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Abstract. The first Cross-domain Heuristic Search Challenge (CHeSC
2011) seeks to bring together practitioners from operational research,
computer science and artificial intelligence who are interested in devel-
oping more generally applicable search methodologies. The challenge is
to design a search algorithm that works well, not only across different in-
stances of the same problem, but also across different problem domains.
This article overviews the main features of this challenge.

1 Introduction

The Cross-domain Heuristic Search Challenge1 differs from other competitions in
search and optimisation, as it aims to measure performance over several problem
domains rather than just one. We propose a software framework (HyFlex) fea-
turing a common software interface for dealing with different combinatorial opti-
misation problems. HyFlex provides the algorithm components that are problem
specific. In this way, we liberate algorithm designers from needing to know the
details of the problem domains and also prevent them from incorporating addi-
tional problem specific information in their algorithms. Efforts can instead be
focused on designing high-level strategies to intelligently combine the provided
problem-specific algorithmic components. The competition is organised and run
by the Automated Scheduling, Optimisation and Planning (ASAP) group at the
University of Nottingham, Nottingham, UK; with contributions from Queens
University, Belfast, UK; Cardiff University, UK; and the Ecole Polytechnique,
Montreal, Canada. Members of these groups will not be allowed to enter the
competition.

2 The HyFlex Framework

HyFlex (Hyper-heuristics Flexible framework) [1] is a Java object oriented frame-
work for the implementation and comparison of different iterative general-purpose
1 http://www.asap.cs.nott.ac.uk/chesc2011/



heuristic search algorithms (also called hyper-heuristics). The framework appeals
to modularity and is inspired by the notion of a domain barrier between the
low-level heuristics and the hyper-heuristic [2, 3] (Figure 1). HyFlex provides a
software interface between the hyper-heuristic and the problem domain layers,
thus enabling a clearly defined separation, and communication protocol between
the domain specific and the domain independent algorithm components.
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Fig. 1. Hyper-heuristic conceptual framework featuring the domain barrier [2, 3].

HyFlex extends the conceptual framework discussed in [2, 3] (Figure 1) int
that a population of solutions (instead of a single incumbent solution) is main-
tained in the problem layer. Also, a richer variety of low-level heuristics is pro-
vided. Another relevant antecedent to HyFlex is PISA [4], a text-based software
interface for multi-objective evolutionary algorithms, which divides the imple-
mentation of an evolutionary algorithm into an application-specific part and an
algorithm-specific part. HyFlex differs from PISA in that its interface is not
text-based but instead given by an abstract Java class. HyFlex is not tied to
evolutionary algorithms. It allows the implementation of most single-point and
population-based search methods. Moreover, it provides a rich variety of combi-
natorial optimisation problems including real-world instance data. Each HyFlex
problem domain module consists of:

1. A routine to initialise randomised solutions in the population.
2. A set of heuristics to modify solutions classified into four groups:

mutational : makes a (randomised) modification to the current solution.
ruin-recreate : destroys part of the solution and rebuilds it using a con-

structive procedure.
local search : searches in the neighbourhood of the current solution for an

improved solution.



crossover : takes two solutions, combines them and returns a new solution.
3. A varied set of instances that can be easily loaded.
4. A population of one or more solutions that has to be administered.

For testing purposes, four domain modules are provided each containing
around 10 low-level heuristics of the types discussed above, and 10 instances
of medium to hard difficulty. The domains provided are: permutation flowshop,
one dimensional bin packing, Boolean satisfiability (MAX-SAT) and person-
nel scheduling. Technical reports describing the details of each of these mod-
ules, are available at the competition Web site (‘Documentation’ section: http:
//www.asap.cs.nott.ac.uk/chesc2011/documentation.html).

3 Challenge Description and Scoring System

For the competition, a number instances from each of these four test domains will
be considered (including both training and hidden instances). Additionally, at
least two hidden domains will also form part of the competition. These additional
domains will be revealed only after the competition has been completed. For each
instance, a single run will be conducted, and all the competing algorithms will
start from the same initial solution generated from the same random seed. The
run time will be limited to 10 minutes (measured in CPU time) on a modern
PC running Windows XP. This figure was selected empirically after extensive
testing on our problem domains’ hardest instances. A benchmarking program
(for both Windows and Linux) is available from the Web site that will report
the time it takes a competitor’s computer to execute a set of instructions that
in the competition computer takes 10 minutes (600 seconds). It is worth noting
that all the competitors will be run on a standard machine therefore creating a
“level playing field”.

In order to compare the performance of the competing hyper-heuristics and
declare the winner, we will use a scoring system inspired by Formula 1. Before
2010, the Formula 1 system had the following structure. The top eight drivers
scored 10, 8, 6, 5, 4, 3, 2 and 1 points respectively, in each race. These points
are added for all the events, and the winner is the driver accumulating the most
points. This is adapted for the cross-domain challenge as follows. Let us assume
that m instances (considering all the domains) and n competing algorithms in
total are considered. For each experiment (instance) an ordinal value ok is given
representing the rank of the algorithm compared to the others (1 ≤ ok ≤ n).
The top eight ranking algorithms will receive the points as in the Formula 1
system described above, and the remaining algorithms will receive no points.
The points will be added across the m instances, and the winner will be the
algorithm accumulating the most points. Therefore, if for example, five problem
domains are considered with five instances each, the maximum possible score is
250 points. For solving ties we will also follow Formula 1. Full details can be
seen on the competition Web site (‘Scoring System’ section: http://www.asap.

cs.nott.ac.uk/chesc2011/scoring.html).



4 Final Remarks

Extensive tests (some of them published in [5]), have confirmed that a rich set of
state-of-the-art hyper-heuristics can be implemented with HyFlex. Both single
point and population based search algorithms can be designed. The Java jar file
implementing the framework can be downloaded from the website, which also
provides a tutorial, several examples, and the relevant software and academic
documentation. An additional interesting feature is the Leaderboard, a table
ranking participants according to their best score on a rehearsal competition
conducted every week. This rehearsal competition is based on a set of results
submitted by the participants who chose to do so. Note that only the results,
and not the algorithms, are required for the Leaderboard submissions.

The prize fund is 3,000 GBP to be split between the first, second and third
place competitors. The winners will be announced at OR53 (UK Operational
Research Society conference, to be held in Nottingham, UK in September 6 -
8, 2011) and their registration fee will be waived. Our goal is to both promote
research into more general search methodologies, and also to gain a deeper un-
derstanding of the algorithm design principles and machine learning techniques
that work well in practice.
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