Kenneth J. Turner. Test Generation for Radiotherapy Accelerators,
Software Tools for Technology Transfer, 7(4):361-375, Springer, August 2005

Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Test Generation for Radiotherapy Accelerators

Kenneth J. Turner

Computing Science and Mathematics, University of Stirli@gotland FK9 4LA
e-mail:kj t @s. stir.ac. uk

October 25, 2007

Abstract System specification with @Tos (Language Of Temporal Ordering
Specification) is briefly introduced. To make test generapoacticable, speci-
fications are annotated with event constraints using PCta(Reter Constraint
Language) as a means of stating test purposes. Automategtesation can then
use the principle of input-output conformance to check Wweetn implementa-
tion agrees with its specification. Test suites are gengtate transition tour that
either visits every transition at least once (for infinitehdeiour) or follows ev-
ery path (for finite behaviour). The approach is applied tasecstudy in which
tests are generated for radiotherapy accelerators usesh@ectreatment. A typi-
cal specification and set of test purposes yields 256 tess¢hat can be executed
manually or automatically. The goal is to determine situragiin which an accel-
erator does not behave in conformity with its specification.

Key words Accelerator — loTos (Language Of Temporal Ordering Specifica-
tion) — Radiotherapy — Test Generation

1 Introduction
1.1 Background

In general, testing is a time-consuming and exacting tasgtidg can very rarely
be exhaustive, so there is an issue of effective coveragealttice, tests are often
defined using human expertise and are conducted manualypn@edures differ
greatly according to the domain. In electronics, for exampl sharp distinction
is made between testing falesignerrors and testing fomanufacturingerrors.
The former is often termed design verification. Softwardingsalmost entirely
focuses on design flaws. The techniques employed includi/hlhite box testing,
alpha/beta testing, module/system testing, and integradgression testing.

2 Kenneth J. Turner

In this paper, the focus is on conformance testing — a cortbaparises with
communications protocols. The goal is to check the agreeonfean implemen-
tation with its defining specification. Conformance testimgarticularly well de-
veloped for communications protocols, where a methodaodoglframework have
been standardised [22, 25].

Techniques have been developed for the use of formal metiodsnfor-
mance testing [23]. Ideally, a system would be rigoroushetigped using a formal
method throughout the whole of its development. The confore of an imple-
mentation to its specification (i.e. formal requirementsld then be inevitable.
In practice, this does not apply for a number of reasons:

— It is rare for a formal method to be sufficiently wide-spentrthat it can ad-
dress development at all levels, from requirements to implgation.

— In general, industrial engineers have little training imnfial methods. Formal
methods tend to be used only in special kinds of systemsdaality-critical
or safety-critical ones).

— Stepwise refinement of a specification towards an implentientéakes con-
siderable effort. Even if it is done, there is almost inaviyea gap at the stage
of final implementation. For example, it is very unusual fog tompiler that
generates executable code to have been verified. Equalgpterating system
that runs the code is most unlikely to have been verified.

— Progressing from specification to implementation, the aizé complexity of
the code increases greatly. Present day verification tgabsican only just
cope with realistic specifications. Verification of reaismplementations is
impracticable.

As aresult, itis almost always necessary to check that ateimgntation is indeed
conformant.

However, formal methods still have an importantrole to pteigsting. Given a
specification, it is possible to generate useful tests ftofrhis is not, of course, as
complete as proving that an implementation respects itsifsgaion. However it
can be used to gain confidence in the implementation. Fumitver, a high degree
of automation can be used to generate and apply the tests.

1.2 Radiotherapy Accelerators

Radiotherapy equipmentis used in oncology (cancer) cetdrdeliver controlled

doses of radiation, usually to destroy cancerous tissua@riythe several kinds of
radiotherapy equipment, the most important is the lineeelecator (‘accelerator’
or ‘linac’). This accelerates a beam of electrons to highgythat can be used for
treatment directly or to generate x-rays.

Radiotherapy is a safety-critical procedure that demandsrate delivery of
radiation. A number of radiation accidents have been weatudwented (e.g. [34,
35]). The Therac-25 accelerator is infamous as having ceaseidental injuries,
in some cases leading to death [37]. In fact, a radiation dude is as undesir-
able as an overdose since it may fail to kill a tumour. Notwdglhg radiation to

Test Generation for Radiotherapy Accelerators 3

the exact area is also serious as it damages surroundinhyédasue instead of
destroying cancerous growth.

The accelerator is located in a treatment room that is heagieened to pre-
vent radiation leakage to the outside. Access is via anlotked door (or gate)
from the control room. The control room houses the operatoscle and the sup-
porting computer systems. [16] gives a comprehensiveduoirtion to the theory
and practice of treatment with radiotherapy accelerators.

Radiotherapy equipment uses dedicated hardware. Thegahysiaracteris-
tics of accelerators are regularly and thoroughly checkedexample, dosimeters
(dosage meters) are periodically calibrated against matistandards. The accu-
racy of radiation delivery is also regularly checked in dsiated treatments. The
hardware is extensively protected by interlocks that dél situations like power
supply failure, dosimeter failure, or entry to the treatimem while the acceler-
ator is operating.

Early radiotherapy equipment was essentially just hardwidowever, mod-
ern accelerators are complex software-controlled systé&selerator software
resembles standard application software. It requireshdggal user interface, pe-
ripheral input-output, file system operations, and datarnamications. The accel-
erator software depends on a conventional style of operatistem. The software
must respect strict demands for dependable, real-timeatper Software, unlike
hardware, does not deteriorate over time so that differdrzthility concerns ap-
ply. Like any application, the accelerator control softevés upgraded from time
to time by the manufacturers. Of course, the software is|dpeel much more
carefully than conventional application software. Howewith new accelerator
software, it is desirable to check that the new version hastreduced any flaws.
Surprisingly, there seems to be little automation to heilmicd to do this.

1.3 Conformance Testing

The aim of the work reported in this paper was to adapt protemihniques to
testing the control system of radiotherapy acceleratotdirgt sight, this might
seem to be an implausible approach. However, the authormeasieaged by good
experience of using protocol techniques for hardwarert@$81]. This gave some
confidence that the same approach could be useful in testogjeaators, and in
fact for testing medical equipment more generally.

For protocols, it has been found useful to employ an implaatam relation
calledioconf(input-output conformance). The basic idea is to formadhate the
input-output behaviour of a specification to that of its ierpentation. The ap-
proach distinguishes implementation states where ouspnbi possible, i.e. the
implementation is awaiting further input. All sequencedehaviour (traces) are
considered for the specification. An implementation com®to its specification
if the outputs of the implementation after such traces cao bé produced by the
specification.

Althoughioconfwas developed to evaluate communications protocols, it has
proven possible to adapt it for testing accelerators. Thmdb basis is a speci-
fication language borrowed from the communications worldTas (Language

4 Kenneth J. Turner

Of Temporal Ordering Specification [21]) was originallyeéntled for specifying
communications systems, but has subsequently been usefyrother kinds of
systems.

1.4 Methodology

The methodology used in this paper is generic, and could pkegjto test gen-
eration for other kinds of systems. However the paper greune approach in a
particular application domain: radiotherapy accelesatdhe steps in the method
are as follows. In each case, a brief description of the stdpliowed by what
was actually done by the author (and co-workers) in the acatlr case study.
Subsequent sections of the paper elaborate on each of tepse s

Information gathering : an understanding of the application is gathered from dis-
cussions with domain experts.

The author collaborated with a radiation physicist who spansible for op-
eration of radiotherapy accelerators in an oncology ceitinés allowed the
author to gain a technical understanding of acceleratoircbsystems. Dis-
cussions were also held with a major accelerator manugctout it proved
to be impracticable to involve them in the research. Tedimdormation was
therefore based on knowledge gleaned from the collabgyaticology centre.

Modelling: an informal model of the system is created.

Structural breakdowns and data-flow diagrams were prodfared sample

accelerator. Clarifications were sought from domain exspimtoughout this
process, though the technical representations that echerges the author’s.
An issue at this stage was choosing an appropriate levekfadtion. The ini-

tial functional breakdown led to a rather detailed modehieer most of this

did not deal with the core functionality. Attention was tbfare focused on the
control system of a radiotherapy accelerator as a black Be.input-output
behaviour of this characterises the important aspectsofdhntrol system.

Specification a formal specification is written based on the informal mode

LoTtoswas used as the specification language. The specificati@cteoth
the structural breakdown of the system as well as insightsedaluring mod-
elling its functional behaviour. As far as the author knoffsrmal) specifica-
tions are not written of accelerators so this was a neceasatyseful step.

Constraint annotation: to make test generation feasible, the specification is an-
notated to indicate significant test values and orderings.

PCL (Parameter Constraint Language) was devised by thertatiguide test
generation in a useful and practical manner. PCL allows pleeifier to define
which kinds of test values are important, as well as to defihechvorder-

ings of inputs are significant. Test constraints were foatad for accelera-
tors, partly following general software engineering pigetand partly using

Test Generation for Radiotherapy Accelerators 5

domain knowledge. The specification was annotated with tlieesponding
test constraints. The PCL tool automatically translatesehto loTos and
combines them with the original specification. The resgltipecification is
thus restricted to behave within useful test constraints.

Automaton generation a finite state automaton is automatically generated from
the annotated specification, using the test constraintsalerthe state space
manageable.

The automaton was created automatically by a standardetofois LoTOS —
CADP (Caesar Aldébaran Development Package). The automas min-
imised (with respect to observational equivalence) in otoenake test gener-
ation more efficient.

Test generation a suite of tests is automatically generated by traversiegu-
tomaton, following an existing algorithm that respectsitenfrelation.

A test suite was created by traversing the automaton, usiredaptation of
theioconfalgorithm. The resulting tests are known to be sound andstens.
The TestGen tool was developed for this purpose, thougHhasitoiols (TGV,
TorX) have been subsequently created by others.

Test application: the suite of tests is automatically run against the impiaiae
tion, with a view to deciding whether it conforms to its sgieeition.

This is the point which the research has reached. Curreméiytdsts can be
applied only manually, though a strategy has been devisedifming them

automatically. The goal is to run the test suite periodyctlconfirm satisfac-

tory operation of the accelerator — particularly after awsafe upgrade.

1.5 Related Work

Formal methods are an obvious choice to support the developamd testing of
radiotherapy equipment. A big impetus to the use of formathods was given
by a series of accidents involving the Therac-25 accelefafj. However rather
surprisingly, radiotherapy equipment continued to attli¢tte attention from the
formal methods community. [47] is one of few contributiohsaying made use
of LoTosto show (with the benefit of hindsight) how the Therac-25 flawsld
have been identified. The only other work known to the autlsesw to specify
the design of software for a radiation therapy machine [26—2

In formally-based conformance testing, a specificatiorheftarget system is
presumed to exist. Typically this is represented by an LT&bélled Transition
System) that can give the semantics of a behaviourallyataéespecification lan-
guage like loTOS Test theories for LTSs have been under investigation foreso
time, based on external tests and observations (e.g. 8,43 theories support
implementation relations that formally qualify an implemt&tion with respect to
its specification. Apart from defining a suitable impleméiotarelation, confor-
mance testing requires finding a set of tests for a specditati distinguish be-
tween correct and incorrect implementations.

6 Kenneth J. Turner

[3] elaborates a theory for testing systems specified @Tds. Several test
generation algorithms have been proposed for an LTS carneipg to Basic lo-
TOS (i.e. LoToswithout data types), e.g. [36,44]. In [48,49] the testingaty for
an LTS is refined for communicating systems that distingiriplats and outputs.

A formal description of an implementation rarely existgsher because the
implementation is opaque or because it would be impradgedatspecify it. How-
ever by what is known as a test hypothesis, it is presumedhbatplementation
can be modelled as an IOLTS (Input-Output Labelled TramsiBystem). An LTS
gives a relatively abstract description (and so is appad@rfior a specification),
while an IOLTS gives a more realistic and concrete desenipfand so is appro-
priate for an implementation).

Conformance of an implementation can be expressed witlecésp its spec-
ification using a formal relation between the IOLTS and LT8eibconfrelation
[49] can be used as a criterion for correct implementati@asesl on this relation,
an algorithm has been given for defining a suite of implententdests [49]. A
test suite consists of test cases that define possible iapdt&xpected outputs.
Another article in this special issue [30] provides the tiyeand principles be-
hind conformance-based test generation. The presereaharefore gives a less
technical treatment abconf

The author and his co-workers have implemented this alguorlty building
on the API for the CADP toolset (Ceesar Aldébaran DevelogrRackage [12]).
Originally the goal was to generate tests for hardware [31-Subsequently the
approach has been modified for testing radiotherapy aetefsr

The approach is similar to that of the test generation tooV/TG3]. How-
ever because a radiotherapy accelerator specificatiomisiyidependent on data,
TGV is not immediately useful. TGV also requires an accukat@wledge of the
state space of a specification, which is not known until a ifipation has been
constrained for testing. TorX is a similar tool foplros-based test generation, but
was not available to the author as it was developed for usesjpeaific project.
STG (Symbolic Test Generation [7]) could be particularlievant to accelerator
test generation.

For hardware testing, formal methods have been combindd sirtulation
techniques. In [54], software testing methods are useddeiga verification of
behavioural VHDL (VHSIC Hardware Design Language [19])17, 42] test gen-
eration is based on an FSM (Finite State Machine) or ECFMrégeied Control
Flow Machine) that represents the control logic of a circlite generated test
cases are then applied to both higher level and lower leegifipations in Verilog
[20] or VHDL. These approaches are built on a formal maaldtactedfrom a
circuit design. However the author favours an approach iichvtests areerived
from a high-level specification. [46] generates tests frdmgaer-level FSM spec-
ification, and applies them using a VHDL simulator. Unforitely this method
cannot handle non-determinism in specifications.

Test Generation for Radiotherapy Accelerators 7

1.6 Overview of Paper

Section 2 introduces system specification withTios. To make test generation
practicable, it is necessary to constrain the specificaising PCL (Parameter

Constraint Language) as a means of stating test purposstsgdeeration using

input-output conformance is explained in section 3. A tegiescan be automati-

cally generated according to various strategies. The nasge study is presented
in section 4, where radiotherapy accelerators are destribemple test annota-
tions for accelerators are given, and the resulting tegt sidiscussed. The paper
concludes with an evaluation of the approach in section 5.

2 Specification for Testing
2.1 Specification with@TOS

LoTos(Language Of Temporal Ordering Specification [21]) was iodally con-
ceived for specifying communications systems. Howeves & igeneral-purpose
language that has been used in other domains. For exaihplas been used to
specify bus architectures [5], computer-integrated mactufing [39], embedded
systems [6], graphics [45], hardware design [57], multimexystems [1], neural
networks [15], object-oriented software [41], telephoh¥]} transaction process-
ing [56], user interfaces, visualisation [53], and voicevgees [51].

LoTtos specifies behaviour using a process algebra based on CC&ili&al
of Communicating Systems [40]) and CSP (Communicating Setigl Processes
[18]). Abstract data type specification is based @TAONE [10]. Although LoTos
is a constructive specification language, it is possiblesmitifor fairly high-level
descriptions of systems [55].

Among languages that might be used to specify radiotheregsl@rators, b-
TOsSis a good choice for the following reasons:

— Its constructive nature is appropriate for giving behavébdescriptions.
— LoTtosties in well with theories for test generation.
— LoTtosis well supported by readily available tools.

The subset of the hTosnotation appearing in this paper is summarised below.
In-line comments are also given to explain specificationstmiects as they are
used. Tutorials on bToscan be found in [2,50].

Data Types: A loTosdata type such adaturalNumbernon-negative integers)
has a sort (i.e. typeat in this case) and operators (e.g. ‘+’). The@tos
library offers standard data types, and others can be ddfinéte specifier.

Actions: A behaviour finishes (deadlocks) wisitop. A behaviour is considered
to finish successfully witlexit. Actions are events that occur at gates, which
act like ports where communication may occur. A fixed everapeeter has the
form ‘lvalug, and is often used to output a value. A variable event patame

! The citations here are representative samples from a mumgr lEst.

8 Kenneth J. Turner

has a form like ‘variablesort, and is often used to input a value; a value of
the given sort is assigned to the variable. It is possibleitogaveral ‘" and
‘?’ parameters in an event.

Processes: A process encapsulates parameterised betatfoform:

Procesgrocesqgated (parametery: result :=

EndProc
When the process is called, specific gates and parametersvate provided.
The result may bé&xit (if the behaviour exits) oNoEXxit (if the behaviour
stops or repeats indefinitely).
Operators:
B1>> B2(‘enables’): continues witB2if B1 exits.
B1||| B2 (‘interleaves’): allows the events @1 and B2 to occur indepen-
dently in parallel.
B1|| B2 (‘synchronises’): requireB1andB2to agree on all events.
Choicevariables[] B: allowsB for all possible combinations of variable val-
ues (as defined by their sorts).

2.2 Constraining IDTOSSpecifications

2.2.1 Constraint AnnotationsOnce a loTosspecification has been written, var-
ious analyses can be performed:

— The specification can be animated or simulated manually &xlclits be-
haviour.

— The state space of the specification can be explored to digadiocks, live-
locks, unreachable states and unspecified receptions.

— Desirable properties of the service can be formulated imgoteal logic (e.qg.
ACTL or XTL) and model-checked against the specification.

However, even for small specifications this can be very timesuming or im-
practicable. A more pragmatic use for a specification is gy tests from it.
Assuming the specification is a faithful reflection of theeimied behaviour, auto-
mated test generation can be used to gain confidence in thenraptation. How-
ever direct test generation is typically impractical — esalty if the specification
makes extensive use of data.

In protocol testing, it is common to restrict the behaviofia gpecification by
imposing test purposes that constrain the behaviour to diedeFor example a
test purpose might check what happens between sendingrdhits aeception. A
comparable approach has been adopted for testing racapthaccelerators, but
the focus is on the selection of data values since this kirspe€ification is heavily
data-oriented.

PCL (Parameter Constraint Language or ‘Pickle’) was deeddoy the author
as a means of guiding test generation through test purpB&tsannotations are
attached to important parts of the specification. Only trexgi@r knows the plau-
sible values and ordering of inputs; these cannot (reaspradinferred from the

Test Generation for Radiotherapy Accelerators 9

specification. PCL adapts what is called boundary valueggst software devel-
opment. If values in a range must be accepted, it is wortlendhiecking just inside
and just outside the range.

An extra complication is that concurrency in a specificativey allow inputs
to be provided in many different orders. PCL defines conssain event values in
isolation, and on the order of events. Normally PCL is usegkstrict only input
events, but it can also be applied to outputs (e.g. to lingtibsponses from a
system). If the constraints are tighter, fewer variatioagehto be tested but the
tests become less comprehensive.

PCL takes the form of specialdTos commentq*. PCL .*). As comments,
these do not affect the formal meaning of the specificatiom@mnal analytic
techniques apply. However the PCL translator tool can tuomnnotations into
L oTosconstraints that restrict the specification. Two approacheld be adopted
for test constraints:

— ldeally, a symbolic transition system would first be credtedn the specifi-
cation. Transitions would give event variables as namégrdhan as specific
values of their sorts. Tests could then be generated byrsiagethis sym-
bolic transition graph, choosing test values accordindi@RCL constraints.
[7] describes a symbolic test generation tool that could deful. [4] is also
a promising basis. Testing of algebraic data types and psesds discussed
in [14]. Symbolic execution of bTos specifications is well established (e.g.
[9]).

— More practically, the PCL constraints can be applied immaidly to the spec-
ification. This reduces its state space to a manageablessthatstandard test
generation algorithms can be applied.

PCL is translated automatically intodros In fact, the constraints could be
written directly in LOTOS. However, as will be seen the constraints are rather com-
plex when expressed indTos PCL is a much more compact notation that links
test purposes closely with system behaviour. It is theegfoeferable to use PCL
and to have the &Tosconstraints generated automatically.

2.2.2 Event Value ConstraintsTable 1 summarises the PCL annotations for con-
straining event values. Thaluesconstraint ensures that tests are generated only
for specific values that are thought to be useful. For valuigsiwa specific nu-
merical rangerange is used. The environment may also be allowed to provide
out-of-range values witbounds

An event may be followed by a PCL value constraint. A constranay be
labelled for use in other constraints. Event parameteraré values (‘1" prefix)
or variables (*?’ prefix). One constraint is given for eachiafle value.

Suppose theheckevent can acceptlawer value in the range 4 to 10, and a
highervalue with useful test values 2, 5 and 6. The vahidin this event is fixed.
Themixtureconstraint might appear as:

check ?lower:Nat Imid ?higher:Nat theckevent for low/mid/high *)
(*. mixture : rangeg(4,10);valueg2,5,6) .*)

10 Kenneth J. Turner

| Constraint | Meaning |
boundglow,high) like range, but also includingow-1 andhigh+1 for ro-
bustness testing
free(eveny no value restrictions
range(low,high) a continuous numerical range, with exemplar test valpes
low, | L2vtra | gndhigh
valuegvaluelvalue2...) | a list of specific values that may be chosen

Table 1 PCL Value Constraints

Each constraint must have the same number of alternativesahree in this case.
These are chosen in tandem, so the pairs of test values aje({45) and (10,6).

If a constraint defines a single list of values, it may be usedmlically in
another constraint. Suppose the width that is input for targgte should be in the
range 2 to 20 (i.e. test values 2, 11, 20). The height thas@iaput might then be
restricted to a range 6 to 12 more than the width. These @nttrare expressed
as follows:

rectangle ?w:Nat (tectangleevent for width *)
(*. width : range(2,20) .*)
rectangle ?h:Nat (rectangleevent for height *)

(*. height : rangg(width+6,width+12) .*)
If the test value fowidthis 11, for example, theeightwould be selected from the
range 17 to 23 (i.e. test values 17, 20, 23).

LoTosoperations may be used in PCL constraints. If test valuegiaea as
operation parameters, the operation is applied to theseidh a case, constraints
are often nested. Suppose MakeStatusperation takes a pair of numerical val-
ues. The expressidviakeStatugralueg0,25,28)yalueg10,26,35)) applies the op-
eration to the corresponding pairs of valuesike Statu®,10),MakeStatug5,26)
and MakeStatug8,35). In the following example, the outer call wdluesoffers
three such lists of values, i.e. niMakeStatusalues in total:

accelerator 'Read ?status:Status ateleratorevent to read status *)
(*. accelerator valueg
MakeStatusfalueg2,1,2)yalueg2,1,2)),
MakeStatusfalueg0,25,28)valueg10,26,35)),
MakeStatusfalueg0,1,3)yalueg10,50,70))) .*)

If an event has no PCL constraint, its values are unrestri§mce test gener-
ation makes a distinction between input and output everisshecessary to anno-
tate an unconstrained input eventfeee. The PCL translator can normally infer
the structure of an event, but in this case the structure rhigghmpossible to deter-
mine. Consider the following file action in which only the sad parameter may
vary, and that in an unconstrained way. It would be difficoiietermine thaesult
was fixed, so the underlying event structure is made exjmi¢ite constraints.

Choiceresult:Condition, buffered:Bod] (* for all value combinations *)
[result = OK] > (* resultis OK? *)
read !result 'buffered,; (* read buffered value *)

Test Generation for Radiotherapy Accelerators 11

| Constraint | Meaning |
alternatglabelllabel2...) | theith values are selected as alternatives
finish the event ends a cycle of behaviour

groupedlabelllabel2...) | theith values are selected in either order
separat@labelllabel2...) | the constraints are applied independently
serial(labelllabel2...) theith values are selected in sequence

Table 2 PCL Ordering Constraints

(*. free(read !OK ?buffered:Bool) .*)

2.2.3 Event Order ConstraintsAlthough value constraints significantly restrict
what must be tested, concurrency in the specification mayvalnpracticably
many variations in the order of events. For example therenamy parameters to
be set before radiotherapy accelerator treatment begihshé ordering of these
inputs is largely irrelevant. Testing all the ordexuld be significant, but would
probably not be. As summarised in table 2, PCL allows evedgimg constraints
to be defined for lists of labelled value constraints. In tkeneples below, suppose
the following value constraints have been defindgeliceprovides the test values
keyboard mouseper andresolutionprovides the test values 0, 10, 20.

— Theseparateconstraint allows any order of inputs. Twenty interleavethbi-
nations would be defined zeparatédeviceresolution).

— To limit the combinationsgroupedcan be used to select a value from each
list in combination (each list having the same number of @gJuEight com-
binations would be defined lgroupeddeviceresolutior): keyboardand 0 in
either order, themouseand 10 in either order, thgrenand 20 in either order.

— The values of each group can be chosen as alternativesw@tists of values,
this does not reduce the number of combinations but doesedgtia number of
inputs.) Eight combinations would be definedddiernatgdeviceresolution:
keyboardor 0, thenmouseor 10, therpenor 20.

— The most restrictive combination is serial: the first valueach list is chosen,
then the second value, etc. Again, there must be the sameanaibalues in
each list. Just one combination would be definedésial(deviceresolution:
the sequence of inpukeyboard 0, mouse 10, pen 20.

Further variants of these combinations are possible. Awiithail list of values
may be made optional by following it with a question maidevic&’ means this
input may or may not occur. An entire combination may also laelenoptional:
alternate?(deviceresolutior). Ordering constraints may be given individually or
may be nested. All ordering constraints are stated aftemtia LoTosbehaviour
expression. The following is drawn from the radiotherapyederator test annota-
tions:

Behaviour (* overall behaviour *)
Accelerator [Console] (* accelerator behaviour *)

(*.

12 Kenneth J. Turner

serial((* values in sequence *)
separatémode), (* mode values separately *)
separatéaccessory), (* accessory values separately *)
serial((* values in sequence *)
energy, dose, rate, (* energy/dose/rate values *
x1,x2,y1,y2, (* x1/x2/ly1ly2 values *)
alternate?((* one of each optionally *)
gantry (* gantry values *)
rotation, latitude, longitude, vertical (* couch values *)
).
start, accelerator (* start point, accelerator values *)
)
)
*)

The above defines the order in which certain values may bddedwduring test
generation. It makes use of value constraints likedeand accessorythat are
defined as explained in section 2.2.2. The specific valuetants used here will
be given in section 4.3 once the domain of radiotherapy acatrs has been
introduced..

A specification is often cyclic: it accepts input, producems output, and
then repeats this behaviour. In such a case, a PCL annoisitiiven to indicate
the event that marks the end of a cycle:

console 'Done;
(*. finish .*)

2.3 Translating Event Constraints t@LOS

The PCL translator extracts annotations from a specifioaind translates them
into LoTosconstraint processes. The principles of the translatieecussed in
[52] and are not given here.

At the end of section 2.2.3, ordering constraints were gieerthe example
of a radiotherapy accelerator. These are translated irotlosving LoTOSprocess
structure that reflects the constraints:

Behaviour (* overall behaviour *)
Accelerator [Console] (* accelerator behaviour *)
[l (* synchronised with *)
Constraints [Console] (* constraint behaviour *)
Where (* local definitions *)
ProcessConstraints [Console]NoEXxit := (* overall constraints *)
ConstraintsFree [Console] (* free event constraints *)
| (* interleaved with *)
(
ConstraintsSeriall [Console] (* top serial constraints *)
> (* followed by *)

Stop (* finish of tests *)

Test Generation for Radiotherapy Accelerators 13

)

EndProc

ProcessConstraintsFree [ConsoleNoEXxit := (* free event constraints *)
(* individual free events *)

> (* followed by *)

ConstraintsFree [Console] (* repeat free constraints *)

EndProc

ProcessConstraintsSeriall [ConsoleExit := (* top serial constraints *)
ConstraintsSeparatel [Console] (* separate mode comtstrai

>> (* followed by *)
ConstraintsSeparate3 [Console] (* separate accessosyraonts *)

>> (* followed by *)
ConstraintsSerial5 [Console] (0) (* first serial consttait)

>> (* followed by *)
ConstraintsSerial5 [Console] (1) (* second serial conmstsa)

>> (* followed by *)
ConstraintsSerial5 [Console] (2) (* third serial congitai*)

EndProc

The constraint processes are all automatically generadad the PCL.Con-
straints defines all the constraints, synchronised with the main laca®r be-
haviour. ConstraintsFreedeals with free events, interleaved witonstraintsSe-
riall for the top-level serial combination. The latter (and intfdne whole speci-
fication) terminates once all test combinations have beersarhConstraintsFree
allows a free event to occur and then repeats.

ConstraintsSerialldefines the top-level serial constrain®onstraintsSepa-
ratelgives themodeconstraints, whileConstraintsSeparategives theaccessory
constraints. Then the remaining serial constraints arengdyConstraintsSerial5
This provides three lists of test values, indexed as 0, 1,tAanLoTOS transla-
tion. These values specinergy dose rate andx/y values. At this pointCon-
straintsAlternate@not shown) optionally allows for alternative valuesgantry,
rotation, latitude, longitudeandvertical settings. Finally, it applies thgtart and
acceleratorconstraints.

3 Test Generation
3.1 Input-Output Conformance

See [30] in this special issue for the theory behind the agraescribed here. A
specification is assumed to be modelled by an LTS (Labelledsition System)
that can be generated from, say, a1os specification. In early work on theo-
ries for conformance testing, both the specification andtiHe(Implementation
Under Test) were modelled by LTSs. To formally define thetiefeship between
an implementation and its specification, a test hypothesieeded that the im-
plementation can be represented by a formal model. The IWihwanicates with

14 Kenneth J. Turner

its environment through symmetric interactions, so thé éesironment is also
modelled as an LTS.

However in many real-world systems, there is a clear distndetween in-
put and outputs. The inputs of a system are always enabledeaammbt refuse the
actions offered by the environment. After the system coresuam input, the envi-
ronment must be prepared to accept the resulting outpuddhthis kind of be-
haviour is modelled as an IOLTS (Input-Output Labelled Biion System). This
is an LTS in which the set of actions is strictly partitioneatbiinputs and outputs.
Quiescent states in an IOLTS are ones where only input isategei.e. output
is not permitted. Such states are labelled with&heseudo-action that means the
systems idles while waiting for input.

The specification LTS can be regarded as a partially spedi@dsS in the
sense that there are some states in the specification tha¢ftese input actions.
This may be because it does not matter how implementaticamong to unex-
pected inputs, or because the environment should not biéen anyway.

The goal is to show that an implementation is input-outpuifeomant with
respect to its specification, i.e. that it respectsitlo®nfrelation. After all traces
of the specification, the outputs of the implementation nalsb be possible for
the specification. Since this holds also foactions, the implementation may not
output if the specification cannot do so.

Test cases respectimgconfare generated from an intermediate LTS called a
suspension automaton that is built from the specificatioB.LThe suspension au-
tomaton is obtained by addirgself-loops for all quiescent states, and then making
the resulting automaton deterministic. Checkiogonfthen amounts to checking
that implementation traces are included in those of theesuspn automaton.

A test case is a finite, deterministic LTS wiflassandFail states. A test suite
is a set of such test cases. For accelerator testing, algligbdified form of the
algorithm in [49] is used. The following alternative chaicare repeatedly made
during test case generation:

Choice 1: The test case is terminated witfPassverdict. Since a specification
may have infinite behaviour, test generation must be stoppedme point —
hopefully after adequate test coverage has been obtained.

Choice 2: An input is selected from the traces of the suspearaitomaton. This
is fed to the implementation, and the algorithm repeats toenfiarther choices.
Since inputs are always enabled, no deadlock can occur.did amnecessary
non-determinism during testing, only one input is applied éme.

Choice 3: Check the outputs of the implementation agairesispfecification. If
the implementation can output something that is forbiddethle suspension
automaton of the specificationFail verdict is given. Otherwise the algorithm
repeats.

Test Generation for Radiotherapy Accelerators 15

3.2 Test Case Example

To illustrate test generation, it is simpler to use a har@veample [31]. A hard-
ware specification needs only simple data types (bits), edwethe accelerator
specification is much more complex and uses many data types.

Consider a basic logic design element: a JK flip-flop. Thissggle-bit mem-
ory with control inputs] andK. If they are both set to 0, the flip-flop state stays the
same. If they are both set to 1, the flip-flop inverts its stor@de. IfJ andK are
set to different values, the value &fs stored. The output is conventionally called
Q, while its complement i8lQ (not Q). It can be specified by adTosprocess as
follows. The parameteatatais set to O when the process is instantiated.

ProcessIK [J,K,Q,NQ] (data:Bit) NoEXxit := (* JK flip-flop *)
J ?newJ:Bit; (* get new J value *)
K ?newK:Bit; (* get new K value *)
(
[(newd Eq 0) And (newK Eq 0)}> (* J and K both 0? *)
Q !data; (* output current data *)
NQ !Not(data); (* output inverted data *)
JK[J,K,Q,NQ] (data) (* repeat for same state *)
[(newd Eq 1) And (newK Eq 1)} (*J and K both 1? *)
Q 'Not(data); (* output inverted data *)
NQ !data; (* output current data *)
JK [J,K,Q,NQ] (Not(data)) (* repeat for opposite state *)
[
[newJ Ne newK]> (* J and K differ? *)
Q 'newJ; (* output J value *)
NQ !'Not(newJ); (* output inverted J value *)
JK [J,K,Q,NQ] (newJ) (* repeat for J value *)
EndProc

The left-hand diagram of Fig. 1 shows a minimised LTS gererftom this
specification. The right-hand diagram shows the correspgrglispension LTS.
Since the specification is deterministic, the suspensitonaaton requires only
self-loops where further input is expected. In general sigpension automaton
differs significantly where non-determinism has to be uéal.

Fig. 2 shows sample test cases generated by traversinggpersion automa-
ton of Fig. 1. For convenience, test cases are grouped inidigeasns where they
share a common prefix. Each test case is a single sequenststfisitvith] 1 and
finishes at a leaf node of the diagram. Fig. 2 thus illustregeseparate test cases.

3.3 TestGen Tool
The principal author of [31] developed an initial versiontestGen tool, embody-

ing the algorithm in section 3.1. This made use of the API lfier CADP toolset
(Ceesar Aldébaran Development Package [12]).

16 Kenneth J. Turner

Fig. 1 Specification LTS and Suspension LTS for JK Flip-Flop

For the work reported in this article, a more elaborate eersif the TestGen
tool was developed and coupled with use of PCL. Althoughdeseration is au-
tomated (with anakefil@, quite a number of stages are involved:

— The PCL annotations in the specification are translateddods and com-
bined with the original to make a new specification.

— A header file in C is generated for theottos data types. An LTS is then
generated in Aldébaran format for theotos behaviour. This is minimised
with respect to observational equivalence (which respgeet®confrelation).

— A header file and a code file in C are created for the minimisedifpation.
All the code is then compiled and run to generate the tests.

TestGen needs to classify events as inputs or outputs. Jlashieved by a
separate file in C that recognises output events using negixgaessions. An event
pattern may refer simply to the event gate or to any parts efethent. For the
radiotherapy accelerator, for example, all events atGbachgate are outputs,
while only events with @isplayor Finishedparameter are outputs for t®nsole
gate.

A test suite aims to cover all transitions in the suspensigoraaton. Note
that this is not the same as following paths through tlog &s source, since the
suspension automaton is based on a minimised and more Gbsfpaesentation
of behaviour. For a specification with infinite behavioursflgéen can perform an
edge tour of the suspension automaton. Visiting every edggraph at least once

Test Generation for Radiotherapy Accelerators 17

Pass Fail Fail Fail Fail

Fig. 2 Some Test Cases for the JK Flip-Flop

is the Chinese postman problem. As suspension automata atdyerstrongly
connected, the algorithm given by [17] was adapted as itiiatsle for all kinds of
directed graph. This method uses depth-first search whepessible. But when
an unvisited edge cannot be reached, then breadth-firstsisarsed to find a state
with an unvisited edge. The whole procedure repeats uhtikaisitions have been
covered.

For a specification with finite behaviour, TestGen can penfer complete
traversal of the suspension automaton (up to some spedifigiddn the num-
ber of tests). If the specification has been restricted by B@istraints, this will
ensure that the specification always terminates. When PG&ed with radiother-
apy accelerator specifications, this kind of transitionr isuappropriate for test
generation.

4 Case Study
4.1 Radiotherapy Accelerators

A typical radiotherapy accelerator is shown schematicallizig. 3. The accel-
erator proper is mounted on a gantry that rotates about thedmpal axis. The
accelerator uses a travelling waveguide to acceleratéretecfrom an electron
gun. The beam is controlled so as to yield electrons withgiesttypically in the

18 Kenneth J. Turner

Electron N\
Treatmen Gun
Head

Electron/X-Ray Gantry
Beam Support

* (V‘H_J] Rotating

<> Treatment § Gantry

Couch g
- Penan'

Fig. 3 Accelerator Outline

range 6 to 20 MeV (million electron-volts). Radiation dosagre measured in
MUs (monitor units). MUs reflect the calibration of dosintsteather than any ab-
solute unit, but 1 MU approximatesto 1 cGy (centigray, adteid unit of radiation
dosage).

The horizontal electron beam is bent by magnets throudtio@®70) so
that it points downwards. In electron mode the electronsrgenthrough a radio-
transparent plate to reach the patient. In x-ray mode thetreles strike a target,
causing a shower of x-rays towards the patient.

The treatment head contains a collimator. This consistswfrhovable plates,
two that move in the X direction and two that move in the Y dii@t. They define
a rectangle that restricts the beam to a defined apertureptisgticated accelerator
will have an MLC (multi-leaf collimator). This has many (ooe two hundred)
individually movable leaves that may be used to set an aryishape for the beam
aperture. An ‘accessory’ may also be fitted to the treatmeatiito control the
beam distribution. The treatment head also houses an bgystam that allows the
shape and position of the beam to be seen on the patient'ps&irto treatment.

The patient lies on a treatment couch that may be adjusteleight, in-out
position (longitude), side-to-side position (latitudaipd rotation. A pendant (re-
mote control device) is attached to the couch for settingcthech position and
also for rotating the gantry. The operator sets up the pagied the accelerator so
that the correct part of the body will be irradiated.

4.2 Accelerator Control System

During treatment, the delivered radiation dose is reacbpérally from the accel-
erator. For safety, this is measured by two independentraisrs whose readings
are accumulated. The first dosimeter reading usually deciden treatment is
complete. The accumulated dose should rise to the planres tat some toler-
ance is allowed. In case the first dosimeter does not workeshlppeadings from

Test Generation for Radiotherapy Accelerators 19

Start/Pause/Finish Start/Pause/Finish

Mode, Energy
Dol\s/lg%eﬁig?ggé Dose Units, Rate
Gantry Angle _Gantry Angle
Console Couch’ Setting Collimator Settlpg Accelerator
Collimator Setting Accessory Settin
InterlocR~G\ccessory Setting
Display
Control Status
System Interlock
Gantry Angle
Couch Settin X X
Couch Setting Time
/ ! \
Pendant Couch Clock

Fig. 4 Simplified Accelerator Control System

the second one are used as a backstop. The dose rate is alkedcheevery mea-
surement. It may not deviate from the planned rate by mone d#imamount that

depends on the particular treatment. Finally, the treatriee is calculated from

the dose and dose rate. A clock is read to ensure that trettibpesinot exceed the
planned time by more than a specified percentage.

For the work reported in this paper, the control system has lsemplified as
shown in Fig. 4. The detailed information flows are shown astathe arrows. All
control functions are thus grouped in a single black boxhwite main inputs and
outputs as shown. Although the real system involves coredide communication
among subsystems, Fig. 4 is a legitimate abstraction sirst®ws only the exter-
nally observable interfaces. Theoltos specification reflects this black-box view
of the control system.

More details of the control system and itetosspecification appear in [52].
730 lines of LoTosare required to specify a typical accelerator, about hatiese
dealing with data types. Many of the data types simply rentraenatural num-
bers (e.g. dose units, angles, positions). Although intim@these parameters are
floating point numbers with various scales and ranges, timiplgied approach is
acceptable. It just means that the offset and units for tbaseameters are calcu-
lated differently from normal.

Although the specification contains a clock process, thisefgencrements
a time count. It would be necessary to use &fbs (Enhanced btos[24]) if
a more precise notion of time were required. However,d&&s tool support is
still rather incomplete. The current approach therefomg@ith only an abstract
notion of time.

The main process initially allows setup of the acceleratmameters. Setting
the gantry or the couch position causes movement commaratsissued; other
accelerator parameters are merely stored prior to treatrbe console display
is updated after every input to reflect the current accedestttus. The operator
may initiate treatment once a valid set of parameters has &eered.

The accelerator setting is then sent to the acceleratoraidtion begins. A
monitoring process periodically reads the acceleratbustae. the two dosimeter

20 Kenneth J. Turner

readings. Normally, treatment continues until the présatidose has been deliv-
ered. However an incorrect dose, dose rate, or time limitfaite treatment to
be aborted. The operator is permitted to pause and resuatem#ret, perhaps be-
cause the patient is restless. Any abnormal condition ssiam @nterlock stops the
treatment immediately.

4.3 Test Annotations

Key specification events were annotated with PCL value caimés as follows:

mode :valueyXRayMode,ElectronMode) (* treatment mode *)
energy :range(6,20) (* beam energy *)
dose rrange(5,100) (* dose units *)
rate :range(1,50) (* dose rate *)
gantry :range(0,359) (* gantry angle *)
x1 : valueg0,0,39) (* collimator X1 position *)
x2 :valueg1,40,40) (* collimator X2 position *)
y1 :valueg0,0,39) (* collimator Y1 position *)
y2 : valueg1,40,40) (* collimator Y2 position *)
accessory valueqAccessoryln,AccessoryOut) (* accessory setting *)
rotation :range(0,359) (* couch rotation *)
latitude :range(0,50) (* couch latitude position *)
longitude :range(0,150) (* couch longitude position *)
vertical :range(60,170) (* couch vertical position *)
accelerator valueq (* dosimeter readings *)
MakeStatusfalueq?2,1,2)valueq2,1,2)), (* first readings *)
MakeStatusfalueg0,25,28)yalueq10,26,35)), (* second readings *)
MakeStatusfalueq0,1,3)valueg10,50,70))) (* third readings *)

Most of the input values are simple ranges or typical vallibse.MakeStatus
operation records a pair of dosimeter readings. As disduasz 2.2, theaccelera-
tor constraint defines three such pairs, used on each of threessive treatments.
The dosimeter values are chosen to match the dose valuésiadit introducing
some variations in readings. The values cause treatmetdpms the final value
of each triple. In the third treatment, it is supposed thaffitst dosimeter is incor-
rectly reporting low values; readings from the second des#mcause treatment
to end.

The value constraints above are combined using the ordeoimgfraints given
as an example in section 2.2.3. The complete set of consiaitranslated into
LoTosas outlined in section 2.3, adding about 180 lines to thectsg&cification.

4.4 Accelerator Test Generation

The TestGen tool was run to generate test cases based on thanfGtations.
The automaton initially generated has 41097 states and46Ra@sitions. After
minimisation with respect to observational equivalenbe, automaton has 520
states and 546 transitions.

Test Generation for Radiotherapy Accelerators 21

Exhaustive coverage of all paths through the automatonrgtee256 test
cases, of which the following is a sample. For brevity, otgpio the operator
display have been omitted below. In this test, the operatiitiaily sets the ac-
celerator into electron mode and chooses to use an acce$berpperator then
starts off three treatment cycles. At the beginning of ettehpperator sets accel-
erator parameters and starts treatment. The control sytksmtakes over, moni-
toring dosimeter readings until treatment is finished. Ad fjoint, aPassverdict
is recorded. As permitted by the optioradiernate constraint, this particular test
does not set the gantry, rotation, latitude, longitude aartical parameters.

The reader should be able to match the test case below toltreea@nstraints
in section 4.3 and the ordering constraints in section 2.2.3

(* start of test case *)

Console IMode !ElectronMode (* operator sets electron nfgde
Console !Accessory !Accessoryin (* operator chooses acrgs)
Console !Energy !6 (* operator sets energy 6 MeV *)
Console IDose !5 (* operator sets dose 5 cGy *)
Console IRate !1 (* operator sets dose rate 1 cGy/min *)
Console !CollimatorX1 !0 (* operator sets collimator 1 xecd *)
Console ICollimatorx2 1 (* operator sets collimator 2 xerd *)
Console ICollimatorY1 !0 (* operator sets collimator 1 yerd *)
Console !CollimatorY2 1 (* operator sets collimator 2 yeed *)
Console !Start (* operator starts treatment *)
Accelerator !Set |MakeSetting(...) (* control system sgisaccelerator *)
Accelerator IStart (* control system starts treatment *)
Accelerator !Read !MakeStatus(2,2) (* control system sadokimeters *)
Accelerator !Read !MakeStatus(1,1) (* and second pair bfesa*)
Accelerator |Read !MakeStatus(2,2) (* and third pair ofuesl *)
Accelerator !Finish (* accelerator reports treatment end *
Console IFinished (* operator told of treatment end *)
Console |[Energy 113 (* operator sets energy 13 MeV *)
Console IDose 52 (* operator sets dose 52 cGy *)
Console IRate 125 (* operator sets dose rate 25 cGy/min *)
Console !CollimatorX1 !0 (* operator sets collimator 1 xeed *)
Console ICollimatorX2 40 (* operator sets collimator 2 geed *)
Console !CollimatorY1 !0 (* operator sets collimator 1 yerd *)
Console !CollimatorY?2 40 (* operator sets collimator 2 gecd *)
Console !Start (* operator starts treatment *)
Accelerator !Set |MakeSetting(...) (* control system sgisaccelerator *)
Accelerator IStart (* control system starts treatment *)
Accelerator !Read !MakeStatus(0,10) (* control systendsedosimeters *)
Accelerator |Read !MakeStatus(25,26) (* and second parmbfes *)
Accelerator |Read !MakeStatus(28,35) (* and third pair alfres *)
Accelerator !Finish (* accelerator reports treatment end *

Console IFinished (* operator told of treatment end *)

22 Kenneth J. Turner

Console |Energy 120 (* operator sets energy 20 MeV *)
Console IDose 100 (* operator sets dose 100 cGy *)
Console IRate 150 (* operator sets dose rate 50 cGy/min *)
Console ICollimatorX1 !39 (* operator sets collimator 1 gecd *)
Console ICollimatorX2 140 (* operator sets collimator 2 geed *)
Console ICollimatorY1 139 (* operator sets collimator 1 gecd *)
Console ICollimatorY?2 140 (* operator sets collimator 2 gecd *)
Console !Start (* operator starts treatment *)
Accelerator !Set |MakeSetting(...) (* control system sgisaccelerator *)
Accelerator !Start (* control system starts treatment *)
Accelerator !Read !MakeStatus(0,10) (* control systendsedosimeters *)
Accelerator |Read !MakeStatus(1,50) (* and second paiabfes *)
Accelerator |Read !MakeStatus(3,70) (* and third pair dfres *)
Accelerator !Finish (* accelerator reports treatment end *
Console !Finished (* operator told of treatment end *)

(* end of test case Pass*)

At present, test cases like these have to be entered andtedenanually on
the accelerator. In future it is intended to convert tesesasto prescription files.
Prescriptions (i.e. pre-planned treatments) are nornagysed by an oncologist
using a separate treatment planning system. When the patieves for treat-
ment, the prescription is automatically loaded into theetarator. By handling
test cases like prescriptions, it will be possible to exetaém automatically. The
accelerator logs all actions, so its response to a test cilideevanalysed offline
by comparing the log and the test cases. The goal, of cowrse discover situa-
tions in which the accelerator does not behave as the sggmficequires. This is
particularly critical after an upgrade of the acceleratifitvgare.

5 Conclusion

System specification with @Tos has been briefly introduced. To have any prac-
tical hope of generating tests, the specification must betated with guidance
as to useful test inputs. Although PCL has been designedlpowith accelera-
tor testing, it is generic and should be useful for testingtimer domains. PCL
annotations define key test inputs — explicit values (sayafoenumerated type)
or boundary values (for a numeric range). Unconstrainedte\are also marked.
PCL annotations are further used to constrain how inputsi@ered. The result-
ing constraint processes are automatically generated lasegin parallel with
the main behaviour, allowing a manageable automaton to hergted.

The theory of input-output conformance is used to check drean imple-
mentation agrees with its specification. A suspension aatomis generated from
the LTS of the constrained specification. The suspensiamaatbn is traversed to
generate test cases that form a test suite. A transitiomna@yrvisit each edge at
least once (for infinite behaviour) or may cover each pathfffiite behaviour).

Radiotherapy accelerators have been briefly describedseThe complex,
software-controlled systems whose correct operationte for successful and

Test Generation for Radiotherapy Accelerators 23

safe treatment of cancer. It is therefore very desirablegbtheir control systems
systematically. A typical accelerator model has been wedi PCL annotations
have been given, along with an example of what the generas¢dases look like.
Test cases must currently be executed manually, thoughaggyr for automatic
execution is being investigated.

The case study has demonstrated the following:

— that it is practicable to specify the key behaviour of raldéapy accelerators
using LoToS

— that it is necessary to constrain the values in such spetifitain order to
make test generation practicable

— that PCL is adequate for constraining data-dominated Spatabns so that
tests can be generated from them

— that the principles behinidconfcan be used to generate tests for radiotherapy
accelerators.

Some important questions arise from the approach:

— Is the specification a faithful reflection of what an accet@rahould do? In
the main, the specification has been based on informatian &tomain ex-
perts (the radiation physicists who oversee their oparmatibhis is significant
in that such experts see an accelerator as a black box. Itiiawe been use-
ful to gain insight into the detailed design of an accelaréiat attempts to
involve an accelerator manufacturer have so far provideg lomited infor-
mation. The specification is believed to be a plausible motlah accelerator.
However, more detailed experience with testing may showawgsfiwhere the
specificatioris incorrect, not thémplementation

— Are the test annotations appropriate? It may be that boyneiue testing
should be supplemented with other techniques that selgictatvalues, e.g.
determined by white-box knowledge of the implementation.

— Are the generated tests practicable? The current size ofettesuite (256
cases) is manageable, though small variations in the tesitations can re-
sult in test suites from 16 to several thousand test caseall Bombers of
test cases (say, less than 20) can be manually executedBatder numbers
of cases, an automated approach that simulates patiemfriptams will be
essential.

— Are the generated tests useful? This is a much harder qoéstamswer at this
stage. Of necessity, test coverage is a tiny fraction ofiplessystem behaviour
due to the extensive use of data to control the acceleragaroBcentrating on
boundary value testing that is known to be useful in genefahare develop-
ing, it is hoped that the tests will be able to uncover prolslem

— Can the tests discover known faults? Since the Therac-280ad of accelera-
tor problems has been built up. There have been incidentsunfately rare and
generally minor — since the original Therac-25 problemsyiluat test suites
can be generated and executed, it is intended to make asdisaiidy of what
known faults can be found. Failure to discover such faultdctarise from an
error in the specification, an inappropriate choice foratel of abstraction, or
a limitation of the strategy for generating selected tesesa

24 Kenneth J. Turner

All these issues are being actively studied in ongoing work.

More theoretical techniques would also be an interestihgréudevelopment.
For example, the constrained specifications produced bgppeoach lend them-
selves to model checking. Desirable specification progeiticlude disallowing
high-energy beams in electron mode, and forbidding cedatelerator setups.
Such properties could be used to check the integrity of tleeifipation. It is con-
ceivable that a hybrid solution could be devised, explgitimodel checking results
for both the specification and the implementation. Test it based on sym-
bolic values is also a promising line of enquiry.

Although this research is ongoing, the paper has hopefidgnginsight into
the practicability and importance of the approach for testadiotherapy acceler-
ators.

Acknowledgements This work was supported by the National Computing Centren@dha
esterwww.ncc.co.uk The author is indebted to Dr. Hamish Porter (Western Gertéos-
pital, Edinburgh) for his extensive advice on accelera&sigh and operation. However
any errors and misconceptions in the paper are due to theraidh Qian Bing collabo-
rated on all of the work reported here. Dr. Ji He implementedtof the test generation
tool. The author thanks Dr. Jan Tretmans (University of Migan) for his insights into test
generation.

References

1. G. Blair, L. Blair, H. Bowman, and A. Chetwyndrormal Specification of Distributed
Multimedia SystemdJCL Press, London, UK, 1998.

2. T. Bolognesi and E. Brinksma. Introduction to the ISO #peation language bTos
Computer Networksl4(1):25-59, Jan. 1988.

3. E. Brinksma. A theory for the derivation of tests. In S. Aggal and K. K. Sabnani,
editors,Proc. Protocol Specification, Testing and Verification MINbrth-Holland, Am-
sterdam, Netherlands, June 1988.

4. M. Calder and C. E. Shankland. A symbolic semantics arichhlation for full LoTos.

In M. Kim, B. Chin, S. Kang, and D. Lee, editorBroc. Formal Techniques for Net-
worked and Distributed Systems (FORTE Xlpages 184—200. Kluwer Academic
Publishers, London, UK, Sept. 2001.

5. G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, and F. duli Specification and
verification of the PowerScale bus arbitration protocol:iAdustrial experiment with
LoTos Technical Report 2958, INRIA, 78153 Le Chesnay Cedex, ¢aafiug. 1996.

6. R. G. Clark. The development of concurrerssystems from bTosspecifications.
In R. J. Mitchell and D. Simpson, edito’sDA into the 90’spages 115-129. Woodhead
Publishing Ltd, 1991.

7. D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. STG: A sglhdxest generation tool.
In Proc. Tools and Algorithms for the Construction and Anayafi Systems (TACAS)
number 2280 in Lecture Notes in Computer Science. Sprikgdeg, Berlin, Germany,
2002.

8. R. De Nicola and M. C. B. Hennessy. Testing equivalencepracessesTheory of
Computer Sciencgages 83—133, 1984.

9. H. Eertink and D. Wolz. Symbolic execution oblos specifications. In M. Diaz
and R. Groz, editorRroc. Formal Description Techniques Pages 295-310. North-
Holland, Amsterdam, Netherlands, Oct. 1992.

Test Generation for Radiotherapy Accelerators 25

10. H. Ehrig and B. Mahr-undamentals of Algebraic Specificationvblume 6 ofEATCS
Monographs on Theoretical Computer Scienc8pringer-Verlag, Berlin, Germany,
1985.

11. M. Faci, L. M. S. Logrippo, and B. Stepien. Structural misdor specifying telephone
systems Computer Network$9(4):501-528, Mar. 1997.

12. J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescwdunier, and M. Sighire-
anu. CADP (CESARALDEBARAN Development Package): A protocol validation and
verification toolbox. In R. Alur and T. A. Henzinger, editpRroc. 8th. Conference
on Computer-Aided Verificatipmumber 1102 in Lecture Notes in Computer Science,
pages 437-440. Springer-Verlag, Berlin, Germany, Aug6199

13. J. C. Fernandez, C. Jard, T. Jéron, and C. Viho. Usirtheily verification techniques
for the generation of test suites. In R. Alur and T. A. Heneingditors,Computer
Aided Verification’96volume 1102 of_ecture Notes in Computer Scienpages 348—
359. Springer-Verlag, Berlin, Germany, 1996.

14. M.-C. Gaudel and P. R. James. Testing algebraic data g processes: A unifying
theory. Formal Aspects of Computing0(5):436—451, 1999.

15. J. P. Gibson. A bTosbased approach to neural network specification. Technical
Report CSM-112, Department of Computing Science and Madlties) University of
Stirling, UK, May 1993.

16. D. Greene and P. C. William&inear Accelerators for Radiation TherapyOP Pub-
lishing Ltd., Bristol and Philadelphia, 1997.

17. R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill. Architeure validation for
processors. IRroc. 22nd. Annual International Symposium on Computehifgcture
1995.

18. C. A. R. Hoare. Communicating Sequential ProcesseBrentice-Hall, Englewood
Cliffs, New Jersey, USA, 1985.

19. IEEE. VHSIC Hardware Design LanguageEEE 1076. Institution of Electrical and
Electronic Engineers Press, New York, USA, 1993.

20. IEEE. IEEE Standard Hardware Design Language based on the VeHlagiware
Description Language lEEE 1364. Institution of Electrical and Electronic Enggns
Press, New York, USA, 1995.

21. ISO/IEC. Information Processing Systems — Open Systems InterdiiomecLOTOS
— A Formal Description Technique based on the Temporal Gmndenf Observational
Behaviour ISO/IEC 8807. International Organization for Standaatn, Geneva,
Switzerland, 1989.

22. ISO/IEC.Information Processing Systems — Open Systems InterdimmecConfor-
mance Testing Methodology and Framewol8O/IEC 9646. International Organiza-
tion for Standardization, Geneva, Switzerland, 1991.

23. ISO/IEC. Information Technology — Framework: Formal Methods in Qonfance
Testing ISO/IEC 13245-1. International Organization for Stawlileation, Geneva,
Switzerland, 1997.

24. ISO/IEC Information Processing Systems — Open Systems IntercimmedEnhanced
LOTOS — A Formal Description Technique based on the Tem@nagring of Obser-
vational Behaviour ISO/IEC 15437. International Organization for Standzaition,
Geneva, Switzerland, 2001.

25. ITU. Information Processing Systems — Open Systems IntercimmedConformance
Testing Methodology and FrameworkTU X.290. International Telecommunications
Union, Geneva, Switzerland, 1996.

26. J. Jacky. Specifying a safety-critical control systard.iln J. C. P. Woodcock and P. G.
Larsen, editorsFormal Methods Europe '93: (Industrial-Strength) FormakeMods

26

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Kenneth J. Turner

volume 670 ofLecture Notes in Computer Scien&pringer-Verlag, Berlin, Germany,
1993.

J. Jacky and M. Patrick. Modelling, checking and impletimg a control program for
a radiation therapy machine. Rroc. AASDec. 1996.

J. Jacky and J. Unger. Formal development of A graphie interface for a radiation
therapy machine. In J. P. Bowen and M. G. Hinchey, editers¢. 9th. International
Conference of Z Usersolume 967 ofLecture Notes in Computer Scien&pringer-
Verlag, Berlin, Germany, Sept. 1995.

J. Jacky, J. Unger, M. Patrick, D. Reid, and R. Risler. deigmce with Z developing
a control program for a radiation therapy machine. In J. Rvé@yg editor,Proc. 10th.
International Conference of Z Userkecture Notes in Computer Science. Springer-
Verlag, Berlin, Germany, Dec. 1996.

C. Jard and T. Jéron. TGV: Theory, principles and algors. Software Tools for
Technology Transfe2004. In this special issue.

JiHe and K. J. Turner. Protocol-inspired hardwarerngstn G. Csopaki, S. Dibuz, and
K. Tarnay, editorsProc. Testing Communicating Systems K#ges 131-147, London,
UK, Sept. 1999. Kluwer Academic Publishers.

Ji He and K. J. Turner. Specification and verification afckyonous hardware using
Lotos In J. Wu, S. T. Chanson, and Q. Gao, editd?spc. Formal Methods for
Protocol Engineering and Distributed Systems (FORTE >8WN XIX) pages 295—
312, London, UK, Oct. 1999. Kluwer Academic Publishers.

Ji He and K. J. Turner. Verifying and testing asynchr@naiucuits using bTos In
T. Bolognesi and D. Latella, editorBroc. Formal Methods for Distributed System De-
velopment (FORTE XIII/PSTV XX)ages 267-283, London, UK, Oct. 2000. Kluwer
Academic Publishers.

E. J. Joyce. Accelerator linked to fifth radiation ovesgldAmerican Medical Newd,
Feb. 1987.

C. J. Karzmark. Procedural and operator error aspectg@dtion accidents in radio-
therapy. International Journal of Radiation Oncology Biological yics 13:1599—
1602, Jan. 1987.

G. Leduc. A framework based on implementation relatfonsmplementing loTos
specificationsComputer Networks and ISDN Syste25(1):23-41, Aug. 1992.

N. Leveson and C. S. Turner. An investigation of the Tt@% accidents. IEEE
Computey 26(7):18—41, July 1993.

N. G. Leveson, editor.Safeware: System Safety and Computefsidison-Wesley,
Reading, Massachusetts, USA, 1995.

A. McClenaghan. Experience of usingtoswithin the CIM-OSA project. In K. R.
Parker and G. A. Rose, editosprmal Description Techniques J\pages 109-116,
Amsterdam, Feb. 1992. North-Holland.

A. J. R. G. Milner. Communication and ConcurrencyAddison-Wesley, Reading,
Massachusetts, USA, 1989.

A. M. D. Moreira and R. G. Clark. Complex objects: Aggrega Technical Report
CSM-123, Department of Computing Science and Mathematicisersity of Stirling,
UK, May 1994.

D. Moundanos, A. Abraham, and Y. V. Hoskote. Abstractemhniques for validation
coverage analysis and test generatidBEEE Transactions on Computerd7:2—14,
1998.

R. D. Nicola. External equivalences for transition eyss$. Acta Informatica 24:211—
237, 1987.

D. H. Pitt and D. Freestone. The derivation of confornealests from loToSs specifi-
cations.|[EEE Transactions on Software Engineerii(12):1337-1343, Dec. 1990.

Test Generation for Radiotherapy Accelerators 27

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

565.

56.

57.

C. M. P. Reade. Process algebra in the specification phigpsstandards. Technical
Report CSTR-92-1, Department of Computer Science, Brumélddsity, Middlesex,
UK, Sept. 1992.

J. M. T. Romijn, O. Sies, and J. R. Moonen. A two-level apph to automated con-
formance testing of VHDL designslesting of Communicating Syster8:432—-447,
1997.

M. H. Thomas. The story of the Therac-25 intos High Integrity Systems Journal
1(1):3-15, Feb. 1994.

J. Tretmans. Conformance testing with labelled tramsisystems: Implementation
relations and test generatioBomputer Network$29:25-59, 1996.

J. Tretmans. Test generation with inputs, outputs apetitere quiescenceSoftware
Concepts and Toql4.7:103—-120, 1996.

K. J. Turner, editorUsing Formal Description Techniques — An Introduction te ES
TELLE, LOTOS and SDLWiley, New York, Jan. 1993.

K. J. Turner. Representing new voice services and teatufes. In D. Amyot and
L. Logrippo, editorsProc. 7th. Feature Interactions in Telecommunications Sodt-
ware Systemgages 123-140. |0S Press, Amsterdam, Netherlands, JOBe 20

K. J. Turner and Q. Bing). Protocol techniques for testidiotherapy accelerators.
In D. A. Peled and M. Y. Vardi, editor&roc. Formal Techniques for Networked and
Distributed Systems (FORTE XWumber 2529 in Lecture Notes in Computer Science,
pages 81-96. Springer-Verlag, Berlin, Germany, Nov. 2002.

K. J. Turner, A. McClenaghan, and C. Chan. Specificatimhanimation of reactive
systems. In V. Atalay, U. Halici, Kinan, N. Yalabik, and A. Yazici, editor$roc.
International Symposium on Computer and Information SystX| pages 355-364,
Ankara, Turkey, Nov. 1996. Middle-East Technical Universi

F. Vemuri and R. Kalyanaraman. Generation of desigrigation tests from behav-
ioral VHDL programs using path enumeration and constraiogamming. IEEE
Transactions on Very Large Scale Integration Syste1#01-214, 1995.

C. A. Vissers, G. Scollo, and M. van Sinderen. Architeetand specification style in
formal descriptions of distributed systenheoretical Computer Scienc@9:179-206,
1991.

I. Widya, F. Sadoun, and G.-J. van der Heijden. Spedificaif a distributed coor-
dination function in loTos In K. R. Parker and G. A. Rose, editoRroc. Formal
Description Techniques [\pages 133-148. North-Holland, Amsterdam, Netherlands,
Nov. 1991.

K. Yasumoto, A. Kitajima, T. Higashino, and K. Taniguckardware synthesis from
protocol specifications in@Tos In S. Budkowski, E. Najm, and A. Cavalli, editors,
Proc. Formal Description Techniques Xl/Protocol Specifima Testing and Verifica-
tion XVIII. Chapman-Hall, London, UK, 1998.

