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This tutorial introduces E-LOTOS by describing all the features of the language, and
by showing its expressive power. We show how E-LOTOS can be used to specify
systems, their behaviour, and the values they manipulate, as well as how the specifier
can modularize systems. The tutorial includes some small examples that show how
E-LOTOS features are used to specify common problems, usual generic data types, well-
known concurrent programming problems, as well as to describe hardware components.

E-LOTOS is still a draft, under revision. So this is still an unfinished document, it has
to be completed when the ISO standard will be definitively approved.
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1 Introduction

If cars had improved at the rate of computers in the same time period,
a Rolls Royce would now cost 10 dollars and get a billion miles per
gallon. (Unfortunately, it would probably also have a 200-page manual
telling how to open the door.)

– Andrew S. Tanenbaum

LOTOS (Language Of Temporal Ordering Specification) [ISO89] is a Formal Description Tech-
nique1 developed within ISO for the formal specification of networked and distributed systems. It
is based on the intuitive and well known black box analogy [Mil89] where systems are described
as black boxes with buttons, that represent their entire capability of communication. The basic
idea is that systems can be specified by defining the temporal relation among the interactions that
constitute the externally observable behaviour of a system. As stated in [Mil89] “the behaviour of
a system is exactly what is observable, and to observe a system is exactly to communicate with
it.”

LOTOS is composed of a process algebra part (based on CCS [Mil89] and CSP [Hoa85]) to
describe systems, and an algebraic language (ACT ONE [EM85]) to describe the abstract data
types. LOTOS has proven very successful in specifying protocols and services (examples can be
found in [vEVD89, Gam90, Mun91, Pec92, BL93, GH93]). However, LOTOS has several limitations
related to its expressive power and structuring capabilities, besides user-friendliness. For these
reasons, LOTOS is currently under revision in ISO [Que98], in the Work Item “Enhancements to
LOTOS,” giving rise to a revised language called E-LOTOS (Enhanced LOTOS). E-LOTOS has
a similar structure to LOTOS. It has a behavioural process algebra part, which inherits some
operators from LOTOS, generalizes others, and adds new operators. It also has a functional data
definition part which allows constructive definitions of data types and functions for manipulating
them, and is thought to be more user friendly.

Among the enhancements introduced in E-LOTOS, the most important ones are:

• the notion of quantitative time: in E-LOTOS we can define the exact time of events (by
adding annotations to actions, see Section 2.1) or behaviours (by using wait statements, see
Section 2.16)

• the data part has a new definition for data types and the construction of values of predefined
types

• modularity allows the definition of types, functions, and processes in separate modules, con-
trolling their visibility by means of module interfaces, and the definition of generic modules,
useful for code reuse. One module can use another one by means of importation clauses.

1“Formal Description Techniques (FDTs) are methods of defining the behaviour of an (information processing)
system in a language with formal syntax and semantics, instead of a natural language as English.” [ISO89]
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6 1. Introduction

Although in this tutorial we describe all the operators of E-LOTOS, the original LOTOS
operators and the new ones, now we concentrate on the latter. Among the new operators, we have:

• the sequential composition operator that allows concatenation of two processes. This operator
unifies both the action prefix operator and the enabling operator of LOTOS.

• the general parallel operator that allows the synchronization of n among m processes.

• the suspend/resume operator, which generalizes the disabling operator of LOTOS by allowing
a disabled process to be resumed by the disabling process.

• operators to raise exceptions and to handle them.

• the renaming operator which allows renaming of actions and exceptions, and to modify their
parameters.

E-LOTOS has several imperative features, which have been introduced in order to help the
user of this programming paradigm to specify systems. Assignment, declaration of local variables,
and several iterative operators are some of these features. We describe them in Section 2.19.

In the following two chapters we describe the Base Language, that is the part of E-LOTOS
used to write the behaviour of processes, Chapter 2, and the data types, Chapter 3. In Chapter 4
we describe the Module Language, that is the language used to modularize the specifications.
Chapter 5 includes several examples that show how E-LOTOS can be applied to specify different
kinds of systems.

1.1 An example: two-position register

In order to show the basic ideas of E-LOTOS specification, let us begin with as simple example.
Coming back to the idea of the black boxes, let us imagine that we want to specify a two-position
register, graphically described by

in2

in1

out2

out1

At this level, we only know that the register has four gates (buttons of the black box) in1, in2,
out1, and out2. A specification of the behaviour of this register would be a description of when the
buttons (or gates) are available to be pressed. Generally, some gates are input gates (in1 and in2)
and values can go through them, and other gates are output gates (out1 and out2). If the register
has the following restrictions:

• the register is initially empty,

• both data inputs are needed before there is output,

• data through gate in1 has to arrive before data through gate in2, and

• data have to be output in the same order,

we would describe it as
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1.2. Variables 7

process Register [ in1:data,in2:data,out1:data,out2:data ] is
var x1:data,x2:data in

in1(?x1); in2(?x2); out1(!x1); out2(!x2)
endvar

endproc

This example will be used during the tutorial and, then, all the details will be given (see Section 2.3).
Note how the order of the communications through gates are expressed (using the sequential
composition operator ;) and how the values communicated are represented with variables.

If we imagine other two black boxes representing a producer, that produces two values and
saves them in the register, and a consumer that takes the values from the register, we can put
them together, communicating:

System

Producer Consumer

pr2

pr1

rc2

rc1

The complete system is described in E-LOTOS as follows:

process System is
hide pr1:data,pr2:data,rc1:data,rc2:data in

conc
Producer [pr1,pr2]()

|[pr1,pr2]|
Register [pr1,pr2,rc1,rc2]()

|[rc1,rc2]|
Consumer [rc1,rc2]()

endconc
endhide

endproc

where Producer and Consumer are processes specifying the behaviour of the producer and the
consumer (see Section 2.7). They are put together with the Register, running in parallel, and
communicating through gates. The whole system has no gate offered to the environment, because
it represents a complete, closed system. All its behaviour is described and occurs internally.

1.2 Variables

Regarding the construction of values and the use of variables, E-LOTOS was thought as a functional
language, in the sense that there is no idea of state and variables are given a value only once. When
a variable is given a value, this value is substituted for the variable in the successive behaviour.
However, this idea changed during the design of the language and, although values are still built
with constructors as in functional language, E-LOTOS has write-many variables, that is, variables
that can be assigned several times. Variables are declared with the var operator (Section 2.19).
When a variable is declared, it is given a type and there is the possibility to give it an initial value.
We have seen a variable declaration in the Register process:
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8 1. Introduction

var x1:data,x2 : data in
in1(?x1); in2(?x2); out1(!x1); out2(!x2)

endvar

A variable can have a value of its declared type or a value of a subtype of its declared type,
and this value can be changed during the execution of a specification.

The introduction of this kind of variable has affected the use of several operators. Thus, we
will describe how variables can be used when several processes are composed by using any of these
operators.

1.3 Time in E-LOTOS

Time is a very important aspect in concurrent, distributed systems. Although it is not present
in classical process algebras, there have been many proposals to introduce time in process al-
gebras [RR86, NS91, Yi91, BB93, Sch95]. The introduction of time in LOTOS has been dealt
in [LL94, dFLL+95].

The introduction of time is one of the most important enhancements of E-LOTOS. The specific
features that E-LOTOS provides to manage time are three. The first one is that the specification
writer can describe when the actions a process performs may occur, and this can be described with
great flexibility, as we show in Section 2.1.

The second feature that E-LOTOS provides is the wait instruction, that, given a duration time
d, represents that the process idles the time d.

The type time is the third feature introduced in E-LOTOS with respect to control of time. In
E-LOTOS, no data type time is defined, but only the properties that it has to fulfill are enumerated.
So, each implementation of the language can define a different time, provided that the following
requirements are fulfilled. The properties are:

• the time domain is a commutative, cancellative monoid with addition + and unit 0. Thus, it
satisfies the properties:

• d1 + d2 = d2 + d1

• if d1 + d = d2 + d then d1 = d2

• d1 + (d2 + d3) = (d1 + d2) + d3

• d+ 0 = 0 + d = d

where d1, d2, and d are variables over the time domain.

• the order given by d1 ≤ d2 if and only if ∃d . d1 + d = d2 is a total order.

For a description of the different time domains used in the literature see, for example, [NS91]. At
first glance, it seems that it is better to have a continuous time domain. But, as shown in [LDV99],
it has several problems, for example, we can define processes that freezes time. It is enough to have
a discrete time domain and define the unit of time as small as we want. This is not a restriction
decision since all computers are ruled by an internal discrete clock. In this tutorial we assume that
the type time has been declared as a synonym of the type nat of natural numbers.

Although time is foreign to a process in the sense that the process cannot control time and has
to coexist with it, the introduction of time has affected the meaning of the different operators of
E-LOTOS. We will describe in the following sections how these operators behave in relation to
time. When we say that a process lets time pass, we mean that the process can be idle (doing
nothing but waiting) a concrete period of time. Thus, when we say that a process does not let
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1.3. Time in E-LOTOS 9

time pass, we mean that the process must do something immediately. This is related to the notion
of urgency. When an action is urgent it must be performed as soon as possible. This means that
when an urgent action is enabled, it must be performed unless other action was performed without
consuming time. Urgency is used to guarantee the progress of a system: if there were no urgent
actions the systems could idle forever. For example, the special internal action i (Section 2.4) is
urgent. We can specify which actions are urgent at certain level in order to ensure the evolution of
the system. This is very useful when different components of a system are communicating, as we
will see in Section 2.14, where the hiding operator is described. Not only actions may be urgent,
there are other constructions in E-LOTOS, for example assignments, that are also urgent. Due to
urgency, one could write specifications that blocks time. This is an undesirable and counterintuitive
feature. The idea of time blocking is that a behaviour is performing internal actions urgently, thus
time is not allowed to pass (see Section 2.6).

In E-LOTOS time is deterministic. As stated in [NS91], it is usually admitted that when a
process P is idle (does not perform any action) for some duration d, then the resulting behaviour
is completely determined from P and d. The avoidance of time nondeterminism has also affected
several operators. We will describe how these operators have been affected.

We write the symbol in the margin when we speak about time in relation with the operator
which is being described.
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2 Base Language for processes

In this chapter we are going to show the constructions of E-LOTOS used to describe the behaviour
of systems. In Chapter 3 we will explain those constructions used to describe the values and types
of data that these systems can manage.

We try to give this description in a progressive way, that is we begin with the simple operators
and go to the more complex ones. In order to show examples, we sometimes have to include
operators that are explained later.

All the constructions are illustrated with small examples that show a concrete use of each one.
In Chapter 5 we will introduce more complex examples.

2.1 Actions

In E-LOTOS a concurrent system is specified as a process that is composed of other processes
interacting with each other. This interaction between processes is carried out by means of actions,
which represent synchronization or communication between processes through gates.

The E-LOTOS syntax to indicate that a process is carrying out an action is as follows:

G [(P1)] [@P2] [ [ E ] ]

where the components between [ ] are optional (do not confuse with these brackets [] which are
part of the syntax), G is the name of a gate, P1 and P2 are patterns (see Section 3.6) and E is a
boolean expression.

The simplest action is a synchronization in which only the name of the gate, G, is indicated.

Value passing

If the action stands for a communication in which there is information exchange among the different
processes that are communicating, this information is indicated by the first pattern P1. Although
the different patterns of E-LOTOS are shown later on in Section 3.6, now we will introduce some
of them by means of examples. For example, if a process has a gate called outP and it wants to
communicate on it the value 3, in E-LOTOS we should indicate it by using the behaviour1

outP(!3)

Although perhaps the first interesting example of this tutorial should be2

outP(! "Hello, world!")
1We use the word “process” to refer to both an abstract entity which can communicate with other processes and

the declaration of this entity in E-LOTOS. The word “behaviour” refers to terms constructed by combining the
different operators of the language in order to describe the behaviour of processes.

2"Hello, world!" is a constant of the predefined type string, Section 3.1.
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2.1. Actions 11

If we want to communicate several values at a time we have to build what is called in E-LOTOS
terminology a record of values, a list of transmitted values enclosed between parentheses. For
example, if the process wants to communicate both values 3 and "Hello, world!", we write

outP(!(3,"Hello, world!"))

When we write the record of values that a gate communicates, we can give a name to each value
(that is, to each field of the record).3 Thus we can write

outP(!(value => 3,greeting => "Hello, world!"))

If the process has another gate called inP, on which data is received and is saved in the variable
x, then we write

inP(?x)

If the process receives a record of values through gate inP, we can save the whole record value in
the variable x as above, or we can use different variables to save the different fields of the record,

inP((value => ?v,greeting => ?g))

In order to prevent errors, in E-LOTOS there is the possibility (but not the obligation) of
typing the different components which appear in a process specification. In particular, we can type
the gates of a process so a gate can only communicate values of that type.

In the previous example, if the process receives only integers on the gate inP, we can write

inP(?x:int)

A process that takes a record with an integer and a string looks like

inP ((?x:int, ?y:string))

We can also specify a selection predicate in an action, which specifies the conditions that the
transferred values have to fulfill. For example, if a process should receive only integers smaller
than 10, we would write

inP(?x:int) [x<10 ]

Timed constraints

It is assumed that the execution of an action takes no time, that is, actions are atomic and dura-
tionless. However, communications can be made sensitive to time by adding the @ P2 annotation,
which pattern-matches the pattern P2 to the time when the action happens, measured from the
time when the communication was enabled. We can use this, joined with the use of selection
predicates, to control the time when actions may be performed.

The behaviour
inP(?x:int) @?t [ t<5 ]

specifies an action that receives an integer that is bound to the variable x provided that less than
5 units of time have passed, whereas the action

inP(?x:int) @!5
3In this case, the gate has to be declared as having the corresponding record type, see Section 3.2.
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12 2. Base Language for processes

can only occur 5 units of time after the action inP had been enabled. Let us explain how the
different patterns of E-LOTOS can be used to represent different timed constraints. If we use the
pattern ?t, then variable t will be bound to the time at which the action happens, and the selection
predicate is which imposes the restriction (t<5); but if we use the pattern !5, then the value 5 is
compared with the time at which the action happens, and the action will be possible only if this
time is also 5.

The three parameters of a gate event are optional. When any of them is not present, a default
value is used. So, the pattern P1 is (), an empty record, by default. The pattern P2 is any:time,
that means any value of type time. The expression E is true, i.e., no conditions are required.

There is a special action, the internal action i, which will be studied in Section 2.4. Intuitively,
it represents an action made by the process without the knowledge of its observer.

2.2 Sequential composition

We can compose two behaviours in sequence with the sequential composition operator “;”. B1;B2

behaves first as B1. When B1 has finished then it continues as B2. A sequential composition
B1;B2 finishes when B2 does.

With this new operator we can specify a behaviour with two gates, inP and outP, which receives
an integer on gate inP, saves it in the integer variable x, and then sends this integer through gate
outP:

inP(?x); outP(!x)

The sequential composition operator has greater precedence than any other binary operator.
Thus, when we write B1;B2[]B3 (where [] is the selection operator, see next section) we mean
(B1;B2)[]B3. Anyway, we can use parentheses in order to clarify behaviours or to force prece-
dence. Binary operators are right associative, so B1;B2;B3 means B1;(B2;B3).

Although the complete syntax of process declarations will be fully covered in Section 2.20, we
are going to use it in examples to make them easier to understand. For the time being, it is enough
to say that in a process declaration the formal gates via which the process can communicate are
declared (like formal parameters are in a procedure declaration in Pascal) and also its behaviour
(like a procedure body). In the process instantiation the actual gates are given.

Let us declare a process whose behaviour is as in our last example:

process Buffer1 [ inP:int,outP:int ] is
var x:int in

inP(?x); outP(!x)
endvar

endproc

Note that in gate declarations each gate is typed with the type of values the gate can commu-
nicate.

Processes may be recursive. In this way, a process that is continuously receiving integers
through a gate and sending them through another may be specified as

process Buffer2 [ inP:int,outP:int ] is
var x:int in

inP(?x:int); outP(!x); Buffer2[ inP,outP ]()

endvar
endproc
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2.3. Selection operator 13

In a process instantiation, the lists of actual gates and actual parameters (a process can also have
a list of parameters) have to be given, although any of them may be empty. Thus, we have to
write here Buffer2[ inP,outP ]() instead of only Buffer2[ inP,outP ].

The behaviour B1;B2 lets time pass if B1 does, or if B1 has finished and B2 lets time pass.

For LOTOS users, we have to note that LOTOS has two sequential composition operators: the
action prefix operator (“;”) and the enabling operator (“>>”). E-LOTOS has unified both of them
in the sequential composition operator “;” we have just explained, and there is a particular case
where the left behaviour consists of an action, for example outP(!3);Buffer2[ inP,outP ]().

2.3 Selection operator

The selection operator “[]” denotes a choice between two possible behaviours. In this way, the
behaviour B1[]B2 (where B1 and B2 are also behaviours) may perform actions either from B1 or
from B2. The choice is solved (in principle) when B1[]B2 interacts with its environment, which is
defined by another behaviour. If the environment offers a first action of B1, then B1 is chosen and
B2 is forgotten. Otherwise, if the environment offers a first action of B2 then B2 is chosen and B1

is forgotten. We see below what happens if the action offered by the environment is a first action
of both B1 and B2.

For example, let us suppose we want to specify the two-position register that we introduce in
Section 1.1, graphically described by

in2

in1

out2

out1

which can communicate with its environment through the gates in1, in2, out1, and out2. The
register is initially empty and both data inputs are needed before there is output. In addition,
data through gate in1 has to arrive before data through gate in2; and data have to be output in
the same order. The following process describes this behaviour

process Register1 [ in1:data,in2:data,out1:data,out2:data ] is
var x1:data,x2:data in

in1(?x1); in2(?x2); out1(!x1); out2(!x2)
endvar

endproc

where data is the type of the values the register can save.

But if the first value can be output without waiting for the second value, then we can specify
the register behaviour with the selection operator as
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14 2. Base Language for processes

process Register2 [ in1:data,in2:data,out1:data,out2:data ] is
var x1:data,x2:data in

in1(?x1);
( in2(?x2); out1(!x1)
[]

out1(!x1); in2(?x2)
);

out2(!x2)
endvar

endproc

The E-LOTOS grammar forces the user to put parentheses where a behaviour is ambiguous,4

so the user cannot mix binary operators without parentheses. Too many parentheses may lead to
unreadable specifications, so E-LOTOS also has a bracketed syntax for these operators, suggested
by Ed Brinksma in his thesis [Bri88]. The bracketed syntax for the selection operator is as follows:

sel B1[] . . . []Bn endsel

where if some Bi use a binary operator (but ;), it has to use it with parentheses.

Nondeterministic choice

If we have the behaviour B1[]B2 and the environment offers a first observable action of both,
then the process is chosen nondeterministically. To show this let us see an example with vending
machines.5 Suppose we have a machine (Machine 1) whose behaviour is specified as

Machine 1 ≡ ( insert10; take coffee ) [] ( insert5; take milk )

This machine offers to the client (its environment) the choice between inserting a 10 unit coin or
a 5 unit coin. If the client inserts a 10 unit coin then the machine evolves to a state where only
coffee is offered, but if the client inserts a 5 unit coin, then the machine only offers milk. So, the
client can (indirectly) choose coffee or milk by inserting the right coin.

Let us suppose now that we have another machine (Machine 2) that is like the last one but
serves a more expensive milk, costing 10 units. If we modify (the behaviour of) Machine 1 getting

Machine 2 ≡ ( insert10; take coffee ) [] ( insert10; take milk )

then we will not obtain the desired behaviour. Now the client has to insert a 10 unit coin inde-
pendently of what he wants. Once the client has inserted the coin, Machine 2 evolves to one of
two possible states: one in which it only offers coffee, or one in which it only offers milk, and the
client can take only what the machine offers. To which state the machine evolves depends on a
nondeterministic choice. It is said that the machine has evolved internally (without knowledge of
the environment) to one of these states. Therefore, Machine 2 is nondeterministic.

So, if we want to specify a machine that behaves as Machine 1, that is it offers coffee and milk
after the client has inserted a coin but with the more expensive milk, we have to write instead:

Machine 3 ≡ insert10; ( take coffee [] take milk )

Once the client has inserted a coin, Machine 3 offers both coffee and milk, so the client can choose
what he wants.

Another way of introducing nondeterminism is with internal actions, i, which we will present
in the next section.

4The sequential composition operator is an exception to this rule, and this is the reason why we have said above
that this operator has the greatest precedence.

5This example has been extracted from [LFHH90].
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Variables and selection operator

Regarding variables, we have to say that in a selection B1[]B2, variables which are modified only
by B1 or only by B2 must be initialized, that is, they have to be given a value, before the selection,
and the modification must preserve the type of the variables. In this way it can be assured that
independently of the behaviour executed, the set of initialized variables after the selection is always
the same, and we know their types. Variables which are modified by both behaviours may have
been initialized previously or not, but both behaviours have to assign them a value of the same
type.

Thus, the behaviours

inP(?x:int);
( inP(?x:bool)
[] outP(!x)
)

and
inP(?x:int)

[] inP(?x:bool)

are not allowed, because:

• in the first one, although variable x is initialized before the selection operator by means of the
behaviour inP(?x:int), only one of the subbehaviours of the selection operator, inP(?x:bool),
modifies it, and it changes the type of x;

• in the second one, both subbehaviours, inP(?x:int) and inP(?x:bool), modify variable x,
but they do not give it the same type.

Note that although a variable has been declared, it may have been declared of the universal type
any (see Section 3.2), so it can have values of any type.

Time determinism

Let us consider the following behaviour6

(?x:=5 [] ?x:=2); wait(1);P[ . . . ]

It is time nondeterministic: intuitively, when one unit of time has passed and process P is executed,
variable x may have either the value 5 or the value 2.

Time nondeterminism is an undesirable feature, and E-LOTOS forbid it requiring that when
we build a behaviour B1[]B2, both behaviours B1 and B2 have to be “guarded,” that is they have
to perform an action on a gate (or raise an exception as we will see in Section 2.15) before they
finish; this action decides which branch of the selection operator is selected.

The behaviour B1[]B2 lets time pass if both B1 and B2 do so.

2.4 Internal action

The internal action, i, is an action that a process can carry out to evolve in an autonomous
manner, without being observed by the environment. Together with the selection operator it is
used to model nondeterminism. It is also used to represent hidden actions, as we will see in
Section 2.14.

6We will describe the wait instruction in Section 2.16, and assignment in Section 2.19
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16 2. Base Language for processes

Let us suppose now that our two-position register may lose information, that is, it is possible
that data is accepted but then lose. So, once data has got in there are two possible cases: the data
is offered or the data is lost, missing the chance of taking it out. We may describe this behaviour
as follows

process Register3 [ in1:data,in2:data,out1:data,out2:data ] is
var x1:data,x2:data in

in1(?x1:data);
sel

in2(?x2:data); out1(!x1)
[]

out1(!x1); in2(?x2:data)
[]

i; in2(?x2:data)
endsel;
sel out2(!x2) [] i endsel

endvar
endproc

although we will see below (at the end of this section) that it is not right enough (due to urgency
of internal action).

Once the first value has been accepted, there are three cases:

1. the second value is accepted and then the first is output,

2. the first value is output and then the second is accepted, or

3. the first value is lost and then the second is accepted.

It seems that the case where the second value is accepted and then the first value is lost lacks. But
since losing a value is not observable by the environment, it is the same whether the first is lost
before or after the second is accepted.

Nondeterministic behaviours

As noted above, internal actions can be used to specify nondeterminism because they can be
executed in an autonomous way. The behaviour

coffee [] milk

offers the possibility of taking either coffee or milk. However, the behaviour

( i;coffee ) [] milk

always offers coffee but only may offer milk. That is, if the environment asks for synchronization
on gate milk, the synchronization could be accepted or not happen, in a nondeterministic way.
Instead, if the client asks for synchronization on gate coffee, he always will succeed.

On the other hand, the behaviour

( i;coffee ) [] ( i;milk )

may not be able to synchronize on any particular gate, depending on the internal choice.
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Urgency

The internal action i is urgent, that is it cannot idle. This means that when an internal action
can be performed, it must be performed unless another action is performed without delay. So the
process Register3 we have written above does not have the meaning we want. Due to the urgency of
the internal action, if actions on gate in2 or out1 are not possible immediately by the environment,
then the internal action must be carried out. So the behaviour specifies that if the second value
is not accepted immediately or the first value is not output immediately, then the first one is lost,
which is not the desired behaviour. In the behaviour

( i;coffee ) [] milk

if the environment wants to synchronize after some period of time (greater than 0) on gate milk,
it will never have success.

We can specify the desired behaviour by introducing a nondeterministic internal choice between
losing the value or not losing the value. The right Register4 process is:

process Register4 [ in1:data,in2:data,out1:data,out2:data ] is
var x1:data,x2:data in

in1(?x1:data);
( i;( in2(?x2:data); out1(!x1)

[] out1(!x1); in2(?x2:data)
)

[]

i; in2(?x2:data)
);

( i; out2(!x2)
[] i

)

endvar
endproc

2.5 Successful termination

Successful termination in E-LOTOS is represented by the behaviour null. This behaviour termi-
nates immediately (it is urgent), without doing anything.

2.6 Inaction and time block

There are two behaviours in E-LOTOS for representing anomalous processes: stop and block.
Both behaviours do not do any communication, and they do not terminate either. The difference is
that block will prevent the progress of time, whereas stop can delay for any time. Both represent a
pathological behaviour, a deadlocked process, that is, an undesirable specification, a broken system.
Therefore, they should not be used in a correct specification in parallel with other behaviours.

For example, the behaviour

stop || wait(1);outP(!3)

can perform a communication on gate outP after one unit of time, but it cannot finish (as we will
see in the next section). However, the behaviour
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block || wait(1);outP(!3)

cannot do anything, because it cannot idle one unit of time, since block freezes time.
The behaviour block can be defined with help of the urgency of the internal action:

process Block is
i;Block[ ]()

endproc

2.7 Parallel composition operator

We are going to study in this section, and the following ones, five different ways of composing
processes in parallel.

The first possibility is using the parallel operator, whose syntax is

B1 |[ G1,G2, . . . ,Gn ]| B2

where Bi stands for behaviours and Gj for gates.
The behaviour B1 |[ G1, . . . ,Gn ]| B2 offers observable actions of both B1 and B2 as long as

they are not actions carried out on a gate in the given list G1, G2, . . . , Gn. In order to carry out
an action in the given list, both behaviours have to perform it simultaneously. If one behaviour
can communicate on a gate in the list, but the other cannot, then the first one has to wait for the
other, if it can. When both behaviours offer an action on the same gate, then communication will
be possible if the patterns associated with both actions match (see Section 3.6). In such a case the
whole behaviour will offer the action on the common gate, and once this happens both behaviours
will continue their way until the next synchronization. This kind of synchronization is called
multi-way synchronization, and it is useful when more than one behaviour have to synchronize on
a common gate.

To show the use of this operator, we are going to add components to the register example,
introducing two new processes: a producer that fills the positions and a consumer that empties
them. These processes could be

process Producer [p1:data,p2:data ] is
(* produce first value *)

p1(!val1);
(* produce second value *)

p2(!val2)
endproc

where val1 and val2 are two constants of type data, and

process Consumer [ c1:data,c2:data ] is
var v1:data,v2:data in

c1(?v1);
(* consume first value *)

c2(?v2)
(* consume second value *)

endvar
endproc

In E-LOTOS, comments are enclosed within (* and *).
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2.7. Parallel composition operator 19

Now we can put together these processes and the register to model the complete system. Our
consumer only receives two values and is not prepared for loss, so we use the register version that
does not lose values.

We use gates pr1 (producer-register 1), pr2, rc1 (register-consumer 1), and rc2 to represent the
communication between the processes. These gates, and the communications carried on them, are
not interesting outside the complete system, so the environment cannot synchronize on them.

The system may be drawn as

System

Producer Consumer

pr2

pr1

rc2

rc1

The complete E-LOTOS system is:

process System1 is
hide pr1:data,pr2:data,rc1:data,rc2:data in

conc
Producer [pr1,pr2]()

|[pr1,pr2]|
Register2 [pr1,pr2,rc1,rc2]()

|[rc1,rc2]|
Consumer [rc1,rc2]()

endconc
endhide

endproc

So the register must synchronize on its input actions (pr1 and pr2) with the producer, and must
synchronize on its output actions (rc1 and rc2) with the consumer. Here we have used the bracketed
syntax of the parallel composition operator,

conc B1 |[...]| . . . |[...]| Bn endconc

(where the parallel composition operator is right associative, like any other binary operator) and
the hide operator that, intuitively, is used to show that the gates that connect the register with
the producer and the consumer are not observable for someone that sees the whole system. We
will discuss this operator in Section 2.14.

In the behaviour B1 |[ G1, . . . ,Gn ]| B2, B1 and B2 must assign disjoint global variables.
There is no share memory that processes running in parallel can use. Communication has to
be explicit, that is, B1 and B2 can communicate only through gates G1, . . . , Gn. Besides, if both
behaviours assigned the same variable, we would not know the last value when the whole behaviour
finished.

The behaviour
B1 |[ G1, . . . ,Gn ]| B2

finishes when B1 and B2 do. It is said that both behaviours B1 and B2 must synchronize on their
termination.

B1 |[ G1, . . . ,Gn ]| B2 lets time pass if both B1 and B2 do so, or if one of them has finished
(and it is waiting for the other) and the other lets time pass.
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2.8 Interleaving operator

When the list of gates on which two parallel processes have to synchronize is empty, E-LOTOS
has an abbreviated form of the parallel operator, the interleaving operator, “|||”

B1 ||| B2 = B1 |[]| B2.

As a consequence, this operator merges of the actions of both B1 and B2 in such a way that
the actions belonging to each one of them remain in the same order.

As a matter of fact, there is an occasion when the processes have to synchronize: termination.
As for the previous parallel operator, the interleaving B1 ||| B2 of B1 and B2 finishes when both
processes do it.

We may use this operator to model, in an easier way than we did before, the fact that the
register can receive the second value before or after the first one is output:

process Register5 [ in1:data,in2:data,out1:data,out2:data ] is
var x1 : data,x2:data in

in1(?x1:data);
( in2(?x2:data)
|||

out1(!x1)
);

out2(!x2)
endvar

endproc

The bracketed syntax of the interleaving operator is as follows:

inter B1 ||| . . . ||| Bn endinter

Being an abbreviation, the interleaving operator has the same features as the parallel operator
regarding variables and time.

2.9 Synchronization operator

This operator is used when the two behaviours composed in parallel have to synchronize on every
observable action. They also have to synchronize on the termination. Its unbracketed syntax is

B1 || B2

and the bracketed syntax is

fullsync B1 || . . . || Bn endfullsync

Note that
B1 || B2 = B1 |[ “all gates of B1 and B2” ]| B2.

Using both this operator and the interleaving operator we can specify again the complete system
that puts together the producer, the consumer and the register. Producer and consumer have no
common gate, so their parallel evolutions are independent, and we can put them together using the
interleaving operator. The resulting behaviour has to synchronize on all gates with the register, so
we compose them with the synchronization operator, in the following way:
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2.10. General parallel operator 21

process System2 is
hide pr1:data,pr2:data,rc1:data,rc2:data in

( Producer [pr1,pr2]()
|||

Consumer [rc1,rc2]()
)

||

Register5 [pr1,rc1,pr2,rc2]()
endhide

endproc

Regarding assignments of variables and time, the synchronization operator behaves like the
parallel operator.

2.10 General parallel operator

The three parallel operators we have seen (“||”, “|||”, and “|[...]|”) are not easy to use when
we want to describe some possible networks of communicating processes. Let us suppose we have
a set of m processes, P1, P2, . . . , Pm, and we want to specify a synchronization scheme where, in
order to execute any action on a given gate, we need the collaboration of any collection of n of
these processes. When n = 2 this means that any process Pi can communicate on that gate with
any other process Pj (i 6= j).

It is not easy to specify in E-LOTOS this kind of “n among m” synchronization using only
the kind of operators we have already introduced. To solve this problem, in E-LOTOS a new
generalized parallel operator has been introduced, which directly expresses networks of processes.

With this new operator we can specify, in an easy way, systems like the one graphically repre-
sented by

P2 P3

P1

��
��

HH
HH
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a

a

J
J
J
J
J
J

a

where on gate a two processes have to synchronize, and on gate b all the three processes have to
synchronize, in the following way:

par a#2 in
[a,b] -> P1

|| [a,b] -> P2

|| [a,b] -> P3

endpar

i.e. pairs of processes may synchronize on gate a, but all processes synchronize on gate b.

The syntax of this new operator is:
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par G1#n1, . . . ,Gp#np in
[Γ1] -> B1

|| . . .
|| [Γm] -> Bm
endpar

where ni’s are positive natural numbers, p ≥ 0 and Γi’s are gate lists Γi = Gi1, . . . ,Giri .
The intuitive meaning of this operator is as follows: the whole behaviour can perform an action

on a gate G, if:

• There is a component Bi such that gate G is not in its synchronization list Γi which performs
it; or

• There are some components synchronizing in the following way:

• if gate G is in the list of degrees (G1#n1, . . . ,Gp#np) with degree n, then n whatever
components Bi such that G ∈ Γi synchronizes on G.
• if gate G is not in the list of degrees, then all the behaviours Bi having G in their

synchronization list Γi synchronizes on it.

The behaviour finishes when all the behaviours Bi have finished.
Regarding variables and time, the general parallel operator behaves as the other parallel oper-

ators: all the behaviours Bi have to assign pairwise disjoint variables, and it lets time pass if all
Bi do, or if some of them have finished and all the unfinished ones let time pass.

2.11 Parallel over values operator

Sometimes we have a behaviour that may depend on a variable, and we want to put together,
running in parallel, some instantiations of this common behaviour, each one with a different value
of this variable. For example, we may have a process that describes the behaviour of a node of a
network which is identified by a unique identifier, and we may want to build a network of several
nodes, each one with a different identifier.

We can specify this kind of behaviour in E-LOTOS with the parallel over values operator. Its
syntax is

par P in N ||| B endpar

where P is a pattern, N is a list of values (the type of N has to be List, a predefined type of
E-LOTOS, see Section 3.1) these values can be matched against P , and B is a behaviour that may
depend on the variables in P . The represented behaviour is the interleaving of a series of instantia-
tions of B, one for each value of N . For example, if we have a process Node[ . . . ](id:IdType, . . . ),
we can specify a network of five nodes with different identifiers in the following way:

par ?x in [1,2,3,4,5] |||

Node[ . . . ](x, . . . )
endpar

In other parallel operators, we have said that it is not allowed that two behaviours composed
in parallel assign to the same variable. Here, it is the same behaviour which is used as a template
to make several instantiations. If this template behaviour assigned to a global variable, then the
different instantiations would do, and we would have several behaviours in parallel assigning to the
same global variable. In order to forbid this situation, the template behaviour in a parallel over
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values cannot assign any global variable. Of course, it can assign local variables declared inside
the template behaviour. In this way, each instantiation would have its own local variables.

Regarding time, the parallel over values operator lets time pass if all the instantiations do, or
if some of them have finished and all the unfinished instantiations let time pass.

2.12 Disabling operator

The disabling operator “[>” models permanent interruption of a process by another. So the
behaviour B1 [> B2 models the fact that at any point during the execution of B1 there is a choice
between doing a next action of B1 or a first action of B2. Once an action of B2 is carried out,
B2 continues evolving and the remaining behaviour of B1 is forgotten. But if B1 finishes without
interruption, the whole behaviour finishes and B2 is not able to interrupt any more.

Coming back to the register example, we can use the disabling operator to model the fact that
the register fails after 50 units of time if it has not yet finished its “normal” behaviour:

process Register6 [ in1:data,in2:data,out1:data,out2:data ] is
var x1:data,x2:data in

( in1(?x1);
( in2(?x2) ||| out1(!x1) );

out2(!x2) )

[> ( wait(50); i ) (* the register fails *)

endvar
endproc

where we have used the internal action i to represent the internal decision of the register to fail,
and the wait operator (Section 2.16) to express when the register fails.

The disabling operator also has a bracketed syntax which is as follows:

dis B1[> . . . [>Bn enddis

Regarding variables, the disabling operator behaves like the selection operator. That is, in the
behaviour B1[>B2, when only B1 or B2 modifies a variable it must be initialized before B1[>B2;
and if a variable is modified by both of them, they have to assign a value of the same type.

In order to keep internal action urgent and time deterministic, behaviour B2 is required to
be guarded in the disabling behaviour B1 [> B2. For technical reasons, B1 is not required to be
guarded.

The behaviour B1[>B2 lets time pass if both B1 and B2 do.

2.13 Suspend/Resume operator

The suspend/resume operator “[X>” is an extension of the disabling operator (Section 2.12)
which allows the resumption of the interrupted behaviour. If during the evolution of the behaviour
B1 [X> B2 B1 is interrupted by B2, then B1 is suspended until B2 resumes it through exception
X. Then B1 continues its evolution with the possibility of being interrupted again. B2 is always
restarted after a resumption.

Although exceptions and their handling will be seen in Section 2.15, it is enough to know now
that an exception X can be raised with signal X.
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Going on with our register example, if it can recover itself after an unexpected failure and
continue as nothing wrong has happened, then we could specify it as follows:

process Register7 [ in1:data,in2:data,out1:data,out2:data ] is
var x1:data,x2:data in

( in1(?x1);
( in2(?x2) ||| out1(!x1) );

out2(!x2) )

[Ok> ( wait(50); i; Repair[ ](); signal Ok )

endvar
endproc

With this operator we can specify more complex interruption mechanisms, where, for example,
a behaviour controls the evolution of others. Let us consider the next process

( ( B1 [cont1> stop1; start1;signal cont1 ) ||| (B2 [cont2> stop2; start2;signal cont2 ) )

|[ stop1, stop2, start1, start2 ]|
B3

The behaviour B3 controls B1 and B2 through gates stop1, start1, stop2, and start2. B3 can stop
the evolution of B1 using the gate stop1 and can restart it using start1. Using instead stop2 and
start2 it can control B2.

Regarding variables and time, the suspend/resume operator behaves like the disabling operator.

2.14 Hiding operator

The hiding operator allows the abstraction of the internal operation of a process. It hides those
actions that are considered internal to it, and which are considered of no interest at a certain level
of detail. To do it, the hiding operator transforms observable actions into internal actions, hiding
them from the environment, and making them urgent actions as we will see below.

The syntax of the hiding operator is

hide G1[:T1], . . . ,Gn[:Tn] in
B

endhide

where the Gi’s are gates declared in B by the hide operator, so they can be used only by B. Types
Ti are any by default, that is, if we do not declare the type of a gate, it can communicate values
of any type.

Let us suppose that the producer used before is composed of two subprocesses, each of which
produces a value.

Calc2

Calc1

sync

p2

p1
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In order to produce the values in the desired order, the components have to synchronize, but this
synchronization (or the way it is done) is not interesting from the point of view of the whole system,
so we hide it. Using the hide operator the producer would become

process Producer2 [p1:data,p2:data ] is
hide sync in

Calculation[p1, sync ](1)
|[ sync ]|

Calculation[p2, sync ](2)
endhide

endproc

where we have used two different instantiations of the same process Calculation, given by

process Calculation [pd:data,sync ](turn:int) is
case turn is

!1 -> pd(!val1); sync
| !2 -> sync; pd(!val2)

endcase
endproc

where val1 and val2 are two constants of type data.

The process Calculation has a parameter turn of type int which is used to distinguish whether
the process has to communicate the calculated value either before or after it synchronizes on gate
sync. The case operator (Section 3.6) is used to define conditional behaviours. In this case, if
turn is equal to 1 then the process first communicates the value and then offers a synchronization
on gate sync, and if turn is 2 the process first synchronizes and then communicates its value.

Urgency

The behaviour hide G1:T1, . . . ,Gn:Tn in B endhide lets a time d pass if B lets time d pass and
B cannot offer a communication on a hidden gate (G1, . . . , Gn) in a time less than d. So, the hide
operator transforms the actions on hidden gates into urgent actions, that is, they are performed
as soon as they are enabled. Thus, when we hide the gate sync in the example above, we achieve
two aims: first, this action cannot be observed outside the producer, and, second, communication
on that gate must be performed as soon as possible, because sync is an urgent action. We will see
another example in Section 2.16.

2.15 Exceptions and their handling

Exceptions are nowadays recognized as a desirable programming feature for dealing with errors and
other abnormal situations. Concerning parallel languages, the importance of exceptions combined
with concurrency has been pointed out by Berry in relation to the language ESTEREL [Ber93].
That proposal was adapted to the framework of process algebras by Nicollin and Sifakis in their
“Algebra of Timed Processes,” ATP [NS94]. However, none of the previously standardized Formal
Description Techniques (SDL, LOTOS, and ESTELLE) supports exceptions. In E-LOTOS, ex-
ceptions and their handling have been introduced through the trap operator (handling) and raise
and signal instructions (raising).

Beginning with the trap operator, its syntax is:
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trap
exception X1[(P1)[:T1]] is B1 endexn
· · ·

exception Xn[(Pn)[:Tn]] is Bn endexn
[exit [Pn+1] is Bn+1 endexit]

in B
endtrap

where B stands for the “normal” behaviour and X1, . . . ,Xn are the exceptions that can be raised
from B. Each exception Xi can be raised together with a value of type Ti (which is () by default)
that will be trapped with the pattern Pi (which is () by default); and will be handled by behaviour
Bi that defines how the behaviour evolves after the exception has been raised (and trapped). If
the exit clause is present, when the behaviour B finishes and returns a value, this value is matched
against the pattern Pn+1 and the behaviour Bn+1 is executed.

Taking the words of H. Garavel in [GS96], the trap operator behaves like a “watchdog.” The
normal behaviour B evolves until it raises an exception Xi. Then, B is aborted and the exception
handler associated with Xi starts its execution, once the value raised together with the exception
have been assigned to the corresponding pattern.

An exception may be raised with the signal or raise instructions whose syntax is

signal X [(E)]

raise X [(E)]

These are quite similar. Both raise an exception (possibly with associated values E), and if
the exception is trapped then there is no difference. But if the exception is not trapped,7 then
the behaviour after a signal instruction can be executed, whereas if the exception has been raised
with a raise, then the whole behaviour is blocked. In fact, raise X(E) is syntactic sugar for
signal X(E); block.

In [GS96] some algebraic properties of the trap operator are shown, together with the rela-
tionship to other operators which are derived from it.

We can use exceptions for example when our register fails. If it cannot recover itself, it finishes
raising an exception Error.

process Register8 [ in1:data,in2:data,out1:data,out2:data ] raises [Error ] is
var x1:data,x2:data in

( in1 ?x1:data;
( in2 ?x2:data ||| out1 !x1 );

out2 !x2 )

[> ( wait(50); i; signal Error )

endvar
endproc

Note how it is indicated with raises [Error ] that this process can raise an exception.
If the producer receives the message that an error has occurred through gate anError, then we

can handle exception Error with a communication with the producer through this gate:

Producer3[ pr1,pr2,anError ]()
|[pr1,pr2,anError]|

7In order to raise an exception X, it must be declared as an exception. So we might think that we can only raise
exceptions declared in a trap, but as we will see in Section 4.4 a specification can also declare exceptions that are
not trapped and are propagated to the top level, that is, to the level of the environment of the system.
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trap
exception Error is anError endexn

in
Register8[pr1,pr2 ]()[Error ]

endtrap

2.16 Delay instruction

We have already seen how to make gates sensitive to the time at which events occur (see Sec-
tion 2.1). Now we present another construction related to time: the delay operator wait.

The behaviour
wait(E)

is idle while the time indicated by the expression E (which must have type time) passes, and then
it finishes.

For example, suppose our register has a delay such that a received value may not be output
before three units of time have passed since it was received. We could specify it as

process Register9 [ in1:data,in2:data,out1:data,out2:data ] is
var x1:data,x2:data in

hide canGetIn2 in
in1(?x1); CanGetIn2; wait(3); out1(!x1)

|[canGetIn2]|
canGetIn2; in2(?x2) ; wait(3); out2(!x2)

endhide
endvar

endproc

By using the hide operator and a synchronization on gate canGetIn2, we have described in a
different way that data received through gate in1 has to get in before data through gate in2. In
this way it is easier to specify that three units of time will pass before the corresponding value is
output.

If we do not know exactly the delay of the register, but we know a lower bound min on this
delay, we can specify that the time between input and output is not less than this value:

in1(?x1);
?t := any time [min <= t]; wait(t);
out1(!x1)

where we have used a nondeterministic assignment, whose meaning will be explained in Sec-
tion 2.19. We have that once a value has been accepted through gate in1, an arbitrary value
of type time greater than or equal to min is assigned to variable t. We have to wait for this time,
and then a communication on gate out1 is offered.

Let us see now another simple, classical example8 which uses both a time annotation on actions
and the wait operator. We have a sender process that, after having transmitted a message, waits
for an acknowledgment. If this acknowledgment does not arrive during a certain time then the
sender retransmits the same message; otherwise, it waits for another message to be transmitted.
The process that specifies the sender behaviour is as follows:

8This example has been adapted from [LL94].
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process Sender1[ req:message,trans:message,ack ] is
var m:message in

req(?m);

Send Message1[ trans,ack ](m);

Sender1[ req,trans,ack ]
endvar

endproc

where we have defined

process Send Message1[ trans:message,ack ](m:message) is
var t:time in

trans(!m);

( ack @?t [ t<waiting time ]
[] wait(waiting time);Send Message1[ trans,ack ](m)

)

endvar
endproc

Note that if the acknowledgment does not arrive before waiting time units of time have passed,
the action on gate ack becomes impossible, and only a new transmission (of the same value) is
possible (via the recursive call to Send Message1).

Suppose that we want to separate the time constraints from the rest of the behaviour. We can
have a process Timer that controls these constraints and interacts with the sender:

process Timer[ setT:time,reset,timeout ] is
var t:time in

setT(?t);
( reset
[] wait(t);timeout
);

Timer[ setT,reset,timeout ]()
endvar

endproc

and modified processes:

process Sender2[ req:message,trans:message,ack,setT:time,reset,timeout ] is
var m:message in

req(?m);

Send Message2[ trans,ack,setT,reset,timeout ](m);

Sender2[ req,trans,ack,setT,reset,timeout ]
endvar

endproc

and

process Send Message2[ trans:message,ack,setT:time,reset,timeout ](m:message) is
trans(!m);setT(!waiting time);
( ack;reset
[] timeout;Send Message2[ trans,ack,setT,reset,timeout ](m)

)

endproc

And then the whole sender could be like
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Sender2[ req,trans,ack,setT,reset,timeout ]
|[setT,reset,timeout]|

Timer[ setT,reset,timeout ]

The problem is that in this last behaviour, the synchronization on gates setT, reset, and timeout
is forced, but it is not forced the time at which they occur. We have to hide these gates in order
to make the actions on them urgent actions, that is, the synchronizations on these gates occur as
soon as they are possible. Thus, the sender can be

process Sender3[ req:message,trans:message,ack ] is
hide setT:time,reset,timeout in

Sender2[ req,trans,ack,setT,reset,timeout ]
|[setT,reset,timeout]|

Timer[ setT,reset,timeout ]
endhide

endproc

2.17 Renaming operator

In E-LOTOS we can rename actions by means of an explicit renaming operator which allows to
rename observable actions into observable actions, and exceptions into exceptions, and also allows
us to modify the offers of the actions performed by a behaviour.

For example, let us suppose we have two behaviours B1 and B2 which we cannot modify since
they belong to a private library of processes. If we compose them in parallel and they have to
communicate with each other, we have a problem if the messages sent by any of them, say B1,
are not in the same format as B2 is expecting. For example, B1 could send a message G(!E)
through the gate G but B2 could expect messages of the form G(!f(header,E, trailer)), where f
is a function to build packets from messages by adding them a header and a trailer. We can solve
this problem by means of the renaming operator.

An explicit renaming operator is also useful for verification purposes, when it is desirable to
rename all non-interesting (for the verification of the property to be checked) observable actions
into some particular action, different from the internal action (so hiding cannot be used).

The syntax of this operator is as follows:

rename
gate G1[(P1)[:T1]] is G′1[(P ′1)]
· · ·

gate Gm[(Pm)[:Tm]] is G′m[(P ′m)]
signal X1[(P ′′1 )[:T ′1]] is X ′1[(E1)]
· · ·

signal Xn[(P ′′n )[:T ′n]] is X ′n[(En)]
in B
endren

This represents the behaviour B where the gates G1, . . . , Gm and the exceptions X1, . . . , Xn are
renamed into G′1, . . . , G

′
m and X ′1, . . . ,X

′
n, respectively. These gates and exceptions are declared

by the rename behaviour, so they can be used only in B. Pi’s are patterns used as follows: values
associated to renamed gates or exceptions are bounded to variables in Pi’s, and then these variables
can be used in the corresponding new gates (patterns P ′i ) or exceptions (expressions Ei).

The simplest renaming is the one that only renames one gate into another:
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rename
gate inP(?a):int is intro(!a)

in
B

endren

In this way, if behaviour B offers a communication on gate inP of an integer, then this value is
bound to a and the whole behaviour will offer a communication on gate intro of the same integer
a.

However, gate renaming may be more powerful than a simple change of name. We can also
use it to change the structure (type of values) of actions offered by a process. For example we can
remove a record field:

rename
gate inP ((x => ?a, y => ?b)):recordXY is inP(!(x => a))

in
B

endren

where recordXY is a type defined by the user (in E-LOTOS anonymous types cannot be used) as

type recordXY is
(x => int, y => bool)

endtype

Note that there are two gates called inP: the left one is the new declared gate that can be used
in B; and the right one is a gate which have to be declared outside this rename, and cannot be
used by B. If B performs the communication inP (!(x => 3,y => true)) on (local) gate inP, the
variable a will be bound to the value 3, and the variable b will be bound to the value true, and the
whole rename behaviour will perform the communication inP (!(x => 3)) on (global) gate inP.

We can add a field:

rename
gate inP ((x => ?a:int)):recordX is inP (!(x => a,y => true))

in
B

endren

We can even change the values that are being communicated. For example, we can solve the
problem at the beginning of this section in the following way

rename
gate G (?e):message is G(!f(header,e,trailer))

in
B1

endren
||

B2

We can also split a gate G into two gates G1 and G2, depending on the values G carries
on. For example, let us suppose we have defined a process P that sends values through a gate
Gout. It indicates whether they have to go to the right or to the left side, using actions like
Gout(!(left,dat)) or like Gout(!(right,dat)) (where left and right are values of an enumerated
type (see Section 3.1) and dat is a variable with a value of type data). Suppose we want to use
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process P in a context where we have two different gates, LGout to send values to the left, and
RGout to send values to the right,

P

Gout

LGout RGout

we can use the rename operator as follows:

rename
gate Gout ((!left,?d:data)):any is LGout(!d)
gate Gout ((!right,?d:data)):any is RGout(!d)

in
P[Gout ]()

endren

We can also do the opposite, that is, we can merge two gates G1 and G2 in a single gate G:

rename
gate G1(?a):int is G(!(a,true))
gate G2(?a):int is G(!(a, false))

in
B

endren

Exceptions can be renamed in the same way. Let us imagine a process that raises a generic
exception Error together with the number of the produced error. If at some time the association
between numbers and errors is changed, and we have a function g that defines this change, we can
rename the exception Error in order to vary its parameter as function g indicates:

rename
signal Error (?e):int is Error (g(e))

in
B

endren

2.18 Conditional operator

As in almost every programming language, E-LOTOS includes a conditional if − then− else
operator. Its syntax is:

if E then B
(elsif E then B)∗

[else B]
endif

where E must be a boolean expression. The behaviour associated with the first expression E that
evaluates to true describes how the if − then− else behaves. The behaviour associated with the
else clause is null by default, and therefore this is the behaviour when no expression E is true, and
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there is no else clause. For instance, we can use this instruction for communicating the absolute
value of variable x through gate outP:

if x >= 0 then outP(!x)
else outP(!-x)
endif

2.19 Imperative features

In E-LOTOS several imperative features have been introduced in order to make the job of specifying
systems easier to the user of this programming paradigm.

One of these features is assignment. E-LOTOS has write-many variables, that is, variables
that can be assigned several times. The static semantics of the language forbids reading a variable
unless it has a value. We can assign values to a variable by using the assignment instruction, whose
syntax is

P := E

where P is a pattern which can be pattern-matched against the value returned by expression E.
The result of the assignment is the creation of a binding between the variable (or variables) in the
pattern and the expression value. In this way, the assignment

?x := 3

binds the value 3 to variable x. On the other hand, the assignment

(?x, ?y) := (5, true)

associates variable x with 5 and variable y with true.
There is another kind of assignment, the nondeterministic assignment, whose syntax is:

P := any T [[ E ]]

By means of it we bind the variables in pattern P with any value of type T that satisfies the
condition E, which is true by default. For example, the assignment

?x := any int [ x < 10 ]

binds variable x to an integer less than 10.
Another imperative feature introduced in E-LOTOS is the possibility of declaring variables,

using the var operator (as we have seen in several examples), in order to restrict the scope of
variables, and therefore possibly hiding more global variables with the same name. The syntax of
this operator is:

var V1:T1[:=E1], . . . ,Vn:Tn[:=En] in
B

endvar

where the declared variables V1, . . . , Vn may be initialized with the corresponding expressions Ej .
The occurrences of the identifiers naming the declared variables in behaviour B refer to these

new variables, hiding in the scope those variables with the same name that already exist. Changes
of the values of these (local) variables do not modify in anyway the more general ones. On the
other hand, they will not be visible outside the scope of the var operator.
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For example, the behaviour

?x := 3;
var x : int in
?x := 5; ?y := x

endvar;
inP(!(x,y))

offers on the gate inP the pair (3,5).
As we said, declared variables may be initialized, and so the following behaviour is equivalent

to the previous one:

?x := 3;
var x : int := 5 in
?y := x

endvar;
inP(!(x,y))

A variable V declared of type T can be assigned a value of any subtype T ′ of T .
E-LOTOS has also several iterative operators: loop, while, and for. The loop operator

represents an infinite loop whose execution can only be stopped raising an exception with the
instruction break. It has two versions. The first one, whose syntax is

loop B endloop,

represents a loop where the behaviour B is continuously executed until the predefined exception
inner is raised (by means of break command, see below). The second version has syntax

loop X [: T ] in
B

endloop

and represents a breakable loop that can be interrupted with the exception X.
We raise this exception9 with a break command, with syntax

break [X [( E )]]

where X is the name of the exception associated with the loop we can stop. (If it has no name,
the default inner exception will be used.) E, the value associated with the exception, represents
the result that the loop returns.

Note that exception X is declared together with the loop, and so we do not need to introduce
an explicit handler for it. The handling of this exception consists of breaking (stopping) the loop,
and returning the associated value, if any.10

For example, using the loop operator we can define the recursive (infinite) process that con-
tinuously receives and sends integers:

process Buffer3 [ inP:int,outP:int ] is
var x:int in

loop
inP(?x); outP(!x)

endloop
endvar

endproc
9And also the predefined inner exception, but in this case no name has to be given.

10In the definition of the semantics [Que98] we see that a trap is included.
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On the other hand, the buffer that receives and sends integers until it receives a 0 can be
specified with a breakable loop:

process Buffer4 [ inP:int,outP:int ] is
var x:int in

loop End in
inP(?x); outP(!x)
if x=0 then break End endif

endloop
endvar

endproc

E-LOTOS has also a conditional loop, the while instruction, whose syntax is:

while E do
B

endwhile

where E is a boolean expression, and B is a behaviour which is executed until the expression E
evaluates to false. For example, we can add all the elements in a list of integers, xs, with type
list of int (see Section 3.1), and send the result through a gate outP as follows:

var total : int := 0,e:int in
while not(isempty(xs)) do
?e := head(xs);
?total := total + e;
?xs := tail(xs)

endwhile;
outP(!total)

envar

where we have used some functions for manipulating lists, to be described in Section 3.1.
The last iterative construction of E-LOTOS is the for loop, whose syntax is:

for E1 while E2 by E3 do
B

endfor

It represents the execution of the expression E1 and then, while expression E2 evaluates to true,
the execution of behaviour B followed by the evaluation of expression E3. Thus, the for loop is
just syntactic sugar for

E1;
while E2 do
B;E3

endwhile

2.20 Process declaration and instantiation

We can use process declarations to give a name to a behaviour and to abstract the names of actual
gates, parameters, and exceptions. Thus, processes are parameterized by a list of formal gates, a
list of formal variables (parameters), and a list of formal exceptions.
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The syntax of a process declaration is as follows:

process P [ [ G1[:T1], . . . ,Gn[:Tn] ] ]
[ ( [in|out]V1:T ′1, . . . ,[in|out]Vm:T ′m ) ]
[raises [ X1[:T ′′1 ], . . . ,Xp[:T ′′p ] ]]

is B
endproc

where

• P is a process identifier;

• [ G1[:T1], . . . ,Gn[:Tn] ] is the list of gates the process uses, which is empty ([]) by default;

• Ti is the type of gate Gi, that is, the type of values gate Gi can communicate. It is any by
default, that is, a gate can communicate values of any type by default11;

• ( [in|out]V1:T ′1, . . . ,[in|out]Vm:T ′m ) is the list of formal parameters, where each parameter
is either an input parameter (by default), in, or an output parameter, out;

• [ X1[:T ′′1 ], . . . ,Xp[:T ′′p ] ] is the list of formal exceptions, empty by default;

• T ′′j is the type of values associated with exception Xj , which is () by default. That is, by
default an exception has no value associated; and

• B is the body of the process, the behaviour that describes how the process behaves.

Declared processes may be called by using process instantiations, whose syntax is:

Π [[GPL]]([APL])[[XPL]]

where

• GPL is the gate parameter list and it may be either in positional form, G′1, . . . ,G
′
n, or in

named form, Gi1 =>G
′
i1
, . . . ,Gis =>G

′
is

(Gij are the formal gates and G′ij the actual gates).
When the named form is used, it is not needed to give all the parameters by using the keyword
... at the end, and in this case, the absent actual parameters will be added with the same
names as the formal ones. For example, a process with header

process Register [ in1:data,in2:data,out1:data,out2:data ] is

can be instantiated as follows:

Register [ in1 => inGate1,out1 => outGate1,... ]()

and this instantiation is equivalent to this one:

Register [ inGate1,in2,outGate1,out2 ]()

• APL is the list of actual parameters where each parameter can be an expression (input pa-
rameter) or a pattern (output parameter), and the list may be either in positional or named
form; and

• XPL is the exception parameter list, which may also be either in positional or named form.

An instantiation of a process Π stands for the body of the process where actual gates, param-
eters, and exceptions are substituted for formal ones.

11This is made for compatibility with LOTOS.
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In this chapter we describe how the data types used in the behaviour language described in the
previous chapter can be defined in E-LOTOS, and how values of these types are used.

3.1 Data types

As we have said, the part regarding the declaration and use of data types is one of those that has
been changed more in E-LOTOS with respect to its predecessor LOTOS.

In LOTOS the abstract data type specification language ACT ONE [EM85] is used to declare
new data types and to represent their values (called value expressions in LOTOS). This language is
not too user-friendly and suffers from several limitations such as the semi-decidability of equational
specifications, the lack of modularity, and the inability to define partial operations.

In E-LOTOS, ACT ONE has been replaced by a new language in which data types are de-
clared in a similar way to functional languages (ML, Haskell), and where some facilities for the
representation of values are given.

Predefined types. In E-LOTOS there is a set of predefined types with associated operations
which are specified in the “Predefined Library” described in Chapter 7 of [Que98]. Predefined
types are:

• bool: with constants true and false, and operations not, and and or among others.

• nat: the natural numbers. In E-LOTOS, we have a specific syntax (similar to the usual one)
to generate values of this type (and also for the rest of the numeric types), so that we can
write 1, 7, 2258 . . . instead of having to use the constructors, to write expressions like

Succ(Succ( ... Succ(0)...)).

E-LOTOS also provides arithmetic operations, like +, −, ∗, div, mod, and comparison opera-
tions, like >, >=, ! =, . . ..

• int: the integer numbers with a conventional syntax like naturals, and with arithmetic and
comparison operations. There is also an operation to transform a positive integer to the
corresponding natural (nat), and another to transform a natural to the corresponding integer
(int)

• rational: the rational numbers (i.e. integer/integer). In addition to arithmetic and comparison
operations, there are functions like round(r), to get the nearest integer value of r, ceil(r), to
get the least integer value greater than or equal to r, and floor(r), to get the greatest integer
value less than or equal to r.

• float: the real numbers, with arithmetic, comparison, and trigonometric operations.
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• char: the character values, written between quote symbols (e.g. ’a’). They represent the ISO
Latin-1 characters. There are functions like tolower, toupper, isalpha, isdigit, islower, isupper.

• string: sequences of characters between double quotes (e.g. ‘‘Hello, world!’’). There are
operations to determine the number of characters of a string (length), to concatenate two
strings (concat), to get any prefix or suffix of a string, and to get the character in any position.
There are also comparison operations, and operations to convert any natural, integer, or float
to a string.

• List: lists of values of any type. It is defined as a new data type (see below)

type List is
nil | cons(any,List)

endtype

The user can define lists of a concrete type as we explain below.

Predefined type schemes. In E-LOTOS there is also a set of type schemes that are translated
to usual type and function declarations. They are used to make easier the definition of typical
types, as suggested by the “rich term syntax” of [Pec94].

We can define an enumerated type ET with values V1, . . . , Vn as

type ET is
enum V1, . . . , Vn

endtype

This type has several predefined functions such as a comparison operation (==), and operations to
get the next value (succ) or the previous value (pred) of a given one.

For example, we can define a type colour with some colours:

type colour is
enum Blue, Red, Green, Yellow, Pink

endtype

which is translated into a new data type (see below) with a constructor for each enumerated value:

type colour is
Blue | Red | Green | Yellow | Pink

endtype

The language also allows record types to be easily defined and dealt with. It is possible to declare
a record by giving the list of its fields together with their corresponding types. For example, we
can define the record type

(name => string, address => string, age => nat)

and we can access each field with the “.” notation, for example rec.name, provided variable rec
has the above type.

We can also define sets of values of a given type T , with syntax

type ST is
set of T

endtype
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and express extensionally values of this type, i.e. by giving the list of their elements

{e1, . . . ,en}

where ei are expressions of type T . This scheme has predefined functions to calculate the union
(union), difference (diff), and intersection (inters) of two sets; to calculate the number of elements
(card) of a set; and to know if an element belongs (isin) to a set; and to know if a set is empty
(isempty).

We can define lists of elements of type T in the following way

type LT is
list of T

endtype

and write list values with syntax
[e1, . . . ,en]

where ei are expressions of type T . This scheme has predefined functions to get the first element
(head) of a list, to remove the first element of a list (tail), to get the nth element of a list (nth), to
concatenate (concat) two lists, and to get the number of elements (length) in a list.

By using these functions we can write a behaviour that adds the elements of a list of integers,
xs, and communicates the result through gate outP, but without destroying the given list:

var total : int := 0, len : int := length(xs),e:int,n:nat in
for ?n := 1 while n<=len by ?n := n+1 do
?e := nth(xs,n);
?total := total+e;

endwhile;
outP(!total)

envar

The predefined operations on these types and their implementations are shown in Chapter 7
of [Que98].

User defined types. The user can define two kinds of types: type synonyms and new data
types.

A type synonym declaration simply declares a new identifier for an existing type. For example,
we can define the type Complex to represent complex numbers as a record with two float fields:

type Complex is
(real => float, imag => float)

endtype

The general syntax to declare a type synonym is

type S is (RT) endtype

where S is a type identifier, and RT is a record type. This is a non-empty list of type identifiers
separated by commas, where each type can be labelled with the name of the corresponding record
field. In the previous example the record has two fields: real and imag, both of type float.

It is also possible to declare a type synonym renaming an existing type, with syntax

type S renames T endtype
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where T is a type identifier. For example, the type time can be declared as a synonym of the
predefined type nat with the declaration

type time renames nat endtype

Type equality is structural, not by name. Thus, with the above definitions, we can use Complex
and the anonymous type (real => float, imag => float) as the same type, and also nat and time.

The declaration of a new data type consists of the enumeration of all the constructors for that
type, each one with the types of its arguments, separated with “|”. The concrete syntax to declare
a new data type is:

type S is
C1(RT1) | . . . | Cn(RTn)

endtype

For example, we can define a type dest which represents the destination of a message when it
reaches a router with two exits, one on the left and one on the right:

type dest is
left | right

endtype

Also, we can define the type of messages, data messages or acknowledgment messages (for error
handling), as follows:

type pdu is
send(packet,bit) | ack(bit)

endtype

We can define recursive data types, by using in some constructors the type which is being
declared, as in the predefined type List described above.

The base language does not allow to declare parameterized types. This is left for the module
system (see Section 4.3).

3.2 Type expressions

We have seen in the previous section how the user can declare new types with the facilities of the
language. Now we are going to see how to write type expressions, that is, what the user can write
when a type is needed. For example, when the user may want to type a gate or a local variable in
a behaviour.

The simplest type expression is a type identifier. We have already seen several examples: nat
and bool are predefined type identifiers, Complex is a type synonym identifier, and dest is a new
datatype identifier.

Type identifiers are the unique type expressions the user can use in order to type an E-LOTOS
element. For example, when the user types a gate of a process, G : T , T must be a predefined or
user-declared type identifier, or one of the special type identifiers, none and any, that we present
below. It is the same when we want to declare a variable or a pattern type. Thus, at the user
level, in E-LOTOS there are no anonymous types. For instance, the user is not able to declare

G : (real => float,imag => float),
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although, of course, it is possible to declare

G : Complex

provided the Complex type is already declared.
We have two special types:

• none is the empty type that has no values, used to give functionality to processes that never
stop.

• any represents a wildcard type which is used to type gates which can communicate data of
any type, in order to achieve compatibility with LOTOS.

We can also write record type expressions RT , although as we have seen the user can only use
them in the declaration of type synonyms. Note that a record type expression in not a type, and
it becomes a (anonymous) type when we enclose it between parentheses, (RT). We have also seen
that each component of a record can be associated with a field name. But when we give name to
a field, we have to give name to all the fields. For example, in the record type expression

(x => float,y => float)

x and y are the names of the record fields. In this way, the order of the different fields is not
important, but, of course, the names of the fields are. However, it is optional to give name to the
different fields of a record, so a correct record type expression is

(int,float),

which represents a record with an integer and a float. In this case the order of the fields is
important. Really, this expression is syntactic sugar for

($1 => int,$2 => float)

where E-LOTOS invents default names for the fields, $1, $2, . . ., when the user does not give them.
And ($1 => float,$2 => int) is a different type.

In E-LOTOS we can write extensible record types, with the keyword etc at the end of the
record, to mean any set of fields. So the record type

(message => data, etc)

represents a type of records with at least one field called message of type data. This means that we
have as values of this type all the record values that have at least a field with that name and type.
The notion of extensible records is related to record subtyping that we detail in the next section.

3.3 Subtyping

E-LOTOS has a built-in subtyping relation between record types. A record type is subtype of
another record type if the former has at least all the fields the latter has. So the record type (etc)
is a supertype of any other record type. And the extensible record type

(message => data, etc)

has as subtypes, for example, the record types

(message => data, de => dest, etc) and (message => data, de => dest)
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We denote that type T is a subtype of type T ′ by T v T ′. Whenever T v T ′ we can use values
of type T where values of type T ′ are required.

Let us see an example that shows the usefulness of subtyping. Let us suppose we have to specify
a Router process that receives packets through an input gate, and it has to direct them to one of
its output gates depending on the packet destination. So the only restriction is that packets that
get into the router have to have a field indicating their destination. We can declare an extensible
record type

type packet is
(de => dest, etc)

endtype

and then a process specifying the router is the following:

process Router [ inP:packet, leftP:packet, rightP:packet ] is
var p:packet in

loop
inP(?p);
case p.de is

left -> leftP(!p)
| right -> rightP(!p)

endcase
endloop

endvarendproc

The empty type none is subtype of any type T , none v T , and it is equivalent to any record
with a field of type none (since that field cannot have any value, the whole type has no values).
The universal type any is supertype of any type T , that is, T v any.

3.4 Expressions

In contrast to LOTOS [ISO89], where there is a separation between processes and functions,
E-LOTOS considers functions as a kind of process. A function in E-LOTOS is any process with
the following characteristics: it is deterministic; it cannot communicate (i.e. it has no gates), and
so its only capabilities are to return values and raise exceptions; and it has no behaviour over time
(i.e. a function is an immediately exiting process). Therefore, the expression (sub)language is very
similar to that of behaviours that we have been introducing, once the elements related to these
characteristics are removed.

The simplest expressions are normal forms. A normal form is an expression which cannot be
reduced any further. The following examples are normal forms:

• a primitive constant, such as 5, true, or "Hello, world!"

• a variable, such as x or total

• a constructor of a new data type applied to normal forms, such as right, nil, cons(5,nil), and
send(aPacket, aBit)

• a record of normal forms, such as (real => 4.5, imag => 8) or (7, 9) (that is syntactic sugar
for ($1 => 7, $2 => 9))

Starting from these simple expressions we can construct more complex ones using the operators
of E-LOTOS.
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Expressions can raise exceptions, provided they are in the scope of an application of the trap
operator where they are handled, as we saw in Section 2.15:

trap
exception X1[(P1)[:T1]] is E1 endexn
· · ·

exception Xn[(Pn)[:Tn]] is En endexn
[exit [Pn+1] is En+1 endexit]

in E
endtrap

However, note that the handler behaviours have been substituted by expressions here.

For example, let us consider the function Head that returns the head of a list:

function Head (xs:intlist) : int raises [Hd ] is
var x:int := 0 in

case xs is
nil -> signal Hd;0

| cons(?x,any:intlist) -> x
endcase

endvar
endfunc

Function Head declares that it may raise an exception, whose formal name is Hd. Inside the
function, pattern-matching is used to distinguish whether the integer list xs is empty or not
(patterns and pattern matching will be detailed in Section 3.6). When the list is empty the
function raises the exception Hd (and if the exception Hd is not trapped, the function Head returns
0, because all the branches in a case statement have to return something of the same type if they
finish). In this way, the user of the function has to give the handler of the exception. For example,
suppose we do not want an error to be produced when the head of an empty list is consulted.
Instead a 0 is to be returned:

trap
exception Hd0 is 0 endexn

in
Head (xs) [Hd0 ]

endtrap

that returns 0 if the list xs is empty, and otherwise returns the head of the list. The exception
Hd0 is the actual exception in the Head function call.

We can also rename exceptions raised by an expression (in this case there is no sense in renaming
gates as expressions do not have gates) with all the renaming power we saw in Section 2.17. Now
the syntax is

rename
signal X1[(P ′′1 )[:T ′1]] is X ′1[(E1)]
· · ·

signal Xn[(P ′′n )[:T ′n]] is X ′n[(En)]
in E
endren

The expression language also has a conditional expression if − then− else; and some impera-
tive features, such as:
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• assignment, P := E, that produces bindings between the variables in the pattern P and values
of E. That expression does not return a value but produces bindings (between variables in P
and the value returned by expression E).

• sequential composition, E1;E2, which returns bindings produced by E1 not overridden by
those of E2, bindings produced by E2 and the value returned by E2.

• declaration of local variables, with syntax

var V1:T1[:=E1], . . . ,Vn:Tn[:=En] in
E

endvar

For example, the expression

var x:int in
?x:=E; x ∗ x

endvar

returns the same value as the expression E ∗E does, and it does not produce bindings because
variable x is local to the var declaration, and its binding does not go out of this declaration.

• different iterative constructions such as loop, while, and for.

Finally, E-LOTOS includes some operators that can only be applied to expressions:

• boolean conjunction E1 andalso E2 that evaluates E1; if its value is true then the value of
E2 is returned, otherwise false is returned. E1 and E2 must be of type bool, that is, they have
to return a value of this type.

• boolean disjunction E1 orelse E2 that evaluates E1; if its value is false then the value of E2

is returned, otherwise true is returned. E1 and E2 must be of type bool.

• equality operation, E1 = E2. E1 and E2 do not need to have the same type.

• inequality operation, E1 <> E2. E1 and E2 do not need to have the same type.

• select field operation, E.V . Assuming that expression E returns a record value with a field
called V , E.V returns the value associated with this field.

• explicit typing, E:T , that returns the value of expression E only if it is of type T . This is
controlled by the static semantics at compilation time.

3.5 Function declaration and instantiation

Much as we can declare processes (Section 2.20), we can declare functions in order to give a name
to an expression E, and abstract the names of variables (or subexpressions) and exceptions in E.

The syntax of a function declaration is as follows:

function F [ ( [in|out]V1:T1, . . . ,[in|out]Vm:Tm ) ] [:T ]
[raises [ X1[:T ′1], . . . ,Xp[:T

′
p] ]]

is E
endfunc

where

• F is a process identifier;
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• ( [in|out]V1:T1, . . . ,[in|out]Vm:Tm ) is the list of formal parameters, empty () by default;

• T is the type of the value returned by F , and it is an empty record () by default;

• [ X1[:T ′1], . . . ,Xp[:T ′p] ] is the list of formal exceptions, empty [ ] by default; and

• expression E is the body of the function F .

A function call is an expression. Its syntax is

F [(APL)][[XPL]]

where APL is the list of actual parameters and XPL is the exception parameter list, which may
be in either positional or named form.

We can declare also infix functions

function F infix [ ( [in|out]V1:T1,[in|out]V2:T2 ) ] [:T ]
[raises [ X1[:T ′1], . . . ,Xp[:T

′
p] ]]

is E
endfunc

which can be called as follows:
AP1 F AP2[[XPL]]

We can also declare values, which represent constant functions without parameters, with syntax

value V : T is E endval

where V is the value identifier, T is a type identifier, and the value of expression E (which has to
be of type T ) is what value V returns.

3.6 Patterns and pattern matching

We have already used patterns in several examples: assignments P:=E, actions G P1 @ P2, etc.
Patterns are matched against values and can produce bindings on variables. Now we are going to
describe the different kinds of pattern in E-LOTOS. A pattern has one of the following forms:

• a variable, ?x. If we try to match ?x against a value N of type T , the pattern matching
succeeds if the variable x has been declared with type T ′ and T is a subtype of T ′. In this
case, x is bound to N .

• an expression, !E. This pattern can be matched against the value N only if N is the value of
the expression E. In this case, the pattern matching does not produce bindings.

• a wildcard pattern, any:T , that matches against any value of type T without producing
bindings.

• a record pattern, (RP), where RP is a list of patterns separated by commas, either in a
named form V1 => P1, . . . ,Vn => Pn (where V1, . . . , Vn are the field names of the record) or
in a positional form P1, . . . ,Pn. The pattern matching of (RP) against the value N will
succeed if N has the form (RN) and RN is a list of values (possibly preceded by field names)
that match against the corresponding patterns in RP . This pattern matching produces the
bindings produced by matching each pattern of RP against the corresponding value in RN .
Patterns in RP must bind disjoint variables.
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For example, the record pattern (real=>?re,imag=>?im) matches the value (real=>2.5,imag=>
0.3) binding variable re to the value 2.5 and variable im to the value 0.3.

In a record pattern RP we can use the keyword etc at the end of RP for representing all
the unspecified fields. So, the pattern (real => ?re,etc) may be matched against the value
(real => 2.5,imag => 0.3) producing a binding between the variable re and the value 2.5.

• a constructor application, C[(RP)], where RP stands for the arguments of the constructor
C (if needed). The pattern C(RP) matches the value N if N has the form C(RN) and
RN matches RP . The bindings are those produced by matching each pattern against the
corresponding value. For example, cons(?x,?l) or cons(!3,any:List).

• an explicit typing, P:T . The pattern P:T matches the value N if N has type T and P
matches against N . For example, the pattern ?l:intlist matches the value cons(4,nil).

Patterns are also used in the case operator, whose syntax is

case E[:T ] is
P1[[E1]] -> B1

...
| Pn[[En]] -> Bn

endcase

where expressions Ei are boolean expressions, which are true by default.
The value of the expressionE is matched sequentially against each of the clauses P1[E1], . . . , Pn[En].

A value N matches a clause Pi[Ei] if the value matches the pattern Pi and Ei evaluates to true
in the context of variables bound by the pattern-matching. The behaviour Bi associated with the
first clause that matches N describes how the whole behaviour continues. If there is no clause that
matches N then the predefined exception Match is raised.

For example, we can define a process that receives messages of type pdu and behaves in a
different manner depending on the kind of message:

process P [ inP:pdu, . . . ] is
var p:packet in

inP(?p);
case p is

send(?pa:packet,?b:bit) -> (* handle data *)
| ack(?b:bit) -> (* handle acknowledgment *)

endcase
endvar

endproc

There is also the possibility of pattern-matching between two patterns, for example, in the
communication

inP(?x) || inP(!3)

In this case the pattern ?x is pattern-matched against the pattern !3. The pattern-matching
between two patterns succeeds if there is a value N such that both patterns can be matched
against N . In the example this value is 3.

Although strange, we can put together two behaviours that can receives values on a gate inP,

inP(?x) || inP(?y)

In this case, a value of the type of values that G can communicate is “invented” and both x and
y are bound to this value.
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When large specifications are developed, it is useful to encapsulate several related data types,
functions, and processes so that they can be regarded as a single unit (a module) with which one
can work. One can also want to combine different modules, to control what objects a module
shows, and to build generic modules that are parameterized by other modules.

LOTOS has a limited form of modularity, whose modules only encapsulate types and operations
but not processes, and do not support abstraction (every object declared in a module is exported
outside),1 E-LOTOS has a new modularization system, which allows

• to define a set of related objects (types, functions, and processes),

• to control what objects the module exports (by means of interfaces),

• to include within a module the objects declared in other modules (by means of import clauses),

• to hide the implementation of some objects (by means of opaque types, functions, and pro-
cesses), and

• to build generic modules.

In order to facilitate this modularization, a separation between the concept of module interface
and module definition is made. An interface declares the visible objects of a module and what the
user needs to know about them (the name of a data type or a function header, for example). A
module gives the definition (or implementation) of objects (visible or not).

A specification in modular E-LOTOS is a sequence of interface (Section 4.1) and module (Sec-
tion 4.2) or generic module (Section 4.3) declarations, besides a specification declaration (Sec-
tion 4.4).

4.1 Interfaces

As we have said above, an interface defines the visible part of the objects (types, functions, and
processes) declared within a module.

The syntax of an interface declaration is as follows:

interface int-id [import int-exp1, . . . ,int-expn] is
i-body

endint

where int-id is an interface identifier, int-exp1, . . . , int-expn are interface expressions that we will
describe below, and i-body is the body of the interface.

In the body of an interface, the visible parts of types, functions and processes are given. The
visible part of a type is its name and, maybe, its implementation. If the implementation of a type

1A critical evaluation of LOTOS data types from the user point of view can be found in [Mun91].
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is not given, the type is called opaque, and only the functions declared in the interface can modify
it. An opaque type declaration is as follows:

type T

If the type is not opaque, it is declared as we saw in Section 3.1.
For functions and processes, only their headers are visible. Thus, an interface has function

headers like

function F [ ( [in|out]V1:T
′
1, . . . ,[in|out]Vm:T

′
m ) ] [:T ] [raises [ X1[:T ′′1 ], . . . ,Xp[:T

′′
p ] ]]

or processes headers like

process P [ [ G1[:T1], . . . ,Gn[:Tn] ] ] [ ( [in|out]V1:T
′
1, . . . ,[in|out]Vm:T

′
m ) ]

[raises [ X1[:T ′′1 ], . . . ,Xp[:T
′′
p ] ]]

We can also declare values, which represent constant functions without parameters, with syntax

value V : T

where V is the value identifier, and T is a type identifier.
The types of formal parameters must be predefined, imported or declared by the interface.
For example, we can define an interface of a module that implements our register:

interface Register Interface is
type data
process Register [ in1:data,in2:data,out1:data,out2:data ]

endint

As we have seen, an interface may import other interfaces, and the imported interfaces are
specified by means of interface expressions. An interface expression may be

• an interface identifier int-id′, that represents all the identifiers declared in the interface int-id′;
or

• a renaming of an interface

[ int-id′ renaming ( reninst ) ]

representing the identifiers declared in the interface int-id′ renamed by the renaming reninst,
explained below; or

• an explicit interface body (possibly renamed)

[ i-body [renaming ( reninst )] ]

that represents the identifiers declared in the interface body i-body.

In the last two cases reninst is a list of renaming of

• types, types S′1:=S1, . . . ,S′n:=Sn,

• constructors and functions, opns F ′1:=F1, . . . ,F ′m:=Fm,

• processes, opns P′1:=P1, . . . ,P′q:=Pq, or

• values, values V ′1:=V1, . . . ,V ′s:=Vs.
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The primed identifiers are the old names (of int-id′ or of i-body) being renamed, and the unprimed
identifiers are the new names (which can be used in int-id). For example,

[Register Interface renaming (proc Register := Register Nat)]

represents the declarations in the interface Register Interface where the process Register now is
named Register Nat.

The imported identifiers have to be all different, so we have to use renaming when there are
conflicts.

We can define an interface for our system composed by the register, the producer, and the
consumer, as follows

interface System Interface import Register Interface is
process Producer [p1:data,p2:data ]
process Consumer [ c1:data,c2:data ]

endint

All visible objects of an interface (including the imported ones) are visible from outside and
may be imported in other interfaces. Importing is transitive through interfaces.

4.2 Modules

A module specifies the implementation of a set of (related) types, functions, and processes. The
objects that a module exports, i.e. that may be imported by other modules, are controlled by
means of interfaces.

In E-LOTOS a module declaration is as follows:

module mod-id [: int-exp] [import mod-exp1, . . . ,mod-expn] is
m-body

endmod

where mod-id is a module identifier; int-exp is an interface expression (Section 4.1) that declares
the visible objects of mod-id, so that other modules that import mod-id only can use the objects
declared in int-exp2; mod-exp1, . . . ,mod-expn are module expressions that we will describe below;
and m-body is the body of the module, which is a sequence of type declarations (Section 3.1),
function declarations (Section 3.5), and process declarations (Section 2.20).

The objects imported by a module have to have all different identifiers, so renaming is needed
when an identifier is used more than once.

For example, we can specify the module that implements a version of the register (a register
that communicates natural numbers) as follows:

2By default, the interface of a module is the set of objects imported from other modules and the objects declared
by the module body.

Draft Version 10th April 2000



4.3. Generic Modules 49

module Register Mod:[Register Interface renaming (proc Register := Register Nat)] is
type data renames nat endtype
process Register Nat [ in1:data,in2:data,out1:data,out2:data ] is

var x1:data,x2:data in
in1(?x1 : data);
( in2(?x2 : data)
|||

out1(!x1) );

out2(!x2)
endvar

endproc
endmod

A module expression may be a module identifier possibly restricted by an interface expression
and renamed:

mod-id [: int-exp] [renaming ( reninst )]

or an instantiation of a generic module as we will see in Section 4.3.
The module that implements the objects declared in System Interface may be

module System Mod import Register Mod is
value value1:data is 8 endval
value value2:data is 15 endval
process Producer [p1:data,p2:data ] is

p1(!value1); p2(!value2)
endproc
process Consumer [ c1:data,c2:data ] is

var v1 : data,v2 : data in
c1(?v1 : data); c2(?v2 : data)

endvar
endproc

endmod

4.3 Generic Modules

Genericity is a useful mechanism to construct re-usable specifications. In E-LOTOS, a generic
module declaration is as follows:

generic gen-id ( mod-id1:int-exp1, . . . ,mod-idn:int-expn ) [: int-exp]
[import mod-exp1, . . . ,mod-expm] is

m-body
endgen

gen-id is a generic module identifier. The mod-idi are module identifiers, which are called the
formal parameters of the generic module, and whose visible objects are declared in the interface
expressions int-expi. mod-expj are module expressions as defined in Section 4.2. m-body is the
body of the generic module, where the objects declared in the int-expi, and the imported ones,
may be used.

For example, instead of implementing a different register depending on the values that the
register can communicate, we can define a generic module that implements a generic register
parameterized by the type of the values the register can communicate:
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interface Data is
type data

endint
generic Register Gen (D:Data) is

process Register [ in1:data,in2:data,out1:data,out2:data ] is
var x1 : data,x2 : data in

in1(?x1 : data);
( in2(?x2 : data)
|||

out1(!x1) );

out2(!x2)
endvar

endproc
endgen

In order to use a generic module we have to instantiate it, by providing actual parameters,
which must be modules that match the corresponding interface expression. A module matches an
interface whether it implements at least the objects declared in the interface.

The syntax of a generic module instantiation is as follows:

gen-id ( mod-id1 => mod-exp1, . . . ,mod-idn => mod-expn ) [: int-exp] [renaming ( reninst )]

where mod-idi are module identifiers that must be the names of the formal parameters of gen-id,
mod-expi are module expressions that must match the corresponding interface expressions in the
declaration of gen-id. int-exp is an interface expression and reninst is a renaming clause as we saw
in Section 4.1.

A generic module instantiation is a module expression, and may be the body of a module, or
may appear in an importation clause.

We can instantiate our generic register in order to build a register of natural numbers:

module Mod Register Nat is
Register Gen (D => NaturalNumbers renaming (types nat := data))

renaming (proc Register := Register Nat)
endmod

4.4 Specification

The entry point of an E-LOTOS description is the specification declaration, with syntax

[top-dec]
specification Σ [import mod-exp1, . . . ,mod-expn] is

[gates G1:T1, . . . ,Gm:Tm]
[exceptions X1:T

′
1, . . . ,Xp:T

′
p]

(behaviour B | value E )
endspec

where

• top-dec is a sequence of interfaces, modules, and generic modules declarations;

• Σ is the name of the specification;

• mod-expi are module expressions that define the imported modules;
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• G1:T1, . . . ,Gm:Tm is the list of gates of the whole system;

• X1:T ′1, . . . ,Xp:T ′p is the list of exceptions that the system can raise to its environment; and

• the body of the specification may be a behaviour B or a value E.

For example we can define the specification for the system composed of a producer, a register,
and a consumer:

specification System import System Mod is
behaviour

hide pr1:data,pr2:data,rc1:data,rc2:data in
conc

Producer [pr1,pr2]()
|[pr1, pr2]|

Register Nat [pr1,pr2, rc1, rc2]()
|[rc1, rc2]|

Consumer [rc1, rc2]()
endconc

endhide
endspec
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5 Examples

In this chapter we will discuss some well-known examples where the main E-LOTOS features are
illustrated.

5.1 Global clock

In this section we are going to specify a global clock, that is, a clock that measures time since it is
started until it is stopped, and to which other processes running in parallel can ask what time it
is. The clock is always able to communicate what time it is, and to be stopped. The process Clock
is as follows:

process Clock[ stopClock,whatTime:time ](gtime:time) is
var gt:time:=0,t:time:=0 in

whatTime(?gt) @?t [ gt=gtime+t ];Clock[ ... ](gtime+t)
[]

stopClock
endvar

endproc

We use the parameter gtime to measure the global time. Initially, it is set to 0 (in the initial
call), and then its value always represents the time when the last question “What time is it?” was
answered. When another question is asked, the clock performs the action

whatTime(?gt) @?t [ gt=gtime+t ]

where gt represents the value communicated, and although it is like an input (?gt), really it is the
unique value such that gt = gtime+ t where t is the time measured since the action was enabled,
that is, since the last question was answered. Therefore, gt represents the global time (new value
for gtime).

At any moment, the clock can be stopped with action stopClock. This is necessary if the clock
is running in parallel with a process that finishes and we want the whole system (the process and
the clock) to finish.

5.2 FIFO queue

Now, we are going to specify a generic FIFO (first-in, first-out) queue, which we will use in
Section 5.4.

First, we specify the characteristics that the elements of the queue must fulfill in an interface:

interface Data is
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type elem
endint

Now, we specify the generic module that describes the queue operations.

generic GenQueue(D:Data) is
type queue is

Empty
| Add(queue,elem)

endtype

function addQueue(q:queue,e:elem):queue is
Add(q,e)

endfunc

function front(q:queue):elem raises [EmptyQueue] is
var e:elem is
e:=any elem;

case q in
Empty -> signal EmptyQueue; e

| Add(Empty,?e) -> e
| Add(Add(?q,?e),any:elem) -> front(Add(q,e))

endcase
endvar

endfunc

function delete(q:queue):queue raises [EmptyQueue] is
var e1:elem,e2:elem is

case q in
Empty -> signal EmptyQueue; Empty

| Add(Empty,any:elem) -> Empty
| Add(Add(?q,?e1),?e2) -> Add(delete(Add(q,e1)),e2)

endcase
endvar

endfunc

function isEmpty(q:queue):bool is
case q in

Empty -> true
| Add(any:queue,any:elem) -> false

endcase
endfunc

endgen

And now we can instantiate this generic queue to make, for example, a queue of natural
numbers:

module NatQueue is
GenQueue(D => NaturalNumbers renaming(types nat := elem))

endmod

5.3 Random semaphore

We study now the classical example of the critical section problem, which is one of the classic
concurrent programming problems. Let us suppose that a set of n processes (users) have to access
a shared resource in mutual exclusion, i. e. the resource can be used by at most one user at a time.
So the behaviour of each user should be
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1. non-critical section

2. entry protocol

3. critical section

4. exit protocol

5. go to 1.

In order to ensure mutual exclusion, we introduce a semaphore process which all the users
have to synchronize with, before and after entering the critical section. In this first attempt, the
semaphore allows to entry to the critical section of any of the processes that are waiting, provided
none is already in. So the semaphore allows one of those users to enter the critical section and
then that user notifies its exit from the critical section. The structure of the whole system could
be

UserNUser1

Shemaphore

rel
acq rel

acq

We can model a user as a process that continuously behaves as described above. All the users
notify its release through the same gate rel (release), and the semaphore uses the same gate to
allow access to every user, acq (acquire). In order to distinguish users each one will have a different
identifier (implemented as a parameter). A user has to provide this identifier each time to acquire
or release the resource. An E-LOTOS specification of a user may be:

process User1 [acq:id,rel:id](myid:id) is
loop
(* non-critical section *)

acq(!myid);
(* use shared resource *)

rel(!myid)
endloop

endproc

where type id may be a synonym of the predefined nat type:

type id renames
nat

endtype

We can also specify the infinite behaviour of the user with a recursive process:

process User2 [acq:id,rel:id](myid:id) is
(* non-critical section *)

acq(!myid);
(* use shared resource *)

rel(!myid);
User2 [acq,rel](myid)

endproc

As another example, we can modify this process by making explicit the state of the user, i. e.
whether it is in or out the critical section. We could write:
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process User3 [acq:id,rel:id](myid:id) is
var st:state := outside in

loop
case st is

outside -> (* non-critical section *)

acq(!myid);
?st := inside

| inside -> (* use shared resource *)

rel(!myid);
?st := outside

endcase
endloop

endvar
endproc

where we have used a new type, state, that has two different values, inside and outside:

type state is
inside | outside

endtype

The Semaphore process uses the same gates as users do. When the resource is free, the
semaphore waits for someone who wants to enter, and keeps in variable usr who has entered.
Then, the resource is not free and the semaphore allows the current user (usr) to release the re-
source. When this user does so, the semaphore repeats its behaviour. The specification of this
process is as follows:

process Semaphore[P:id,V:id] is
var usr:nat in

P(?usr);
V(!usr);
Semaphore[P,V]()

endvar
endproc

We can model the entire system by instantiating several times the User1 process (each one
with a different identifier) and composing them in parallel with an instantiation of the Semaphore
process. We hide the gates that stand for synchronization between the users and the semaphore,
in order to make them urgent and because they are of no interest from the point of view of the
environment. So the behaviour of the system can be specified with:

hide acq:id,rel:id in
par ?usr in [1,2,3,4,5] |||

User1[acq,rel](usr)
endpar

||

Semaphore[acq,rel]
endhide

And the complete E-LOTOS specification would be:

module CriticalSection1 is
type id renames
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nat
endtype
process User1 [acq:id,rel:id](myid:id) is

loop
(* non-critical section *)

acq(!myid);
(* use shared resource *)

rel(!myid)
endloop

endproc
process Semaphore[P:id,V:id] is

var usr:nat in
P(?usr);
V(!usr);
Semaphore[P,V]()

endvar
endproc

endmod

specification RandomSemaphore import CriticalSection1 is
behaviour

hide acq:id,rel:id in
par ?usr in [1,2,3,4,5] |||

User1[acq,rel](usr)
endpar

||

Semaphore[acq,rel]
endhide

endspec

In this example, when there are several users waiting to access the shared resource, it is not
known which of them will succeed. From this point of view, the semaphore is random. Any of the
waiting users can be the next to access the resource. In the next section the semaphore will take
care of the order in which the waiting users access the resource.

5.4 FIFO semaphore

In this section we discuss the same problem as in the last section, but in this case the waiting users
will be served in the order they arrived at the critical section. In order to achieve this, each user has
to notify its intention to access the critical section. So, in this case there is a new communication
between the users and the semaphore:

UserNUser1

Shemaphore

not

not

ack ack
rel

rel

When a user notifies to the semaphore its wish to access the critical section, the semaphore
keeps the user identifier in a queue of identifiers. When the resource is free, the semaphore allows
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access to the user whose identifier is at the front of the queue. So, we need a queue of identifiers.
We can use the generic queue of Section 5.2, by doing the following instantiation:

module NatQueue is
GenQueue(D => DataTypes renaming(types id := elem))

endmod

where DataTypes is the module that specifies the new data types required in this example, and id
should be among them.

We have to modify also the User2 process in order to notify to the semaphore its intention to
access the resource:

process User4 [not:id,acq:id,rel:id](myid:id) is
(* non-critical section *)

not(!myid);acq(!myid);
(* use shared resource *)

rel(!myid);
User4 [...](myid)

endproc

The semaphore has to allow always a user notification, and it has to insert the user identifier
in the queue; if the resource is free and there is some user waiting, then it has to allow access to
the user in the front of the queue; and if the resource is not free, it has to wait for the current user
to go out. The semaphore specification in this case is:

process Semaphore[not:id,acq:id,rel:id ](free:bool,q:queue,usrIn:nat) is
var usr:nat:=0 in

trap
exception EmpQ is stop endexn

in
sel

not(?usr);Semaphore[ ... ](free,addQueue(q,usr),usrIn)
[]

acq(!front(q)[EmpQ ]) [ free and not(isEmpty(q)) ];
Semaphore[ ... ](false,q,front(q)[EmpQ ])

[]

rel(!usrIn)[ not(free) ];Semaphore[ ... ](true,delete(q)[EmpQ ],0)
endsel

endtrap
endvar

endproc

In this case, we have used a different kind of specification than in, for example, User3. We
have used a recursive process and, instead of using several if − then− else instructions, we use a
selection where each branch begins with an action with a selection predicate that specifies when it
is possible to execute this branch. For example, the first branch begins with the action not(?usr)
(with default selection predicate [ true ]), that is, it is always possible to take a notification from
a user. The second branch begins with

acq(!front(q)[EmpQ ]) [ free and not(isEmpty(q)) ]

that is, the user who is the first of the queue can access the resource provided that the resource is
free and there are users waiting. In fact, the condition not(isEmpty(q)) is not necessary, without
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care of an exception being raised. If q is empty, the pattern !front(q)[EmpQ ] fails and it cannot
match against any value, so the action is not offered.

Finally, in the specification of the entire system, the only needed modification is the inclusion
of the new gate not:

specification RandomSemaphore import CriticalSection2 is
behaviour

hide not:id,acq:id,rel:id in
par ?usr in [1,2,3,4,5] |||

User4[...](usr)
endpar

||

Semaphore[...](true,Empty,0)
endhide

endspec

where CriticalSection2 is the module that includes the declaration of types and processes used.

5.5 Dining philosophers

This problem, originally stated and solved by E.W. Dijkstra [Dij65], is set in a monastery where
five monks are dedicated philosophers. Each philosopher has a room in which he can engage in
thinking. There is also a common dining room, with a circular table with five plates, each labeled
by the name of the philosopher who uses it, as the following figure shows:

F0

Phil0

Phil4

F4

Phil3

F3

Phil2

F2

Phil1

F1

To the left of each philosopher there is laid a fork, and in the center stands a large bowl of spaghetti,
which is constantly replenished. A philosopher is expected to spend most of his time thinking, but
when he feels hungry, he goes to the dining room, takes a seat, eats, and then returns to his room
to think. However, the spaghetti is so entangled that two forks are needed simultaneously in order
to eat.

The problem is to devise a ritual (protocol) that will allow the philosophers to eat. Each
philosopher may use only the two forks adjacent to his plate. The protocol must satisfy the
following requirements:

• mutual exclusion, that is, two philosophers cannot use the same fork simultaneously;

• freedom from deadlock and lockout, that is, absence of starvation – literally!
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Our first solution1 consists in the philosophers having to ask for the forks in order to take them.
In this way, each fork controls ensures only one philosopher (one that is adjacent) takes it at any
time. The process that specifies the behaviour of a philosopher may be:

process Philosopher[ sits down,picks up,puts down,gets up ](id:nat) is
(* think *)

sits down(!id);
picks up(!(id,id)); picks up(!(id,right(id)));
(* eat *)

puts down(!id);
puts down(!(id,right(id)));
gets up(!id);
Philosopher[ ... ](id)

endproc

The process is parameterized by the identifier of the philosopher that represents. When the philoso-
pher sits down, he tries to pick up the fork on this left, picks up(!(id,id)) (where the second value
represents the number of the fork which is picked up), and when he has picked up it, he tries to
pick up the fork in his right (right(id) represents the identifier of the fork which is on the right of
the philosopher id). When the philosopher has two forks he eats, and then he puts down the forks
and gets up.

The process that specifies the behaviour of the forks would be:

process Fork[picks up,puts down ](id:nat) is
picks up(!(id,id));puts down(!(id,id));Fork[ ... ](id)
[]

picks up(!(left(id),id));puts down(!(left(id),id));Fork[ ... ](id)
endproc

That is, a fork allows to be picked up by the philosopher with the same identifier or by the
philosopher who is on its left (left(id)).

And the behaviour of the dining room with five philosophers and five forks may be specified as
follows:

hide picks up,puts down in
par ?phi in[ 1,2,3,4,5 ] |||

Philosopher[ ... ](phi)
endpar

|[ picks up,puts down ]|

par ?fo in[ 1,2,3,4,5 ] |||

Fork[ ... ](fo)
endpar

endhide

But this solution may become deadlocked. For example, if all the philosophers get hungry at
the same time, they all sit down, pick up their left fork, and try to pick up the other fork, which
is not free.

The problem may be solved by adding a butler (which acts as the semaphore in the previous
example) whose permission the philosophers have to ask for sitting down, and to whom they must
communicate that they get up. The butler never allows more than four philosophers to be seated
simultaneously. His behaviour may be specified with the following E-LOTOS process:

1As we will see below, this is not really a good solution.
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process Butler[ sits down,gets up ](seated:nat) is
sits down(?id)[ seated<4 ];Footman[ ... ](seated+ 1)

[]

gets up(?id);Footman[ ... ](seated− 1)
endproc

Now, we have to add the footman to the whole system:

hide sits down,picks up,puts down,gets up in
( par ?phi in [ 1,2,3,4,5 ] |||

Philosopher[ ... ](phi)
endpar

|[ picks up,puts down ]|

par ?fo in [ 1,2,3,4,5 ] |||

Fork[ ... ](fo)
endpar )

|[sits down,gets up ]|

Footman[ ... ](0)
endhide

This solution is free from deadlock, as explained in [Hoa85].

5.6 Readers and writers

This is again a mutual exclusion problem, but now there are two kinds of processes, readers
and writers, sharing a resource, for example a database. Readers only examine information in
the database, whereas writers modify it. A writer must have exclusive access to the database,
otherwise the information could be corrupted. But any number of readers can access the database
at a time, provided that there is no writer modifying it.

In this solution, there will be a manager that controls the right access to the database. In a
first attempt, readers and writers have to wait for the manager’s permission to access the database;
when they have it, they can access the database, and then they have to notify their going out to
the manager. We can specify the reader and writer behaviours in the following way:

process Reader1 [accR:id,abdR:id](myid:id) is
(* other things *)

accR(!myid);
(* read *)

abdR(!myid);
Reader1 [...](myid)

endproc

process Writer1 [accW:id,abdW:id](myid:id) is
(* other things *)

accW(!myid);
(* write *)

abdW(!myid);
Writer1 [...](myid)

endproc

The manager has a boolean parameter, writing, that controls whether there is a writer updating
the database, and an integer parameter, readers, that controls how many readers are reading the
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database. When a reader wants to access it, the manager will give permission if there is no writer.
If a writer wants to access it, the manager will give permission only if there is no writer and no
reader. The specification of the manager is:

process Manager1[accR:id,abdR:id,accW:id,abdW:id] (writing:bool,readers:nat)is
var r:nat:=0,w:nat:=0 in

sel
accR(?r)[not(writing)];Manager1[...](false, readers+ 1)

[]

accW(?w)[not(writing) and (readers = 0)];Manager1[...](true, readers)
[]

abdR(?r);Manager1[...](writing, readers− 1)
[]

abdW(?w);Manager1[...](false, readers)
endsel

endvar
endproc

The complete system with 8 readers and 2 writers is specified as follows:

specification ReadersWriters1 import ReadWriteMod is
behaviour

hide accR:id,accW:id,abdR:id,abdW:id in
( par ?r in [1,2,3,4,5,6,7,8] |||

Reader1[accR,abdR](r)
endpar

|||

par ?w in [1,2] |||

Writer1[accW,abdW](w)
endpar )

||

Manager1[accR,accW,abdR,abdW](false,0)
endhide

endspec

where ReadWriteMod is the module that contains the declarations of the processes Reader1, Writer1,
and Manager1.

This solution suffers from the starvation problem. Once the readers begin using the database,
they can monopolize it, without allowing any writer to access it. We can solve this problem if the
manager does not allow new reader accesses when there is a writer waiting to update the database.
In this way, readers will be finishing (readers will become 0) and the writer will be able to access.

In order to introduce this new idea, the writers have to notify their interest of accessing the
database, so a new gate, noteW, that allows communication between writers and the manager has
to be included. The manager will have a new parameter, wwriters, to count how many writers
are waiting. The specification of the readers is as before, but writers and the manager have to be
modified as follows:

process Writer2 [noteW:id,accW:id,abdW:id](myid:id) is
(* other things *)

noteW(!myid); accW(!myid);
(* write *)

abdW(!myid); Writer2 [...](myid)
endproc
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process Manager2[accR:id,abdR:id,noteW:id,accW:id,abdW:id]
(writing:bool,readers:nat,wwriters:nat) is

var r:nat:=0,w:nat:=0 in
sel

accR(?r)[not(writing) and (wwriters=0)];
Manager2[...](writing, readers+ 1, wwriters)

[]

noteW(?w); Manager2[...](writing, readers, wwriters+ 1)
[]

accW(?w)[not(writing) and (readers=0)];
Manager2[...](true, readers, wwriters− 1)

[]

abdR(?r)[readers>0]; Manager2[...](writing, readers− 1, wwriters)
[]

abdW(?w)[writing]; Manager2[...](false, readers, wwriters)
endsel

endvar
endproc

where this process will be called from the specification as

Manager2[...](false, 0, 0).

This second attempt has introduced the reverse problem: now writers can be always accessing
the database, not allowing readers to use it. We can solve this problem if the manager stops the
notification of new writers once it knows there are readers waiting. The writers that have already
notified their intention can access the database sequentially, but no new writers can notify. In this
way the parameter wwriters will become 0 and at least one reader will be able to access.

In this attempt, a new gate, noteR, will be included, through which readers can notify to the
manager their wish to access the database. And the manager has to count how many readers are
waiting (parameter wreaders). The specification of the reader has to be changed to

process Reader3 [noteR:id,accR:id,abdR:id](myid:id) is
(* other things *)

noteR(!myid); accR(!myid);
(* read *)

abdR(!myid) Reader3 [...](myid)
endproc

The writer is the same as in the second attempt, and the new manager is:

process Manager3[noteR:id,accR:id,abdR:id,noteW:id,accW:id,abdW:id]
(writing:bool,readers:nat,wwriters:nat,wreaders:nat) is

var r:nat:=0,w:nat:=0 in
sel

noteR(?r); Manager3[...](writing, readers, wwriters, wreaders+ 1)
[]

accR(?r)[not(writing) and (wwriters = 0)];
Manager3[...](writing, readers+ 1, wwriters, wreaders− 1)

[]

noteW(?w)[readers > 0 or (wreaders = 0)];
Manager3[...](writing, readers, wwriters+ 1, wreaders)

[]
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accW(?w)[not(writing) and (readers = 0)];
Manager3[...](true, readers, wwriters− 1, wreaders)

[]

abdR(?r); Manager3[...](writing, readers− 1, wwriters, wreaders)
[]

abdW(?w); Manager3[...](false, readers, wwriters, wreaders)
endsel

endvar
endproc

The manager could be modified not only to know how many readers and writers are waiting,
but who of them are waiting (as we did in Section 5.4, by means of a queue in a semaphore), so it
can control the order in which they are served.

5.7 Specifying digital logic

In this section, we show how we can deal with the specification of digital logic components in
E-LOTOS. It is entirely based on the work [TS94] by K. J. Turner and Richard O. Sinnott, and the
subsequent work [JT97], by Ji He and K. J. Turner. There, the specification and validation of digital
logic components and circuits using LOTOS are addressed, with the philosophy that it should be
easy for the hardware engineer to translate a circuit schematic into a LOTOS specification, and
then to analyze and verify the properties of this specification. Because of this, a component library
(DILL) is introduced.

Here, our aim is simply to show how these jobs can be dealt in E-LOTOS by means of an
example: a specification of a full adder.

First, we introduce some basic ideas. Digital signals are going to be modeled as two-level
voltages, specified as constants of the E-LOTOS data type Bit. The constant bit1 represents logic
1, constant bit0 represents logic 0, and constant bitX represents an unknown, arbitrary or “do not
care” value, used as the initial state of every signal (both inputs and outputs). This data type is
specified in a module we will see below, with the definition of several logical operations on signals.

Each basic logic gate (Inverter, And, Or, XOr, . . . ) is modeled as an E-LOTOS process. For
example, And3[ Ip1, Ip2, Ip3,Op ] is an E-LOTOS specification of an And gate with three inputs.
An E-LOTOS gate (for example, Ip1) models a physical wire or pin, and an E-LOTOS action (for
example, Ip1(!bit1)) models a signal change on the wire (here, from logic 0 to logic 1). Larger
circuits can be built from basic logic gates using E-LOTOS parallel behaviours. For example, an
And3 gate followed by an Inverter,

Ip3

Ip1
Ip2 Op IOp

can be modeled as:

And3[ Ip1,Ip2,Ip3,Op ]() |[Op]| Inverter[Op,IOp ]()

Thus, connecting several wires and pins is modeled as synchronization at E-LOTOS gates. We
package the specification of a circuit into an E-LOTOS process in order to reuse it. The E-LOTOS
gates of the process are the inputs and outputs of the circuit, and all the other E-LOTOS gates
are hidden. For example, the circuit above can be specified as:

process And3Inverter [ Ip1:Bit,Ip2:Bit,Ip3:Bit,IOp:Bit ] is
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hide Op:Bit in
And3[ Ip1,Ip2,Ip3,Op ]()

|[Op]|
Inverter[Op,IOp ]()

endhide
endproc

After this introduction, now we are going to specify a full-adder, as explained in [Flo94]. A
full-adder accepts three inputs including an input carry and generates a sum output and an output
carry. A full-adder can be built from two half-adders and an Or2 gate, as the following logic
diagram shows:

Sint

H-A

B

A

Cin
Cint1

Cout

S

H-A Cint0

Thus, we can specify a process Full− Adder as follows

process Full− Adder[A,B,Cin,S,Cout ] is
hide Sint:Bit,Cint0:Bit,Cint1:Bit in

(

Half − Adder[A,B,Sint,Cint0 ]()
|[Sint]|

Half − Adder[Sint,Cin,S,Cint1 ]()
)

|[Cint0,Cint1]|
Or2[Cint0,Cint1,Cout ]()

endhide
endproc

A half-adder accepts two binary digits on its inputs and produces two binary digits on its
outputs, a sum bit and a carry bit. A half-adder can be built from an And2 gate and a XOr2 gate,
connected in the following way:

B

A S

Cin

��

��

We can specify it in E-LOTOS with the following process:
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process Half − Adder [A:Bit,B:Bit,S:Bit,Cout:Bit ] is
Xor2[A,B,S ]()

|[A,B]|
And2[A,B,Cout ]()

endproc

We have reached the logic gate level. We have to specify now the logic gates Or2, XOr2, and
And2. As is done in [TS94, JT97], we can specify a process that implements logic gates with two
inputs and which is parameterized by the binary logical operation that it must implement. The
process is Logic2:

process Logic2[ Ip1:Bit, Ip2:Bit,Op:Bit ](bOp:BitOp) is
var bIn1:Bit:=bitX, bIn2:Bit:=bitX, bOut:Bit:=bitX, bOutNew:Bit:=bitX in

loop
sel

Ip1(?bIn1)
[]

Ip2(?bIn2)
[]

?bOutNew:=Apply2(bOp,bIn1,bIn2);
sel

Op(?bOut2) [ (bOutNew = bitX) and (bOut = bitX) and(bOut2 <> bitX) ];

?bOut:=bOut2
[]

Op(!bOutNew) [ (bOutNew <> bitX) and (bOutNew <> bOut) ];
?bOut:=bOutNew

endsel
endsel

endloop
endvar

endproc

Variables bIn1, bIn2, and bOut save the state of the pins. The first two branches of the outer
selection describe the possibility of new inputs. If the value of an input pin changes, it is saved
in the corresponding variable. The third branch describes the output. Variable bOutNew saves
the value of the application of the binary logical operation bOp to the values of the inputs. The
second branch of the inner selection describe the case when the inputs are known (that is, they
are not bitX) and then the output is also known (bOutNew<>bitX), and there is a change in the
output (bOutNew<>bOut). The first branch describes the case when the output is unknown, but
the output pin takes a known value from outside, for example, because there is feedback.

And now, by instantiating this process we can specify the needed logic gates:

process Or2[ Ip1:Bit,Ip2:Bit,Op:Bit ] is
Logic2[ Ip1,Ip2,Op ](orOp)

endproc

process XOr2[ Ip1:Bit,Ip2:Bit,Op:Bit ] is
Logic2[ Ip1,Ip2,Op ](xorOp)

endproc

process And2[ Ip1:Bit,Ip2:Bit,Op:Bit ] is
Logic2[ Ip1,Ip2,Op ](andOp)

endproc
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Finally, we have to specify the Bit data type, with the logical operations.

module Bit Mod is

type Bit is

bit1 |bit0 | bitX

endtype

function not(b:Bit):Bit Bis

case b is

bit0 -> bit1

| bitX -> bitX

| bit1 -> bit0

endcase

endfun

function or(b1:Bit,b2:Bit):Bit is

case (b1,b2) is

(?b:Bit,bit0) -> b

| (bit0,bitX) -> bitX

| (bitX,bitX) -> bitX

| (bit1,bitX) -> bit1

| (?b:Bit,bit1) -> bit1

endcase

endfun

function and(b1:Bit,b2:Bit):Bit is

case (b1,b2) is

(?b:Bit,bit0) -> bit0

| (bit0,bitX) -> bit0

| (bitX,bitX) -> bitX

| (bit1,bitX) -> bitX

| (?b:Bit,bit1) -> b

endcase

endfun

function xor(b1:Bit,b2:Bit):Bit is

case (b1,b2) is

(?b:Bit,bit0) -> b

| (?b:Bit,bitX) -> bitX

| (?b:Bit,bit1) -> not(b)

endcase

endfun

type BitOp is

orOp | andOp | xorOp

endtype

function Apply2(bOp:BitOp,b1:Bit,b2:Bit):Bit is

case bOp is

orOp -> or(b1,b2)
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| andOp -> and(b1,b2)

| xorOp -> xor(b1,b2)

endcase

endfun

endmod
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