Reminder
Older people, especially those with dementia, are prone to waking in the middle of the night and leaving the
house. The following policy advises the user to return to bed using synthesised speech (say, of a family member).
It applies to domain house3.match-project.org.uk, i.e. house 3 in the trial area of the MATCH project.

When the front door is opened, if the time is 11PM–7AM and the main bed is unoccupied, the message ‘It is
night time – go back to bed’ is synthesised on the hallway loudspeaker. The trigger input carries a single value
‘open’. The message period is omitted for both the trigger (i.e. ‘trigger just occurred’) and the action (i.e. ‘perform
action now’).

<policy owner=′′admin@match-project.org.uk′′

applies to=′′@house3.match-project.org.uk′′

id=′′Night wandering reminder′′ enabled=′′true′′

changed=′′2011-03-25T17:12:01′′>
<policy rule>
<trigger arg1=′′open′′ arg2=′′door′′ arg3=′′front′′>

device in(arg1,arg2,arg3)
</trigger>
<conditions>

64

<and/>
<condition>
<parameter>time</parameter>
<operator>in</operator>
<value>23:00:00..07:00:00</value>

</condition>
<condition>
<value>:main bed</value>
<operator>eq</operator>
<value>unoccupied</value>

</condition>
</conditions>
<action arg1=′′say′′

arg3=′′hall′′ arg5=′′It is night time - go back to bed′′>
device out(arg1,,arg3,,arg5)

</action>
</policy rule>

</policy>

4.4.5 Water Heating Control
The following policy deals with control of domestic water heating. Water heating is initiated at night to make use
of off-peak electricity. Since the need for hot water is limited, this policy requests water heating only twice per
week. At 11PM every day, the current day number is checked. On Wednesdays and Saturdays (days 3 and 6), water
heating is turned on at the immerser, and an email message is sent to the householder (tom@house4.stirling.com)
to report this. On other days, water heating is turned off (it may already have been off) and the householder is
notified.

There is no explicit trigger in this example. Instead, a time trigger is inferred from the time condition. The
water heating is controlled by the X10 commands on and off.

<policy owner=′′admin@stirling.com′′ applies to=′′@house4.stirling.com′′

id=′′Water heating control′′ enabled=′′true′′

changed=′′2011-03-25T13:05:00′′>
<policy rules>
<sequential/>
<policy rule>
<conditions>
<and/>
<condition>
<parameter>time</parameter>
<operator>eq</operator>
<value>23:00:00</value>

</condition>
<condition>
<value>=day % 3</value>
<operator>eq</operator>
<value>0</value>

</condition>
</conditions>
<actions>
<and/>
<action arg1=′′on′′ arg2=′′immerser′′>

device out(arg1,arg2)
</action>
<action arg1=′′:tom email′′

arg2=′′Immerser turned on at :time :date′′>
send message(arg1,arg2)

</action>
</actions>

</policy rule>

65

<policy rule>
<conditions>
<and/>
<condition>
<parameter>time</parameter>
<operator>eq</operator>
<value>23:00:00</value>

</condition>
<condition>
<value>=day % 3</value>
<operator>ne</operator>
<value>0</value>

</condition>
</conditions>
<actions>
<and/>
<action arg1=′′off′′ arg2=′′immerser′′>

device out(arg1,arg2)
</action>
<action arg1=′′:tom email′′

arg2=′′Immerser is off at :time :date′′>
send message(arg1,arg2)

</action>
</actions>

</policy rule>
</policy rules>

</policy>

4.4.6 Activity Logging
Logging everyday activity can be valuable to determine long-term trends. However, the nature of the logging
should vary according to the circumstances and preferences of the individual. The following policy receives
a logging request that specifies two lists of sensors: those whose logging should be started (trigger parame-
ter values[0]), and those whose logging should be stopped (trigger parameter values[1]). These values are ob-
tained implicitly from the trigger through the parameter values environment variable.

<policy owner=′′admin@raploch.org.uk′′ applies to=′′@raploch.org.uk′′

id=′′Activity logging′′ enabled=′′true′′ changed=′′2011-03-24T09:05:30′′>
<policy rule>
<trigger arg1=′′note′′ arg2=′′log′′>device in(arg1,arg2)</trigger>
<actions>
<and/>
<action arg1=′′start′′ arg2=′′log′′ arg5=′′:parameter values[0]′′>

device out(arg1,arg2,,,arg5)
</action>
<action arg1=′′stop′′ arg2=′′log′′ arg5=′′:parameter values[1]′′>

device out(arg1,arg2,,,arg5)
</action>

</actions>
</policy rule>

</policy>

4.4.7 Fuzzy Heating Control
This policy illustrates the use of fuzzy inputs and outputs. Suppose a low interior temperature is reported (a fuzzy
trigger with membership 0.7, say) or the front door opens (a boolean trigger). The combination of fuzzy and
boolean triggers will result in a fuzzy value for triggering (0.7).

Suppose it is the weekend (days 6 or 7, a boolean condition) and the exterior temperature is at least warm
(a fuzzy condition with membership 0.8, say). The combination of boolean and fuzzy conditions will result in

66

a fuzzy value for the overall condition (0.8). The trigger and condition values will then be combined, giving an
overall fuzzy value for the policy being activated (0.7, the minimum of the two values).

Opening all windows (a boolean action) and setting the heating to moderate (a fuzzy action) will be given this
fuzziness. Assuming no other policy to open a window is activated, then this action will proceed as normal (its
fuzziness being ignored). However, assume that another policy wishes to set the heating to low (a fuzzy value with
membership of 0.5, say). The centre of gravity of these two actions is then calculated (low has fuzziness 0.5 and
centroid 16.7, moderate has fuzziness 0.7 and centroid 50). This gives a heating level of 36 (a percentage of full
heating). A single action for this heating level is then performed in place of the two fuzzy actions.

<policy owner=′′admin@stir.org.uk′′ applies to=′′@stir.org.uk′′

id=′′Fuzzy Heating Control′′ enabled=′′true′′ changed=′′2013-03-24T19:15:26′′>
<policy rule>
<triggers>
<or/>
<trigger arg1=′′reading′′ arg2=′′temperature′′ arg3=′′interior′′ arg5=′′low′′>

device in(arg1,arg2,arg3,,arg5)
</trigger>
<trigger arg1=′′open′′ arg2=′′door′′ arg3=′′front′′′′>

device in(arg1,arg2,arg3)
</trigger>

</triggers>
<conditions>
<and/>
<condition>
<parameter>day</parameter>
<operator>in</operator>
<value>6..7</value>

</condition>
<condition>
<value>:exterior temperature</value>
<operator>ge</operator>
<value>warm</value>

</condition>
</conditions>
<actions>
<and/>
<action arg1=′′open′′ arg2=′′window′′ arg2=′′all′′>

device out(arg1,arg2,arg3)
</action>
<action arg1=′′set′′ arg2=′′heating′′ arg5=′′moderate′′>

device out(arg1,arg2,,,arg5)
</action>

</actions>
</policy rule>

</policy>

4.4.8 Probabilistic Heating Control
This policy illustrates the use of probabilistic inputs and outputs. Suppose an uncertain interior temperature is
reported (a probabilistic trigger) or the front door opens (a boolean trigger). Suppose the interior temperature
sensor reports a probabilistic value with mean 21 and standard deviation 1. This means that the probability of the
temperature being 20 is 0.23. The combination of probabilistic and boolean triggers will result in a probabilistic
value for triggering (0.23).

Suppose it is during the day (9AM to 5PM, a probabilistic condition) and the exterior temperature is 25 or more
(a boolean condition). If the time is very close to 9AM or 5PM, it will not be known with certainty. The probability
associated with this condition might be 0.9. The combination of probabilistic and boolean conditions will result
in a probabilistic value for the overall condition (0.9). The trigger and condition values will then be combined,
giving an overall probabilistic value for the policy being activated (0.2, the product of the probabilities)).

Opening all windows (a boolean action) and setting the heating level to 40 (a boolean action) will be given
this probability. Assuming no other policy wishes to perform similar actions, then these actions will happen (their

67

probability might affect how the actions are implemented, e.g. an economical form of heating might be chosen as
the probability is low). However, if there are similar actions then a conflict will be detected. This may be resolved
by, say, choosing the more probable action. If the probability of the policy being activated were much lower (0.05,
say), this would be below the threshold and the actions would not take place.

<policy owner=′′admin@stir.org.uk′′ applies to=′′@stir.org.uk′′

id=′′Probabilistic Heating Control′′ enabled=′′true′′ changed=′′2013-03-24T21:03:25′′>
<policy rule>
<triggers>
<or/>
<trigger arg1=′′reading′′ arg2=′′temperature′′ arg3=′′interior′′ arg5=′′20′′>

device in(arg1,arg2,arg3,,arg5)
</trigger>
<trigger arg1=′′open′′ arg2=′′door′′ arg3=′′front′′′′>

device in(arg1,arg2,arg3)
</trigger>

</triggers>
<conditions>
<and/>
<condition>
<parameter>time</parameter>
<operator>in</operator>
<value>09:00:00..17:00:00</value>

</condition>
<condition>
<value>:exterior temperature</value>
<operator>ge</operator>
<value>25</value>

</condition>
</conditions>
<actions>
<and/>
<action arg1=′′open′′ arg2=′′window′′ arg2=′′all′′>

device out(arg1,arg2,arg3)
</action>
<action arg1=′′set′′ arg2=′′heating′′ arg5=′′40′′>

device out(arg1,arg2,,,arg5)
</action>

</actions>
</policy rule>

</policy>

4.5 Resolution Policies

4.5.1 Introduction
This section is specific to resolution policies for home care. It discusses the triggers, conditions and actions that
are used in this domain.

Resolution policies are extended with domain-specific triggers, conditions and actions. The relationship
among these is much simpler than for regular policies. Any action may be associated with a trigger. The ac-
tual parameters of these actions must be literal values, or the values of variable0 to variable9 (if a trigger has
bound them).

In general, conflicting situations may arise due to the preference attributes of policies being opposite, or due to
the effects of policy actions clashing. As described in section 4.3.5, policies for home care have only one domain-
specific action. Resolutions for this domain therefore deal with modality (preference) conflicts and parameter
conflicts for this action.

68

4.5.2 Triggers
Resolution policies for home care have triggers as follows. These are added to the resolution policy triggers in
section 2.14.1 and to the core triggers in section 2.6. Since resolutions are triggered by actions, resolution policy
triggers are identical to regular policy actions for home care (see section 4.3.5).

<xsd:simpleType name=′′trigger domain′′>
<xsd:restriction base=′′trigger domain′′>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,arg2)′′/>
<xsd:enumeration value=′′device out(arg1)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

4.5.3 Conditions
Resolution policies for home care have the same condition parameters as resolution policies in section 2.14.2.

4.5.4 Actions
Resolution policies for home care have actions as follows. These are added to the resolution policy actions in
section 2.14.3 and to the core actions in section 2.8. These actions are those of regular policies for home care in
section 4.3.5.

<xsd:simpleType name=′′action domain′′>
<xsd:restriction base=′′action domain′′>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,arg2)′′/>
<xsd:enumeration value=′′device out(arg1)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

In home care, multiple stakeholders are involved such as care centre staff, medical professionals, social work-
ers, relatives, and the end users themselves. These will belong to different groups. The conflicts of multiple
stakeholders need to be addressed in the home care systems. When conflicts are addressed by the policy sys-
tem, detecting policy conflicts among multiple stakeholders is not much different from detecting other types of

69

conflicts. However, resolving policy conflicts of multiple stakeholders requires an appropriate hierarchy among
them.

4.6 Example Resolution Policies
The following home care conflict policies demonstrate the capabilities of the language. They should provide an
insight into the use of the policy language for real examples of handling conflicts in this domain.

Each example is introduced briefly by its natural language meaning. This introduction also draws attention to
some details of the policy language where appropriate.

An XML wrapper is required for a home care policy in the following form:

<?xml version=′′1.0′′ encoding=′′UTF-8′′?>
<policy document
xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=
′′http://www.cs.stir.ac.uk/schemas/appel resolution home.xsd′′>
...

</policy document>

A resolution policy typically contains two triggers, each of which binds explicit variable values and implicit
preference values. In general, there are four cases to be considered by a resolution depending on whether the
variables are equal/unequal and whether the preferences are similar/opposite. This can often be simplified. In
some cases it is sufficient to check for the equal/similar combination; the other combinations are handled by
default. In other cases, the equal/opposite and unequal/similar combinations may be handled. In unusual cases, all
four combinations may need individual treatment. Since the else operator can be used with only two alternative
actions, multiple resolutions may therefore be required for the same trigger combination.

There are other variations on the basic case. For example, each trigger of a resolution policy may have up
to five parameters, and more than two triggers may be present in a resolution policy. Policy conflicts in home
care can be modality conflicts. They can also be one form of goal conflict, which occurs between the parameters
of device out actions. An example of action conflict is given in section 4.6.1. Examples of generic and specific
resolutions for conflicts among device out parameters are given in sections 4.6.2 and 4.6.3. For generic resolution,
the outcome is chosen from the set of conflicting actions. For specific resolution, any regular policy action can be
specified as the outcome, and is not limited to the set of conflicting actions.

4.6.1 Parameter-Parameter Conflict – Generic Resolution
The following resolution policy applies if the action type, entity, instance and period are identical. There is a
conflict if the parameters are identical but the preferences are contrary, or if the parameters are different but the
preferences are compatible. In such a case, the stronger policy is chosen.

The following resolution policy deals with the equal/different and unequal/same cases. Other cases are handled
by default, or could be defined in a more complex resolution policy. For example, two actions with differing
parameters may be acceptable (e.g. two messages to be sent by SMS).

<resolution owner=′′julia@stir.ac.uk′′ applies to=′′@campus.stir.ac.uk′′

id=′′Parameter-parameter conflict - generic resolution′′ enabled=′′true′′

changed=′′2011-03-21T00:12:00′′>
<policy rule>
<triggers>
<and/>
<trigger arg1=′′variable0′′ arg2=′′variable2′′ arg3=′′variable4′′

arg4=′′variable6′′ arg5=′′variable8′′>
device out(arg1,arg2,arg3,arg4,arg5)

</trigger>
<trigger arg1=′′variable1′′ arg2=′′variable3′′ arg3=′′variable5′′

arg4=′′variable7′′ arg5=′′variable9′′>
device out(arg1,arg2,arg3,arg4,arg5)

</trigger>
</triggers>
<conditions>

70

<and/>
<condition>
<value>:variable0,:variable2,:variable4,:variable6</value>
<operator>eq</operator>
<value>:variable1,:variable3,:variable5,:variable7</value>

</condition>
<conditions>
<or/>
<conditions>
<and/>
<condition>
<parameter>variable8</parameter>
<operator>eq</operator>
<value>:variable9</value>

</condition>
<condition>
<parameter>preference0</parameter>
<operator>out</operator>
<parameter>preference1</parameter>

</condition>
</conditions>
<conditions>
<and/>
<condition>
<parameter>variable8</parameter>
<operator>ne</operator>
<value>:variable9</value>

</condition>
<condition>
<parameter>preference0</parameter>
<operator>in</operator>
<parameter>preference1</parameter>

</condition>
</conditions>

</conditions>
</conditions>
<action>apply stronger</action>

</policy rule>
</resolution>

4.6.2 Power Conflict – Generic Resolution
The following resolution policy applies if the action entity, instance and period are identical. There is a conflict
if the actions differ and are those used for controlling power (dim, off, on). In such a case, the stronger policy is
chosen.

<resolution owner=′′louise@homes.org′′ applies to=′′@homes.org′′

id=′′Power conflict - generic resolution′′ enabled=′′true′′

changed=′′2011-03-21T00:12:00′′>
<policy rule>
<triggers>
<and/>
<trigger arg1=′′variable0′′ arg2=′′variable2′′ arg3=′′variable4′′

arg4=′′variable6′′ arg5=′′variable8′′>
device out(arg1,arg2,arg3,arg4,arg5)

</trigger>
<trigger arg1=′′variable1′′ arg2=′′variable3′′ arg3=′′variable5′′

arg4=′′variable7′′ arg5=′′variable9′′>
device out(arg1,arg2,arg3,arg4,arg5)

</trigger>
</triggers>

71

<conditions>
<and/>
<condition>
<value>:variable2,:variable4,:variable6</value>
<operator>eq</operator>
<value>:variable3,:variable5,:variable7</value>

</condition>
<conditions>
<and/>
<condition>
<parameter>variable0</parameter>
<operator>ne</operator>
<value>:variable1</value>

</condition>
<conditions>
<and/>
<condition>
<parameter>variable0</parameter>
<operator>in</operator>
<value>dim,off,on</value>

</condition>
<condition>
<parameter>variable1</parameter>
<operator>in</operator>
<value>dim,off,on</value>

</condition>
</conditions>

</conditions>
</conditions>
<action>apply stronger</action>

</policy rule>
</resolution>

4.6.3 Power Conflict – Specific Resolution
This is like section 4.6.2, but a specific action is taken: the actions are ignored but the conflict is logged.

<resolution owner=′′louise@homes.org′′ applies to=′′@homes.org′′

id=′′Power conflict - generic resolution′′ enabled=′′true′′

changed=′′2011-03-21T01:23:09′′>
<policy rule>
<triggers>
<and/>
<trigger arg1=′′variable0′′ arg2=′′variable2′′ arg3=′′variable4′′

arg4=′′variable6′′ arg5=′′variable8′′>
device out(arg1,arg2,arg3,arg4,arg5)

</trigger>
<trigger arg1=′′variable1′′ arg2=′′variable3′′ arg3=′′variable5′′

arg4=′′variable7′′ arg5=′′variable9′′>
device out(arg1,arg2,arg3,arg4,arg5)

</trigger>
</triggers>
<conditions>
<and/>
<condition>
<value>:variable2,:variable4,:variable6</value>
<operator>eq</operator>
<value>:variable3,:variable5,:variable7</value>

</condition>
<conditions>
<and/>

72

<condition>
<parameter>variable0</parameter>
<operator>ne</operator>
<value>:variable1</value>

</condition>
<conditions>
<and/>
<condition>
<parameter>variable0</parameter>
<operator>in</operator>
<value>dim,off,on</value>

</condition>
<condition>
<parameter>variable1</parameter>
<operator>in</operator>
<value>dim,off,on</value>

</condition>
</conditions>

</conditions>
</conditions>
<action arg1=′′Conflicting power actions for :variable2 in :variable4′′>

log event(arg1)
</action>

</policy rule>
</resolution>

4.7 Prototype Policies
An XML wrapper is required for a home care prototype policy in the following form:

<policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel regular home.xsd′′>
...

</policy document>

Because a prototype policy is instantiated as a regular policy, the relevant schema is that of the latter.
As an example of a prototype policy, the following aims to cool the household naturally. Suppose a new

temperature reading arrives from any device. Check if the current indoor temperature exceeds 30◦C and the
current outdoor temperature is below 25◦C (system variables interior temperature and exterior temperature).
The central heating and the air conditioning are turned off (in case they are on). Upstairs windows are then opened
for one hour to give natural cooling.

<prototype owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

effect=′′interior temperature -= 4, security level -= 3, interior pollen += 1.5, air quality += 1′′

id=′′Cool house naturally′′ enabled=′′true′′

changed=′′2011-03-25T17:45:00′′>
<policy rule>
<trigger arg1=′′reading′′ arg2=′′temperature′′ arg3=′′indoor′′>

device in(arg1,arg2,arg3)
</trigger>
<conditions>
<and/>
<condition>
<value>:parameter values</value>
<operator>gt</operator>
<value>30</value>

</condition>
<condition>
<value>:exterior temperature</value>
<operator>lt</operator>
<value>25</value>

73

</condition>
</conditions>
<actions>
<and/>
<action arg1=′′off′′ arg2=′′central heating′′>

device out(arg1,arg2)
</action>
<actions>
<and/>
<action arg1=′′off′′ arg2=′′air conditioning′′>

device out(arg1,arg2,,,arg5)
</action>
<action arg1=′′open′′ arg2=′′window′′ arg3=′′all′′ arg5=′′01:00:00′′>

device out(arg1,arg2,arg3,,arg5)
</action>

</actions>
</actions>

</policy rule>
</prototype>

The abstract effect of this policy on controlled variables is to decrease the indoor temperature by 4◦C, to decrease
security by 3 , to increase home pollen levels by 1.5, and to improve home air quality by 1 (the latter three factors
on a scale from 0 to 10).

4.8 Goals
An XML wrapper is required for a home care goal in the following form:

<policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel regular home.xsd′′>
...

</policy document>

The system variables that appear in goal measures are described in section 4.7.
As an example of a goal for home care, the following applies between 11PM and 7AM:

<goal owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

id=′′Minimise housing disturbance′′ enabled=′′true′′

changed=′′2011-03-26T17:45:00′′>
<policy rule>
<condition>
<parameter>time</parameter>
<operator>in</operator>
<value>23:00:00..07:00:00</value>

</condition>
<action arg1=′′+0.8*threshold(audio volume,70) +2.6*night movement′′>

minimise(arg1)
</action>

</policy rule>
</goal>

This goal aims to minimise a goal measure that is defined in terms of the audio volume and night movement
controlled variables.

74

Chapter 5

Sensor Networks

5.1 System Variables
System variables are used in prototype effects and can also appear in conditions. The controlled and uncontrolled
system variables used in effects are described in figures 5.1 and 5.2. The minimum, typical and maximum values
of each variable are given. Derived system variables are currently not defined for this domain.

5.2 Uncertain Values
Fuzzy input sets for system variables and fuzzy output sets for actions are currently not defined for this domain.
Devices associated with this domain also do not currently report or act on probabilistic values.

5.3 Regular Policies

5.3.1 Introduction
This section describes regular policies for the domain of sensor networks. It discusses the triggers, conditions and
actions used to specialise the language for this field. The policy server employs a terminology mapping between
information in the underlying sensor network and information in the policy system.

For sensor networks, regular policies are extended with domain-specific triggers, conditions and actions. The
relationship among these is shown in figure 5.3. Core triggers (section 2.6), condition parameters (section 2.7)
and actions (section 2.8) are also applicable. The combination rules are as follows:

• Triggers may be combined with and or or. Internal triggers (marked † in figure 3.3) may be combined with
any other triggers. At most one external trigger (no † in figure 5.3) may appear underneath an and.

• Triggers establish environment variables that are used as condition parameters. If a combination of triggers
is provided, and establishes the union of the environment variables, while or establishes their intersection.

• Triggers allow certain actions to occur. If a combination of triggers is provided, and allows the union of the
actions, while or allows their intersection.

5.3.2 Common Parameters and Environment Variables
Regular policies for sensor networks use a common set of parameters within triggers, conditions and actions.
These parameters are outlined below together with examples of their use.

message type: This identifies the type of trigger or action. The value will vary depending on the particular
entity name. Example trigger types might be generator overspeed, minimum temperature and opera-
tor input. Example action names might be set rule and set threshold for a sensor node, and restart agent
or stop agents for a policy agent. This parameter is mandatory.

75

Variable Description Min Typ Max
sensor humidity report sensor humidity reporting interval in minutes 0 10 60
sensor modem status sensor modem status as 0 (off) or 1 (on) 0 1 1
sensor moisture report sensor moisture reporting interval in minutes 0 10 60
sensor rainfall report sensor rainfall reporting interval in minutes 0 10 60
sensor temperature report sensor temperature reporting interval in minutes 0 10 60
sensor wind report sensor wind reporting interval in minutes 0 5 60
turbine bearing report turbine bearing reporting interval in minutes 0 10 60
turbine blade pitch turbine blade pitch in degrees 0 30 90
turbine blade report turbine blade reporting interval in minutes 0 10 60
turbine fan speed turbine fan speed in RPM 0 2000 5000
turbine generator report turbine generator reporting interval in minutes 0 10 60
turbine heater voltage turbine heater voltage in V 0 230 250
turbine nacelle report turbine nacelle reporting interval in minutes 0 10 60
turbine rotor status turbine rotor status as 0 (off) or 1 (on) 0 1 1
turbine wind report turbine wind reporting interval in minutes 0 5 60
turbine yaw angle turbine yaw angle in degrees 0 0 180
turbine yaw status turbine yaw status as 0 (off) or 1 (on) 0 1 1

Figure 5.1: Sensor Network Controlled System Variables

Variable Description Min Typ Max
sensor air humidity sensor air humidity in percent 0 60 100
sensor air temperature sensor air temperature in Centigrade -20 15 50
sensor battery voltage sensor battery voltage in V 0 12 14
sensor rainfall rate sensor rainfall rate in mm/hour 0 1 100
sensor soil moisture sensor moisture in mho 1E-7 1E-5 1E-4
sensor wind speed sensor wind speed in m/sec 0 5 50
turbine bearing temperature turbine bearing temperature in Centigrade -20 30 150
turbine blade amplitude turbine blade vibration amplitude in mm 0 1 10
turbine blade frequency turbine blade vibration frequency in Hz 0 6 500
turbine brake lining turbine rotor brake lining thickness in mm 0 6 10
turbine cable twists turbine cable twists in full turns 0 2 10
turbine generator temperature turbine generator temperature in Centigrade -20 40 150
turbine generator voltage turbine generator voltage in V 0 420 690
turbine nacelle amplitude turbine nacell vibration amplitude in mm 0 2 10
turbine nacelle frequency turbine nacelle vibration frequency in Hz 0 20 500
turbine nacelle temperature turbine nacelle temperature in Centigrade -20 30 150
turbine oil temperature turbine gearbox oil temperature in Centigrade -10 30 150
turbine rotor speed turbine rotor speed in RPM 0 5 20
turbine wind direction turbine wind direction in degrees (0 North, 90

East, etc.)
0 225 360

turbine wind speed turbine wind speed in m/sec 0 5 50

Figure 5.2: Sensor Network Uncontrolled System Variables

76

Trigger Parameters Established Actions Permitted
internal† device out, log event, restart timer,

send message, set variable, start timer,
stop timer, unset variable

device in entity name,
entity instance,
message qualifier,
message type,
parameter values

device out, log event, restart timer,
send message, set variable, start timer,
stop timer, unset variable

timer expiry† timer instance device out, log event, restart timer,
send message, set variable, start timer,
stop timer, unset variable

† internal trigger that may be combined with any other

Figure 5.3: Relationship between Sensor Network Triggers, Conditions and Actions

entity name: This identifies an external entity that may have policies associated with it. Example entity names
might be operator console, policy agent, sensor node and turbine. An entity name may be unnecessary
if it is implied by the message type, e.g. operator input or output implies use of the default console. If this
parameter is omitted, its default is an empty string.

entity instance: This identifies a particular instance of entity name. For example, a turbine instance might be
turbine number B43, while a policy agent instance might be temperature anomaly agent. It is possible not
all entities will have instances, such as an operator console. If this parameter is omitted, its default is an
empty string.

message qualifier: This is normally the time period to which a trigger or action refers. The period is either
a non-negative integer n (during the last n minutes for a trigger, in n minutes for an action) or a time
in HH:MM:SS format (since this time for a trigger, at this time for an action). Due to transmission and
processing delays, this time period is unlikely to be respected exactly. An absolute time reference spans a
maximum of 24 hours. Suppose the time is currently 12:00:00. For a trigger, 11:00:00 means ‘since 11AM
today’ and 13:00:00 means ‘since 1PM yesterday’. For an action, 11:00:00 means ‘at 11AM tomorrow’ and
13:00:00 means ‘at 1PM today’.

However, the message qualifier may alternatively be used to indicate the confidence of a trigger or action.
The value takes the form of a probability in the form single(probability). This allows an input device to
indicate the level of confidence associated with a signal (e.g. an overheating detector might report only
70% confidence when it is activated). It also allows the confidence in an action to be provided to an output
device (e.g. an alert message should be sent with 90% confidence). This output confidence may be used by
the device to decide how best to handle the action (e.g. a high-confidence action might use a more urgent
form of communication).

If the message qualifier is omitted its default is ‘just occurred’ or ‘fully confident’ for a trigger, and ‘now’
or ‘fully confident’ for an action.

parameter values: This is an open-ended string that may be a literal value like ‘log success’, a name-value
pair like period=01:00:00, or a comma-separated list of values like ‘[20,30]’ (possibly including sub-lists).
In the case of a probabilistic input, the value takes the form normal(mean,standard deviation). If this
parameter is omitted, its default is an empty value.

As far as the policy server is concerned, these parameters are simply uninterpreted strings whose meaning is given
only by the external system. The configuration, addressing and parameters of sensor networks are outside the
scope of the policy system.

The policy system establishes environment variables on the occurrence of each trigger. The parameters above
double as environment variables. This is a flexible approach, allowing each parameter to appear explicitly in a
trigger or action, as well as being defined implicitly as an environment variable. Environment variables may also

77

be used to output parameter values literally in an action, such as inserting the entity instance of a turbine in a
warning message to an operator console. The example policies in sections 5.4.2 and 5.4.3 demonstrate the use of
environment variables.

5.3.3 Triggers
Regular policies for sensor networks have triggers as follows. (The somewhat lengthy definition simply says that
a mandatory arg1 is followed by optional trailing arguments.) These are added to the regular policy triggers in
section 2.13.1.

<xsd:simpleType name=′′trigger domain′′>
<xsd:restriction base=′′trigger domain′′>
<xsd:enumeration value=′′device in(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,arg3)′′/>
<xsd:enumeration value=′′device in(arg1,arg2)′′/>
<xsd:enumeration value=′′device in(arg1)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3)′′/>
<xsd:enumeration value=′′device in(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device in(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,,arg4)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

Regular policy triggers for sensor networks are structured as follows:

device in(type,entity,instance,period,parameters): For a device input to match such a trigger in a policy, argu-
ments 1 to 3 (message type, entity name, entity instance) must be identical to the values in the policy.
However, policy arguments are considered to match implicitly if they are empty. Argument 4 (message
qualifier) is not used when matching a device input and a policy.

Normally argument 5 (parameter values) is matched literally. If argument 4 in the device input is a confi-
dence level (see section 2.10.4), only literal values are allowed in argument 5 of the device input and the
policy; if these match, the result is a probability for triggering. If argument 4 in the device input is empty
or is a time period, argument 5 of the device input may be a literal value and argument 5 of the policy may
be the name of a fuzzy set (see section 2.10.3). In this case, comparison of the device input and the policy
results in a fuzzy confidence for triggering.

Trigger arguments are simply uninterpreted strings. Once more definite examples in this new domain have been
determined, trigger arguments may be made more constrained.

5.3.4 Conditions
Regular policies for sensor networks have condition parameters as follows:

<xsd:simpleType name=′′parameter domain′′>
<xsd:restriction base=′′parameter domain′′>
<xsd:enumeration value=′′entity instance′′/>
<xsd:enumeration value=′′entity name′′/>
<xsd:enumeration value=′′message qualifier′′/>
<xsd:enumeration value=′′message type′′/>
<xsd:enumeration value=′′parameter values′′/>

</xsd:restriction>
</xsd:simpleType>

78

A detailed explanation of each parameter is given in section 5.3.2. The operators permitted for each parameter
are listed in figure 5.4; the use of other operators will yield a result, but this may not be useful. Some special rules
for values are as follows:

• For the identifier category, in and out are used with a comma-separated list of values to mean ‘among’ and
‘not among’. That is, the parameter is checked for presence or absence in a list of values.

• For the value category, in and out are used with a comma-separated list of values to mean ‘among’ and ‘not
among’. That is, the parameter is checked for presence or absence in a list of values.

In the case of date, day or time, a value may also be a range (e.g. 09:00:00..12:00:00 or 2005-02-03..2005-
02-10).

In the case of parameter values, a comma-separated list is given in brackets. A list index is given in
brackets, e.g. parameter values[2] refers to the third element in the list. For convenience with single
values, omitting the index implies an index of 0 (so parameter values means parameter values[0]).

The semantics of the condition operator depend on the types of its operands. Suppose the operator is gt is used
with parameter operand parameter values[2] and value operand ‘12’. If the parameter operand is ‘20’ (i.e. is in
numerical format), the condition will be treated as numerical comparison. If the parameter operand is ‘on’ (i.e. a
string), the condition will be treated as string comparison.

Category Parameter Operator
identifier entity name, entity instance, message type eq, ne, in, out
value message qualifier, parameter values eq, ne, in, out, gt, ge, lt, le

Figure 5.4: Identifier and Value Parameter Operators

5.3.5 Actions
Regular policies for sensor networks have actions as follows. (The somewhat lengthy definition simply says that
a mandatory arg1 is followed by optional trailing arguments.) These are added to the regular policy actions in
section 2.8. Actions are requests to the underlying communications layer. If the policy preference is must not, an
action argument can be omitted to mean any argument value.

<xsd:simpleType name=′′action domain′′>
<xsd:restriction base=′′action domain′′>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,arg2)′′/>
<xsd:enumeration value=′′device out(arg1)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

Regular policy actions for sensor networks are structured as follows:

device out(type,entity,instance,period,parameters): This controls or configures an entity external to the policy
system. Only the type is mandatory; section 5.3.2 explains these values.

79

Action arguments are simply uninterpreted strings. Once more definite examples in this new domain have been
determined, action arguments may be made more constrained.

Abstract effects of sensor network actions are currently not defined in the domain ontology nor used for offline
conflict detection.

5.4 Example Regular Policies
The following sensor network policies illustrate the capabilities of the language. They should provide insight into
the policy language for real examples in this domain. Examples include policies to configure the sensor network
and to control aspects of an agent-based diagnostic system. Policies interact with the sensor network and also with
a human operator via a console interface.

Each example policy is introduced briefly by its natural language meaning. This introduction also draws
attention to some details of the policy language where appropriate.

An XML wrapper is required for a sensor network policy in the following form:

<?xml version=′′1.0′′ encoding=′′UTF-8′′?>
<policy document
xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=
′′http://www.cs.stir.ac.uk/schemas/appel regular sensor.xsd′′>
...

</policy document>

5.4.1 High Wind Alert
The following policy applies to domain 3.wind farm.com, i.e. wind farm 3. It alerts the operator if the average
speed from any anemometer is reported to be above 20m/s for at least one hour. No entity name or instance is
given in the action because operator messages are for the default console. In general there may be several trigger
parameters, but just a single value (the wind speed) is used here. Note that this policy deals with a single wind
speed report. To deal with multiple reports, the trigger history would need to be checked.

<policy owner=′′admin′′ applies to=′′@3.wind farm.com′′

id=′′High wind alert′′ enabled=′′true′′ changed=′′2007-09-25T10:20:59′′>
<policy rule>
<trigger arg1=′′average speed′′ arg2=′′anemometer′′>

device in(arg1,arg2)
</trigger>
<conditions>
<and/>
<condition>
<parameter>message qualifier</parameter>
<operator>ge</operator>
<value>60</value>

</condition>
<condition>
<parameter>parameter values</parameter>
<operator>gt</operator>
<value>20</value>

</condition>
</conditions>
<action arg1=′′operator output′′ arg5=′′Persistent high wind speed′′>

device out(arg1,,,,arg5)
</action>

</policy rule>
</policy>

80

5.4.2 Low Battery Alert
The following policy applies to the myers hill.org domain. It deals with a low battery warning from any sensor
node, logging the event and sending a message to 07779-432-020. Note the use of environment variables in the
actions.

<policy owner=′′admin′′ applies to=′′@myers hill.org′′

id=′′Low battery alert′′ enabled=′′true′′ changed=′′2009-05-01T22:20:59′′>
<policy rule>
<trigger arg1=′′low battery′′ arg2=′′sensor node′′>

device in(arg1,arg2)
</trigger>
<actions>
<and/>
<action arg1=′′Low battery at sensor :entity instance′′>

log event(arg1)
</action>
<action arg1=′′sms:07779-432-020′′

arg2=′′Low battery warning from :entity name/:entity instance′′>
send message(arg1,arg2)

</action>
</actions>

</policy rule>
</policy>

5.4.3 Sensor Wake-up
The following policy assumes that a sensor causes a ‘hello’ event when it goes online. This information is
reported to operator console 3. The sensor is then configured to immediately store a rule with parameters
‘wind speed,15,alert operator’.

<policy owner=′′admin′′ applies to=′′@15.wind farm′′

id=′′Sensor wake-up′′ enabled=′′true′′ changed=′′2009-05-01T22:20:59′′>
<policy rule>
<trigger arg1=′′sensor hello′′>device in(arg1)</trigger>
<actions>
<and/>
<action arg1=′′operator output′′ arg2=′′operator console′′ arg3=′′3′′

arg5=′′Sensor :entity instance is now online′′>
device out(arg1,arg2,arg3,,arg5)

</action>
<action arg1=′′set rule′′ arg2=′′:entity name′′ arg3=′′:entity instance′′

arg5=′′[wind speed,15,alert operator]′′>
device out(arg1,arg2,arg3,,arg5)

</action>
</actions>

</policy rule>
</policy>

5.4.4 Reset All Agents
The following policy resets all agents in the external agent system at 9AM every Monday. Note that there is no
explicit trigger, only an implicit time trigger.

<policy owner=′′admin′′ applies to=′′@blacklaw.scotland.uk′′

id=′′Reset all agents′′ enabled=′′true′′ changed=′′2009-05-01T22:20:59′′>
<policy rule>
<conditions>
<and/>
<condition>
<parameter>day</parameter>

81

<operator>eq</operator>
<value>1</value>

</condition>
<condition>
<parameter>time</parameter>
<operator>eq</operator>
<value>09:00:00</value>

</condition>
</conditions>
<action arg1=′′reset agents′′ arg2=′′agent system′′>

device out(arg1,arg2)
</action>
</policy rule>

</policy>

5.4.5 Retrain Power Agent
The following policy is triggered by input from the default operator console, asking that the power curve agent be
retrained. It asks the external agent system to retrain this agent in ten minutes using value 30.

<policy owner=′′admin′′ applies to=′′@air.co.uk′′

id=′′Retrain power agent′′ enabled=′′true′′ changed=′′2009-05-01T22:20:59′′>
<policy rule>
<trigger arg1=′′operator input′′ arg5=′′retrain power curve′′>

device in(arg1,,,,arg5)
</trigger>
<action arg1=′′retrain agent′′ arg2=′′agent system′′ arg3=′′power curve′′

arg4=′′10′′ arg5=′′30′′>
device out(arg1,arg2,arg3,arg4,arg5)

</action>
</policy rule>

</policy>

5.5 Resolution Policies

5.5.1 Introduction
This section is specific to resolution policies for sensor networks. It discusses the triggers, conditions and actions
that are used in this domain.

Resolution policies are extended with domain-specific triggers, conditions and actions. The relationship
among these is much simpler than for regular policies. Any action may be associated with a trigger. The ac-
tual parameters of these actions must be literal values, or the values of variable0 to variable9 (if a trigger has
bound them).

In general, conflicting situations may arise due to the preference attributes of policies being opposite, or due
to the effects of policy actions clashing. As described in section 5.3.5, policies for sensor networks have only
one domain-specific action. Resolutions for this domain therefore deal with modality (preference) conflicts and
parameter conflicts for this action.

5.5.2 Triggers
Resolution policies for sensor networks have triggers as follows. These are added to the resolution policy triggers
in section 2.14.1 and to the core triggers in section 2.6. Since resolutions are triggered by actions, resolution
policy triggers are identical to regular policy actions for sensor networks (see section 5.3.5).

<xsd:simpleType name=′′trigger domain′′>
<xsd:restriction base=′′trigger domain′′>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3)′′/>

82

<xsd:enumeration value=′′device out(arg1,arg2)′′/>
<xsd:enumeration value=′′device out(arg1)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

5.5.3 Conditions
Resolution policies for sensor networks have the same condition parameters as resolution policies in section 2.14.2.

5.5.4 Actions
Resolution policies for sensor networks have actions as follows. These are added to the resolution policy actions
in section 2.14.3 and to the core actions in section 2.8.

<xsd:simpleType name=′′action domain′′>
<xsd:restriction base=′′action domain′′>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,arg2)′′/>
<xsd:enumeration value=′′device out(arg1)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

These actions are those of regular policies for sensor networks in section 5.3.5. A number of goal-related or
domain-specific resolution actions will be considered in future, based on further policy attributes such as cost,
efficiency or time. These properties could help determine the action which best meets some goal. Once more
definite examples in this new domain have been determined, generic resolution actions may be extended.

5.6 Example Resolution Policies
The following sensor network conflict policies demonstrate the capabilities of the language. They should provide
an insight into the use of the policy language for real examples of handling conflicts in this domain.

Each example is introduced briefly by its natural language meaning. This introduction also draws attention to
some details of the policy language where appropriate.

An XML wrapper is required for a sensor network conflict policy in the following form:

83

<?xml version=′′1.0′′ encoding=′′UTF-8′′?>
<policy document
xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=
′′http://www.cs.stir.ac.uk/schemas/appel resolution sensor.xsd′′>
...

</policy document>

A resolution policy typically contains two triggers, each of which binds explicit variable values and implicit
preference values. In general, there are four cases to be considered by a resolution depending on whether the
variables are equal/unequal and whether the preferences are similar/opposite. This can often be simplified. In
some cases it is sufficient to check for the equal/similar combination; the other combinations are handled by
default. In other cases, the equal/opposite and unequal/similar combinations may be handled. In unusual cases, all
four combinations may need individual treatment. Since the else operator can be used with only two alternative
actions, multiple resolutions may therefore be required for the same trigger combination.

There are other variations on the basic case. For example, each trigger of a resolution policy may have up to
five parameters, and more than two triggers may be present in a resolution policy.

Policy conflicts in sensor networks can occur between the parameters of device out actions. Examples of
generic and specific resolutions for this type of conflict are given in sections 5.6.1 and 5.6.2. Conflicts may also
occur indirectly when actions cannot be performed simultaneously, due to limitations of the underlying hardware.
Section 5.6.3 gives an example of this type of conflict.

5.6.1 Action Parameter Conflict – Generic Resolution
The following resolution policy checks whether the action type, entity, instance and parameters are identical for
both actions. If the preferences are opposite, the action with the stronger preference is selected. To avoid a tedious
list of conditions on each individual action parameter, they are compared as a single string (the variable values
being interpolated into this).

Virtually any device out action may conflict with itself if its arguments are similar and the preferences of each
policy are opposite. The following example detects this conflict, and resolves it by choosing the stronger of the
two preferences.

This resolution explicitly deals with only the equal/opposite case. The equal/similar and unequal cases are
handled by default.

<resolution owner=′′admin′′ applies to=′′@turbine.org′′

id=′′Action parameter conflict - generic resolution′′ enabled=′′true′′

changed=′′2011-03-22T22:20:59′′>
<policy rule>
<triggers>
<and/>
<trigger arg1=′′variable0′′ arg2=′′variable2′′ arg3=′′variable4′′

arg5=′′variable8′′>
device out(arg1,arg2,arg3,,arg5)

</trigger>
<trigger arg1=′′variable1′′ arg2=′′variable3′′ arg3=′′variable5′′

arg5=′′variable9′′>
device out(arg1,arg2,arg3,,arg5)

</trigger>
</triggers>
<conditions>
<and/>
<condition>
<value>=:variable0,:variable2,:variable4,:variable8</value>
<operator>eq</operator>
<value>=:variable1,:variable3,variable5,:variable9</value>

</condition>
<condition>
<parameter>preference0</parameter>
<operator>out</operator>
<parameter>preference1</parameter>

84

</condition>
</conditions>
<action>apply stronger</action>

</policy rule>
</resolution>

The same instance and period are important. If the periods for applying the actions is different, then they may not
conflict. Even if both actions concern the same entity, there may be no conflict if the instance differs.

In the example above, the policy with the stronger preference was selected. Other generic actions could
include applying the weaker policy, the newer/older policy (based on definition date), or the policy belonging to
the inferior/superior domain.

5.6.2 Action Parameter Conflict – Specific Resolution
The following resolution policy checks whether the action type, entity, instance and first parameter are identical
for both actions. If so, an operator is alerted to the conflict. Note the use of ‘[0]’ to select the first parameter.

<resolution owner=′′admin′′ applies to=′′@5.windy.us′′

id=′′Action parameter conflict - specific resolution′′ enabled=′′true′′

changed=′′22011-03-22T22:20:59′′>
<policy rule>
<triggers>
<and/>
<trigger arg1=′′variable0′′ arg2=′′variable2′′ arg3=′′variable4′′

arg5=′′variable8′′>
device out(arg1,arg2,arg3,arg4,arg5)

</trigger>
<trigger arg1=′′variable1′′ arg2=′′variable3′′ arg3=′′variable5′′

arg5=′′variable9′′>
device out(arg1,arg2,arg3,arg4,arg5)

</trigger>
</triggers>
<condition>
<value>=:variable0,:variable2,:variable4,:variable8[0]</value>
<operator>eq</operator>
<value>=:variable1,:variable3,:variable5,,:variable9[0]</value>

</condition>
<action arg1=′′operator output′′

arg5=′′Conflicting values for entity :variable2 instance :variable4′′>
device out(arg1,,,,arg5)

</action>
</policy rule>

</resolution>

Other resolutions could be defined such as a generic action, logging an event, or choosing one value.

5.6.3 Resource Conflict – Generic Resolution
The following resolution policy checks if one action is get log and the other is sensor check. If the action entity,
instance and period are identical for both actions, the action with the stronger preference is applied.

This conflict is an example of two actions that cannot be performed simultaneously due to limitations of
the underlying sensor network hardware. For example, there may be constraints on processing power, memory,
electrical power and link bandwidth. Although not detectable using analysis of policies alone, resolutions could
be written to handle potential conflicts with some knowledge of the abstract resources need to perform actions.

<resolution owner=′′admin′′ applies to=′′@3.wind farm′′

id=′′Resource conflict - generic resolution′′ enabled=′′true′′

changed=′′2011-03-22T22:20:59′′>
<policy rule>
<triggers>
<and/>
<trigger arg1=′′variable0′′ arg2=′′variable2′′ arg3=′′variable4′′

85

arg4=′′variable6′′>
device out(arg1,arg2,arg3,arg4)

</trigger>
<trigger arg1=′′variable1′′ arg2=′′variable3′′ arg3=′′variable5′′

arg4=′′variable7′′>
device out(arg1,arg2,arg3,arg4)

</trigger>
</triggers>
<conditions>
<and/>
<conditions>
<or/>
<conditions>
<and/>
<condition>
<value>variable0</value>
<operator>eq</operator>
<value>′get log′</value>

</condition>
<condition>
<value>variable1</value>
<operator>eq</operator>
<value>′sensor check′</value>

</condition>
</conditions>
<conditions>
<and/>
<condition>
<value>variable0</value>
<operator>eq</operator>
<value>′sensor check′</value>

</condition>
<condition>
<value>variable1</value>
<operator>eq</operator>
<value>′get log′</value>

</condition>
</conditions>

</conditions>
<condition>
<value>:variable2,:variable4,:variable6</value>
<operator>eq</operator>
<value>:variable3,:variable5,:variable7</value>

</condition>
</conditions>
<action>apply newer</action>

</policy rule>
</resolution>

5.7 Prototype Policies
An XML wrapper is required for a call control prototype policy in the following form:

<policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel regular sensor.xsd′′>
...

</policy document>

Because a prototype policy is instantiated as a regular policy, the relevant schema is that of the latter.

86

As an example of a prototype policy, the following aims to deal with a higher than normal frequency of
vibration in a turbine blade. If this exceeds 20Hz, the turbine yaw angle is set to zero (i.e. the turbine is pointed
directly into the wind) and the yaw brake is turned on (so that the turbine head cannot rotate about a vertical axis).

<prototype owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

effect=′′turbine yaw angle = 0, turbine yaw status = 1′′

id=′′Cancel yaw on high blade vibration′′ enabled=′′true′′

changed=′′2009-03-25T21:20:59′′>
<policy rule>
<trigger arg1=′′blade vibration frequency′′ arg2=′′turbine′′>

device in(arg1,arg2)
</trigger>
<condition>
<parameter>message values</parameter>
<operator>ge</operator>
<value>20</value>

</condition>
<actions>
<and/>
<action arg1=′′set parameter′′ arg2=′′turbine′′ arg5=′′[yaw angle,0]′′>

device out(arg1,arg2,,,arg5)
</action>
<action arg1=′′set parameter′′ arg2=′′turbine′′ arg5=′′[yaw brake,on]′′>

device out(arg1,arg2,,,arg5)
</action>

</actions>
</policy rule>

</prototype>

The abstract effect of this policy on controlled variables is to set the yaw angle to 0 and the yaw brake status to 1
(i.e. on).

5.8 Goals
An XML wrapper is required for a sensor network goal in the following form:

<policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel.xsd′′>
...

</policy document>

The system variables that appear in goal measures are described in section 5.7.
As an example of a goal for sensor networks, the following always applies:

<goal owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

id=′′Minimise component damage′′ enabled=′′true′′ changed=′′2011-03-25T22:44:59′′>
<policy rule>
<action arg1=′′:turbine damage′′>minimise(arg1)</action>

</policy rule>
</goal>

This goal aims to minimise turbine damage. This is policy variable that defines a goal measure in terms of various
controlled variables:

0.4×(
+turbine blade amplitude +turbine blade pitch
+turbine blade frequency +turbine cable twists
+turbine nacelle amplitude +turbine nacelle frequency
+turbine rotor speed
-turbine brake lining -turbine rotor status
-turbine yaw angle -turbine yaw status

)

87

Chapter 6

Conclusion

The concepts, syntax and semantics of APPEL have been seen. Regular policies deal with management of the
system under control. Resolution policies deal with conflicts among the actions of regular policies. Prototype
policies are special templates that are used to realise goals. Goals are supported by determining and instantiating
the prototype polices that optimise goal measures. To allow for multiple goals, measures are combined into an
overall evaluation function. Policy variables are named values that can be substituted into policies.

APPEL comprises a core language, plus extensions for regular and resolution policies in each domain. The
language is defined through a collection of XML schemas. Ontologies supplement the schemas by specifying
generic and domain-specific terms.

Although originally designed for call control, APPEL is intended to be a general-purpose language. Use
in new domains is achieved by adding extension schemas and ontologies. The generality of the approach has
been demonstrated through applications in call control/Internet telephony, sensor network/wind farm management,
and home care/telecare management. It is therefore believed that APPEL is of general applicability. Further
developments are anticipated in new domains.

The core language is believed to be stable, though some improvements can be expected in the area of goals
and goal refinement. The language and its application are well supported by a set of advanced tools such as the
policy server, policy wizard, conflict filter, and ontology server.

88

References

[1] Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A system to specify and manage multi-
policy access control models. In J. Bret Michael, Jorge Lobo, and Naranker Dulay, editors, Proc. 3rd Int.
Workshop on Policies for Distributed Systems and Networks, pages 116–127. IEEE Computer Society, Los
Alamitos, California, USA, June 2002.

[2] Gavin A. Campbell. Ontology for call control. Technical Report CSM-170, Computing Science and Mathe-
matics, University of Stirling, UK, June 2006.

[3] Gavin A. Campbell. Ontology stack for a policy wizard. Technical Report CSM-169, Computing Science
and Mathematics, University of Stirling, UK, June 2006.

[4] Gavin A. Campbell. Overview of policy-based management using POPPET. Technical Report CSM-168,
Computing Science and Mathematics, University of Stirling, UK, June 2006.

[5] Nicodemos Damianou, Narankar Dulay, Emil C. Lupu, and Morris Sloman. Ponder: A language specify-
ing security and management policies for distributed systems. Technical Report 2000/1, Imperial College,
London, UK, 2000.

[6] Christos Efstratiou, Adrian Friday, Nigel Davies, and Keith Cheverst. Utilising the event calculus for policy
driven adaptation on mobile systems. In J. Bret Michael, Jorge Lobo, and Naranker Dulay, editors, Proc. 3rd
Int. Workshop on Policies for Distributed Systems and Networks, pages 13–24. IEEE Computer Society, Los
Alamitos, California, USA, June 2002.

[7] Stephan Reiff-Marganiec and Kenneth J. Turner. Use of logic to describe enhanced communications services.
In Doron A. Peled and Moshe Y. Vardi, editors, Proc. Formal Techniques for Networked and Distributed
Systems (FORTE XV), number 2529 in Lecture Notes in Computer Science, pages 130–145. Springer, Berlin,
Germany, November 2002.

[8] Stephan Reiff-Marganiec and Kenneth J. Turner. A policy architecture for enhancing and controlling fea-
tures. In Daniel Amyot and Luigi Logrippo, editors, Proc. 7th Int. Conf. on Feature Interactions in Telecom-
munications and Software Systems, pages 239–246. IOS Press, Amsterdam, Netherlands, June 2003.

[9] Stephan Reiff-Marganiec, Kenneth J. Turner, Lynne Blair, and Feng Wang. The ACCENT policy server.
Technical Report CSM-164, Computing Science and Mathematics, University of Stirling, UK, July 2010.

[10] Stephan Reiff-Marganiec, Kenneth J. Turner, Lynne Blair, and Feng Wang. The ACCENT policy server.
Technical Report CSM-164, Computing Science and Mathematics, University of Stirling, UK, August 2013.

[11] Kenneth J. Turner and Gavin A. Campbell. The ACCENT policy wizard. Technical Report CSM-166,
Computing Science and Mathematics, University of Stirling, UK, April 2014.

[12] Kenneth J. Turner, Stephan Reiff-Marganiec, Lynne Blair, Jianxiong Pang, Tom Gray, Peter Perry, and Joe
Ireland. Policy support for call control. Computer Standards and Interfaces, 28(6):635–649, June 2006.

89

	Abstract
	1 Introduction
	1.1 Accent Overview
	1.2 Appel Overview

	2 Core Language
	2.1 Language Introduction
	2.2 Policy Document
	2.3 Policy
	2.4 Policy Modality
	2.5 Policy Rules
	2.6 Triggers
	2.7 Conditions
	2.8 Actions
	2.9 Variables
	2.10 Expressions
	2.10.1 Basic Expressions
	2.10.2 Confidence Values
	2.10.3 Fuzzy Values
	2.10.4 Probabilistic Values
	2.10.5 Combining Fuzzy and Probabilistic Values

	2.11 Timers
	2.12 History
	2.12.1 Trigger History
	2.12.2 Action History

	2.13 Extensions for Regular Policies
	2.13.1 Triggers
	2.13.2 Conditions

	2.14 Extensions for Resolution Policies
	2.14.1 Triggers
	2.14.2 Conditions
	2.14.3 Actions

	2.15 Extensions for Prototype Policies
	2.16 Extensions for Goals

	3 Call Control
	3.1 System Variables
	3.2 Uncertain Values
	3.3 Regular Policies
	3.3.1 Introduction
	3.3.2 Common Parameters and Environment Variables
	3.3.3 Triggers
	3.3.4 Conditions
	3.3.5 Actions

	3.4 Example Regular Policies
	3.4.1 Forward if Busy
	3.4.2 Forward Incoming Calls to Grace
	3.4.3 Never forward to Mary
	3.4.4 Never forward Emergency Calls
	3.4.5 Voicemail on Busy or No Answer
	3.4.6 Available for Java
	3.4.7 Complex Busy and No Answer Handling
	3.4.8 Talking Status
	3.4.9 Call Timer
	3.4.10 Working Period Log
	3.4.11 Polite Availability Check

	3.5 Resolution Policies
	3.5.1 Introduction
	3.5.2 Triggers
	3.5.3 Conditions
	3.5.4 Actions

	3.6 Example Resolution Policies
	3.6.1 Call Fork-Fork Conflict – Generic Resolution
	3.6.2 Call Forward-Forward Conflict – Generic Resolution
	3.6.3 Medium Add-Remove Conflict – Generic Resolution
	3.6.4 Call Fork-Reject Conflict – Generic Resolution
	3.6.5 Bandwidth Confirm-Reject Conflict – Specific Resolution
	3.6.6 Caller-Medium Add-Add – Specific Resolution
	3.6.7 Timer Start-Stop Conflict – Specific Resolution
	3.6.8 Variable Set-Set Conflict – Specific Resolution

	3.7 Prototype Policies
	3.8 Goals

	4 Home Care
	4.1 System Variables
	4.2 Uncertain Values
	4.3 Regular Policies
	4.3.1 Introduction
	4.3.2 Common Parameters and Environment Variables
	4.3.3 Triggers
	4.3.4 Conditions
	4.3.5 Actions

	4.4 Example Regular Policies
	4.4.1 Light Control
	4.4.2 Burglar Alarm
	4.4.3 Night Light
	4.4.4 Night Wandering Reminder
	4.4.5 Water Heating Control
	4.4.6 Activity Logging
	4.4.7 Fuzzy Heating Control
	4.4.8 Probabilistic Heating Control

	4.5 Resolution Policies
	4.5.1 Introduction
	4.5.2 Triggers
	4.5.3 Conditions
	4.5.4 Actions

	4.6 Example Resolution Policies
	4.6.1 Parameter-Parameter Conflict – Generic Resolution
	4.6.2 Power Conflict – Generic Resolution
	4.6.3 Power Conflict – Specific Resolution

	4.7 Prototype Policies
	4.8 Goals

	5 Sensor Networks
	5.1 System Variables
	5.2 Uncertain Values
	5.3 Regular Policies
	5.3.1 Introduction
	5.3.2 Common Parameters and Environment Variables
	5.3.3 Triggers
	5.3.4 Conditions
	5.3.5 Actions

	5.4 Example Regular Policies
	5.4.1 High Wind Alert
	5.4.2 Low Battery Alert
	5.4.3 Sensor Wake-up
	5.4.4 Reset All Agents
	5.4.5 Retrain Power Agent

	5.5 Resolution Policies
	5.5.1 Introduction
	5.5.2 Triggers
	5.5.3 Conditions
	5.5.4 Actions

	5.6 Example Resolution Policies
	5.6.1 Action Parameter Conflict – Generic Resolution
	5.6.2 Action Parameter Conflict – Specific Resolution
	5.6.3 Resource Conflict – Generic Resolution

	5.7 Prototype Policies
	5.8 Goals

	6 Conclusion

