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Abstract

In this work we present a new methodology to study the structure of the configuration

spaces of hard combinatorial problems. It consists in building the network that has

as nodes the locally optimal configurations and as edges the weighted oriented tran-

sitions between their basins of attraction. We apply the approach to the detection of

communities in the optima networks produced by two different classes of instances of

a hard combinatorial optimization problem: the quadratic assignment problem (QAP).

We provide evidence indicating that the two problem instance classes give rise to very

different configuration spaces. For the so-called real-like class, the networks possess

a clear modular structure, while the optima networks belonging to the class of random

uniform instances are less well partitionable into clusters. This is convincingly sup-

ported by using several statistical tests. Finally, we shortly discuss the consequences

of the findings for heuristically searching the corresponding problem spaces.

Key words: Community structure; Optima networks; Combinatorial fitness

landscapes
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1. Introduction

In the last decade some researchers have proposed a network view of energy land-

scapes in chemical physics for small atomic clusters and macromolecules [1, 2, 3].

The idea is simple: if one can identify both the minima of these energy landscapes and
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the possible transitions between them, then one can build a graph in which the nodes

are the minima and the transitions are represented by edges joining the corresponding

minima [2]. The number of minima usually increases exponentially with system size

but significant samples can be obtained either by experiment or, much more often, by

sampling the landscape using molecular dynamics and Monte Carlo methods (see [4]

and references therein). Doye has called this graph the Inherent Structure Network;

here we prefer to use the term Local Optima Network (LON).

Inspired by this approach, in our own work [5, 6] we have applied similar ideas to

the case of the configuration spaces of difficult combinatorial optimization problems.

Although the problems look superficially similar, hard combinatorial spaces pose addi-

tional challenges due to their discrete nature, e.g. no derivatives and gradient informa-

tion is available. Moreover, the landscapes are rugged, may show frustration, i.e. not

all local constraints can be satisfied together in order to improve the objective function

value, and often contain neutrality which means that there are sizable regions where the

objective function values are identical or very close to each other. The typical physical

models that show most of these features are spin glasses [7] but the phenomenon is

ubiquitous in combinatorial spaces of computationally hard problems [8].

Assuming that the LON of the given combinatorial landscape is known, or at least

a significant sample has been obtained, several questions are of great interest, both the-

oretical and practical. First and foremost, the distribution over the search space of the

optima and their connectivity, as well as the associated basins of attraction and their

sizes, are fundamental information that may help to understand the difficulty of the cor-

responding problem and may guide local search methods through the problem config-

uration space. Second, the number and strength of possible transitions between basins,

and thus between optima, are also extremely important to gauge the stability of local

optima configurations and the possibility of jumping out of a suboptimal configuration

to reach a better one, or even the globally optimal one. Several other purely topologi-

cal features of such a landscape representation are also very useful. For example, the

mean path length between any local optimum to the global one contains information

about the computational difficulty of the problem. The clustering coefficient of the op-

tima network is also interesting as it gives information about the topological transitivity
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between related optima.

In the present study we focus on a particular fundamental characteristic of the op-

tima networks using the Quadratic Assignement Problem (QAP), which is a typical

member of the class of computationally hard problems [8]. The feature we are inter-

ested in, is related to the way in which local optima are distributed in the configuration

space. Then, several questions can be raised. Are they uniformly distributed as some

theoretical analyses of fitness landscapes seem to assume for mathematical simplic-

ity [9], or do they cluster in some non-homogeneous way? If the latter, what is the

relation between objective function values within and among different clusters and

how easy is it to go from one cluster to another? Knowing even approximate answers

to some of these questions would be very useful to further characterize the difficulty of

a class of problems and also, potentially, to devise new search heuristics or variation to

known heuristics that take advantage of this information.

There exist some measures that are used to characterize numerically distributions

of landscape features such as average solution distance and average distance between

optima, where the distance is seldom the usual Euclidean one but rather another kind

of distance such as Hamming distance for problems defined on binary string configura-

tions, or the distance between two permutations in a permutation space [10]. However,

a purely topological vision may offer several advantages with respect to such “met-

ric” approaches since in the former only information about the vertices of the graph

and their connections is needed. In complex network theory language, the above cor-

responds to the detection of communities in the relevant LON networks. Community

detection is a difficult task, but today several good approximate algorithms are avail-

able and the approach is feasible, especially for the small networks studied here [11].

A similar investigation has been performed by Massen and Doye [12] for the graphs

of energy landscapes of small atomic clusters and by Gfeller at al. for continuous

free-energy landscapes in biomolecular studies [13].

The present study is structured as follows. In order to make the article sufficiently

self-contained, we first briefly describe the QAP problem and introduce our concepts

and methods to define and find the LONs. We next describe in detail the community

search approach and we discuss the results obtained on two different classes of QAP
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problem instances and their significance. Finally, we give our conclusions.

2. The QAP Problem

The QAP deals with the relative location of units that interact with one another in

some manner. The objective is to minimize the total cost of interactions. The problem

can be stated in this way: there are n units or facilities to be assigned to n predefined

locations, where each location can accommodate any one unit. Location i and location

j are separated by a distance aij , generically representing the per unit cost of interac-

tion between the two locations. A flow of value bij has to go from unit i to unit j; the

objective is to find and assignment, i.e. a bijection from the set of facilities onto the set

of locations, which minimizes the sum of products flow × distance.

This bijection can naturally be encoded as a permutation π and the problem of cost

assignment minimization can mathematically be formulated as:

min
π∈P (n)

C(π) =

n∑
i=1

n∑
j=1

aijbπiπj
(1)

where C(π) is the cost function, A = {aij} and B = {bij} are the two n× n distance

and flow matrixes, πi gives the location of facility i in permutation π ∈ Σn, and Σn is

the set of all permutations of {1, 2, ..., n}, i.e. the QAP search space. The structures of

the distance and flow matrices characterize the class of instances of the QAP problem.

Later in the article it is explained which are the classes of instances used in the present

work.

3. Local Optima Networks

Given a fitness landscape for an instance of a combinatorial optimization problem

like the QAP, we have to define the associated optima network by providing definitions

for the nodes and the edges of the network. The vertexes of the graph can be straight-

forwardly defined as the local minima of the landscape. In this work, we select small

QAP instances such that it is feasible to obtain the nodes of the graph exhaustively

by running a best-improvement local search algorithm from every configuration of the
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search space as described below. Before explaining how the edges of the network are

obtained, a number of relevant definitions are summarized.

A Fitness landscape [14] is a triplet (S, V, f) where S is a set of potential solutions,

i.e. a search space, V : S −→ 2S , a neighborhood structure, is a function that assigns

to every s ∈ S a set of neighbors V (s), and f : S −→ R is a fitness function, also

called cost function or objective function, that can be pictured as the height of the

corresponding solutions. In our study, a search space configuration s is a permutation

π of the n facility locations, therefore the search space size is n!. The neighborhood of

a configuration is defined by the pairwise exchange operation, which is the most basic

operation used by many meta-heuristics for QAP. This operator simply exchanges any

two positions in a permutation π, thus transforming it into another permutation. The

neighborhood size is thus |V (s)| = n(n− 1)/2. Finally, the fitness for this problem is

defined by equation 1 as f(s) = −C(s).

The Best Improvement (BI) algorithm to determine the local optima and therefore

define the basins of attraction starts from an arbitrary configuration s and systematically

tries to improve the solution by looking at all neighbor solutions V (s), choosing the

best one. It stops when no improvement is possible, i.e. when the current solution s∗

is a local optimum: ∀s ∈ V (s∗), f(s) < f(s∗).

The basin of attraction of a local optimum i ∈ S is the set bi = {s ∈ S | BI(s) =

i}. The size of the basin of attraction of a local optimum i is the cardinality of bi. The

basins of attraction as defined above produce a partition of the configuration space S.

Therefore, S = b1 ∪ b2 ∪ . . . ∪ bn and ∀i 6= j, bi ∩ bj = ∅.

We can now define the weight of an edge that connects two feasible solutions in the

fitness landscape. For each pair of solutions s and s
′
, p(s → s

′
) is the probability

to go from s to s
′

with the given neighborhood structure. For the search space of

permutations of n elements, and the pairwise exchange operation, there are n(n−1)/2

neighbors for each solution, therefore:

if s
′ ∈ V (s) , p(s→ s

′
) = 1

n(n−1)/2 and

if s
′ 6∈ V (s) , p(s→ s

′
) = 0.

The probability of going from a solution s ∈ S to a solution belonging to the basin bj ,
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is defined as:

p(s→ bj) =
∑
s′∈bj

p(s→ s
′
).

Notice that p(s → bj) ≤ 1. Thus, the total probability of going from basin bi to basin

bj is the average over all s ∈ bi of the transition probabilities to solutions s
′ ∈ bj :

p(bi → bj) =
1

|bi|
∑
s∈bi

p(s→ bj),

where |bi| is the size of the basin bi.

Now we can define a Local Optima Network (LON) as being the graph G = (S∗, E)

where the set of vertices S∗ contains all the local optima, and there is an edge eij ∈ E

with weight wij = p(bi → bj) between two nodes i and j iff p(bi → bj) > 0. Notice

that since each maximum has its associated basin, G also describes the interconnection

of basins.

According to our definition of edge weights, wij = p(bi → bj) may be different than

wji = p(bj → bi). Thus, two weights are needed in general, and we have an oriented

transition graph.

4. Structure of the QAP LONs

4.1. Problem Instance Generation

In order to perform a statistical analysis, several problem instances of at least two

different problem classes have to be considered. To this purpose, the two instance

generators proposed by Knowles and Corne [15] for the multi-objective QAP have

been adapted and used here for the single-objective QAP. The first generator produces

uniformly random instances where all flows and distances are integers sampled from

uniform distributions. This leads to the kind of problem known in literature as Tainna,

being nn the problem dimension [16]. Distance matrix entries are, in both cases, the

Euclidean distances between points in the plane. The second generator permits to ob-

tain flow entries that are non-uniform random values. This procedure, detailed in [15]
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produces random instances of type Tainnb which have the so called “real-like” struc-

ture since they resemble to the structure of QAP problems found in practical appli-

cations. For a general network analysis, 30 random uniform and 30 random real-like

instances have been generated for each problem dimension in {5, ..., 10}. To the spe-

cific purpose of community detection, 200 additional instances have been produced

and analyzed with size 9 for the random uniform class, and size 11 for the real-like in-

stances class. Problem size 11 is the largest one for which an exhaustive sample of the

configuration space is computationally feasible. Beyond that, sampling must be used.

However, in this work we prefer to stick with exact results in order to give as accurate

as possible answers to the minima clustering problem posed at the beginning.

4.2. Network Analysis

The results of the statistical analysis of the above QAP landscapes, up to size 10,

appear in [17] to which the reader is referred for further information. In that work it

is shown that LONs for the QAP are dense, as one can see from Tables 1 and 2 which

give, respectively, the mean number of vertices and the mean number of edges for the

two classes of instances and for instance sizes going from 5 to 10.

Table 1: Average values of the number of vertices for each instance size.

5 6 7 8 9 10

real-like 1.667 2.767 3.900 6.133 12.567 25.700

uniform 3.333 6.800 19.100 51.300 137.300 414.133

Table 2: Average value of the number of edges for each instance size.

5 6 7 8 9 10

real-like 3.400 9.433 19.900 46.0667 187.433 818.700

uniform 12.600 50.733 399.767 2798.233 19225.370 169118.800
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Table 3 shows that the LONs of both the uniform and real-like instances up to size

10 are complete or almost complete since |E| = O(|V |2). This is inconvenient for

community analysis as it is difficult for any cluster detection algorithm to split-up the

networks into separate communities when the graphs are so dense.

Table 3: Average of the ratio of the number of edges to squared number of vertices

5 6 7 8 9 10

real-like 1.000 0.993 0.994 0.999 0.992 0.988

uniform 0.998 0.993 0.969 0.940 0.9087 0.874
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Figure 1: Average weights wii for self-loops (circular points) and wij for out-going links (triangular points).

Left image: real-like instances. Right image: uniform instances. Bars depict 95% confidence intervals on

the means (standard errors). Averages from 30 independent and randomly generated instances are shown.

However, looking at Fig. 1 which gives the average values of the transition prob-

abilities to stay in the same basin and to jump to another basin, it is apparent that

most of the probability distribution is placed in p(i → i), i.e. it is more likely for a

solution to stay in the same basin rather than to jump to a neighboring one for both

instance classes. When a local stochastic heuristic is used to search the landscape, only

transitions to another basin that have higher probability of occurring are important. Ac-
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tually, a search heuristic like simulated annealing also accepts moves that worsen the

objective function with low probability, but the acceptance rate decays quickly as the

temperature is lowered and, in the end, only the most likely transitions play a role. In

fact, the important role that “weak ties” may have in a social network context [18] is

almost absent in combinatorial landscapes where the more probable search paths are

associated with the highest transition probabilities when these landscapes are searched

with a local stochastic heuristic. These considerations give us a clue as to how to filter

out the network edges in such a way that only the more likely transitions are kept and,

as a consequence, the graph becomes much less dense and gives a coarser but clearer

view of the fitness landscape backbone. Such a network can be used for community

analysis. On the other hand, it is also possible to keep the original dense weighted

directed networks and to use a specialized community detection algorithm that was

originally designed to work in such cases, which is called the Markov Clustering Algo-

rithm (MCL) [19]. We first explain our filtering procedure in the following and then we

will compare the results with those obtained through the MCL algorithm. Nevertheless,

we point out that, even in the MCL case, the algorithm itself does some preprocessing

of the network weights.

The filtering procedure is very simple. First, we transform the weighted directed

graph G into a weighted undirected one Gu by taking each pair of edges ~ij and ~ji and

replacing them with a single undirected link ij whose weight is the average:

wij =
~wij + ~wji

2
.

Indeed, the values of ~wij and ~wji are different in general and thus taking a single edge

is an approximation. However, a local heuristic walking the landscape would still be

able to traverse a link in both directions, whereas filtering the directed edges could

cause some transitions to disappear.

Now, on Gu we establish a probability threshold Π for the weights wij associated

to each edge in Gu = (S∗, E) and suppress all edges that have wij smaller than the

value marking the Π-quantile in the weights distribution. We call the resulting network

G
′

u = (S∗, E
′
); it has the same number of vertices as Gu and a number of edges
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|E′ | ≤ |E|.

The following Figures 2 and 3 show an example of the results of such a filter-

ing process, starting from the LON of a particular instance and for four values of the

threshold Π.

Figure 2: Left image, edge pruning threshold Π = 0.50, right image Π = 0.75.

Figure 3: Left image, Threshold Π = 0.91, right image Π = 0.95; in this case the graph becomes discon-

nected.

How to choose the threshold Π is essentially a matter of trial and error. Too low

a value does not allow a crisp picture of the network to emerge; but if Π is too high

the network finally falls apart into separated components as in Fig. 3 which is not

acceptable since, by definition of fitness landscape, the whole graph must be connected.
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Likewise, if some node becomes isolated during filtering, it cannot be simply removed

since it could, at least in principle, be the configuration corresponding to the global

optimum. Thus, each analyzed network has been filtered up to the maximum value of

Π that still preserves its connectivity.

4.3. Communities of Optima in LONs

Communities or clusters in networks can be loosely defined as being groups of

nodes that are strongly connected between them and poorly connected with the rest of

the graph. Several methods have been proposed to uncover the clusters present in a

network (for an excellent recent review see [11]). Community detection belongs to the

class of graph partitioning problems, which are hard in the sense that there is no known

algorithm bounded by a polynomial function of the size of the input to exactly solve

the problem [8]. Community detection has the added difficulty that there is not a single

accepted rigorous measure of a cluster or a partition of the nodes of a given graph into

meaningful clusters. One commonly used measure is Modularity. The modularity Q

of a partition has been defined as a merit function measuring the fraction of within

community edges minus the expected value of such fraction for a randomized network

with the same vertex degree distribution [20].

Several heuristics have been proposed [11]; after a preliminary analysis, we have

chosen two of them: Clauset et al’s. method based on greedy modularity optimiza-

tion [21], and Reichardt’s and Bornholdt’s spin glass ground state-based algorithm [22]1.

Both methods gave consistent results on our networks and, in addition, they also work

with undirected weighted networks which was required in our case. The reason for

using two methods is that we can assess statistical significance independent of the al-

gorithm and we can double check the community partition results.

For the sake of the community analysis we shall use only the results on newly

generated problems of size 11 for the real-like instances and of size 9 for the uniform

random ones. This is suggested by the consideration that the LONs for these two cases

1For the actual computations and data treatment, the “igraph” complex network analysis package [23],

along with the R statistical environment [24], has been used.
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Figure 4: Boxplots of the modularity score Q on the y-axis with respect to class problem (rl stands for

real-like and uni stands for random uniform) and community detection algorithm (1 stands for fast greedy

modularity optimization and 2 stands for spin glass search algorithm).

have comparable sizes in terms of number of vertices and can still be obtained exactly

by an exhaustive search. The resulting networks are still relatively small: the average

size is 60 for real-like instances and 127 for random uniform ones but already sufficient

for a meaningful cluster analysis. For example, they have sizes larger than the famous

“Zachary’s Karate Club Network” [25], which has 34 nodes and is routinely mentioned

as a standard benchmark in community detection work [11].

Before examining the actual community structures found, we present the results of

some tests in order to evaluate the statistical significance of the clustering in terms of

modularity.

In general, the higher the value ofQ of a partition, the crisper the community struc-

ture. Figure 4 is a plot of the modularity score Q distribution empirically determined

from the data for each algorithm/problem class pair. The boxes “hinges” represent

the 25, 50 (thick lines), and 75% quantiles. The plot indicates that the two problem
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classes are well separated in terms of Q, and that the community detection algorithm

does not seem to have any influence on such a result. To further show that these results

are statistically significant, we have performed a permutation test [26] for a factorial

ANOVA design, modeling the modularity scores as a response variable to the prob-

lem class and algorithm choice. The p-values thus obtained are 2 × 10−4, 0.179, and

0.6414 for the factor “problem class”, factor “algorithm”, and the interaction between

the two, respectively. Only the first one is below the significativity threshold of 0.05.

It is thus safe to conclude that the data show no significant effect of the community de-

tection method used on the variability observed in modularity score, while the problem

class only seems to explain that variability: real-like instances can be clustered in more

modular partitionings than random uniform ones.
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Figure 5: Modularity Q for the best clustering into communities by means of greedy optimization algorithm.

For each instance (x-axis: 200 real-like ones on the left, 200 random uniform ones on the right), Q is plotted

in number of standard deviations (y-axis) away from the average of 1000 randomised networks with the

same degree sequence.
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Figure 6: Modularity Q for the best clustering into communities by means of spin glass model algorithm.

For each instance (x-axis: 200 real-like ones on the left, 200 random uniform ones on the right), Q is plotted

in number of standard deviations (y-axis) away from the average of 1000 randomised networks with the

same degree sequence.

However, modularity scores alone can be misleading. This has been shown by

Guimerà et al. in [27] where they pointed out that many random networks with no

clear community structure may nevertheless have rather high values of Q due to sta-

tistical fluctuations. Thus, to test for the statistical significance of Q we used a Monte

Carlo procedure in which a randomized version of the data is produced. For each prob-

lem instance, 1000 random networks have been generated using Viger’s and Latapy’s

algorithm [28], i.e. starting with the original graph’s degree sequence and rewiring the

links randomly without altering the sequence. Next, both community detection algo-

rithms have been applied to each generated network to obtain the modularities Q of

their partitions. Finally, a p-value has been computed by comparing the expected value

of Q from the randomized networks with the Q measured for the actual original net-
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work. Among the 200 considered real-like instances, those p-values are not significant

in 14 and 22 cases when using the two community finding algorithms. Among the 200

random uniform instances, the non-significant cases are 16 and 36, respectively. These

figures are slightly higher than “5-out-of-100” ratio one could expect from the signifi-

cance threshold, but not by a margin high enough to invalidate the results of the whole

analysis. In conclusion, a separation between the two problem classes, with respect to

minima clustering in the search space, has been significatively highlighted.

Once the significance of a community structure has been assessed, in order to have

an insight into its strength, one can also measure for each instance how distant the

obtained modularity score is from the expected value estimated on the respective null

model. Networks observed in nature and society present a modularity structure not only

significantly different but markedly higher than random networks [29]. In this respect,

Figures 5 and 6 depict for each instance the difference in number of standard deviations

(with respect to the 0 horizontal line) between the measured modularity scores and the

expected ones for the null model (a population of 1000 randomized networks having

the same degree sequence, as explained above). It is worth stressing that the absolute

value of such a distance depends on the variability observed within the null models.

Nonetheless, there is difference between the two problem classes, with real-like ones

displaying a stronger and more instance-dependent community structure than random

uniform ones, disregarding the algorithm chosen to discover such a structure.

To end this section, we now briefly present the results obtained through the use

of the MCL algorithm, as explained in sect. 4.2. In Fig. 7 we report the modularity

scores for the two algorithms we used on the weighted undirected filtered networks

(greedy modularity optimization and spin-glass model), and for MCL on the complete

weighted and directed LONs.

To be able to compare modularity scores in a consistent way, we took each algo-

rithm’s best found community subdivision and we computed the weighted variant of

its Q value on the original unfiltered networks. From the figure, we observe that the

results are qualitatively the same, i.e. real-like instances give rise to optima networks

with a more modular structure than uniform ones, even if MCL’s results have higher
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Figure 7: Weighted modularity scores Q for the best community clusterings found by the greedy optimization

algorithm (left), by the spin-glass ground-state algorithm (center), and by the MCL algorithm (right). The

first two are applied to the filtered and undirected but weighted graphs, whereas MCL applies to the original

unfiltered weighted and directed ones.

variance and for uniform instances sometimes no community is found at all. Indeed,

MCL faces very dense networks and, to get useful results, the algorithm rescales link

weight values in a preprocessing phase. In the end, we feel that both methods give

comparable results but filtering out the networks and then searching for clusters gives

rise to more stable partitions.

4.4. Discussion

From all the previous statistical tests it is apparent that real-like instances have

significantly more cluster structure than the class of random uniform instances of the

QAP problem. This can be appreciated visually by looking at Figs. 8 and 9 where the

community structures of the LON of two particular instances are depicted. Although

these are the two particular cases with the highest Q values of their respective classes,

the trends observed are general.
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Figure 8: Community structure of the LON of a real-like instance. The cluster partition found is highlighted.

Node sizes are proportional to the corresponding basin size. Darker colors mean better fitness (lower).

Fig. 8 shows the minima community structure of an instance of the real-like class.

One can see that groups of minima are rather recognizable and form well separated

clusters (encircled with dotted lines), which is also reflected in the high corresponding

modularity value Q = 0.79. Contrastingly, Fig. 9 represents a case drawn from the

class of random uniform instances. The network has communities, with a Q = 0.53,

although they are hard to represent graphically, and thus are not shown in the picture.

In the figures, the diameter of the nodes is drawn proportional to the size of the

corresponding basin of attraction in the fitness landscape. As for the fitness values,

the lower (better) the value, the darker the node is. In [17] it was found that there is a

positive correlation between fitness values and the corresponding basin size, especially

for the random uniform problem instances. This effect is qualitatively easy to spot

on the figures. The results of this community study, together with [17], sheds light

on an open problem in the structure of difficult combinatorial landscapes. The basin
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Figure 9: Cluster structure of the LON of a random uniform instance. Clusters are less well separated (see

text) and cannot be clearly highlighted. Node sizes are proportional to the corresponding basin size. Darker

colors mean better fitness.

sizes of these problems have been often taken either constant or uniformly distributed

at random for mathematical reasons of simplicity [9]. However, this is far from being

the case for the QAP problem [17] and the NK landscapes [30, 5] at least. While this

conclusion cannot be generalized easily, it could also hold for other families of difficult

combinatorial problems based, as the QAP, on permutation neighborhood such as the

Traveling Salesman Problem (TSP) for example.

From the point of view of the clustering of solutions in the problem fitness land-

scapes, it has been conjectured that QAP landscapes fall essentially into two classes:

non-structured, with local optima randomly scattered through the search space, and

“massif central”, with the optima clustered into few localized regions [31]. The sug-

gestion was based on sampling the fitness landscapes with random walks and measur-

ing entropy and mean distances among local optima. Our community analysis supports
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and goes beyond this intuition providing a richer and fitness-independent global view

of the full mesoscopic structure of the solutions network.

To complement the previous purely topological view, it is useful to investigate the

correlation of fitness values between neighboring vertices in the unfiltered LONs. Fig-

ure 10 shows scatterplots of the correlation between the fitness of a given node and

the average fitness of its first neighbors in the graph. The plots correspond to the two

particular cases shown in Figs. 8 and Fig. 9. It is apparent that the network is definitely

assortative with respect to fitness in the real-like case and slightly so in the uniform

case. Indeed, regression lines show that the correlation is positive in both cases but

it is higher in the real-like one, which also has a lower variance. Although we show

results for two particular networks here, we have computed averages over all networks

and the trend is the same: in the unfiltered case we get a Spearman correlation coeffi-

cient r = 0.7677 for the real-like instance class and r = 0.3992 for the uniform one.

The regression-line slopes are, respectively, 0.249 and only 0.055. Interestingly, for

the filtered backbone networks, fitness becomes disassortative for uniform instances

(r = −0.3459) whereas it is still assortative for the real-like case (r = 0.2286) .
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Figure 10: Scatterplots and regression lines of the mean fitness of the nearest neighbors of a vertex having fit-

ness f . Left image: real-like instance corresponding to Fig. 8. Right image: uniform instance corresponding

to Fig. 9. Mean neighbor fitness is weighted with the transition probabilities of the corresponding outgoing

links.
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Although it is outside the scope of the present study, we should like to mention

that the above results may have deep consequences on the heuristics used to search

combinatorial spaces such as those described here. For example, in the case of random

uniform instances, the landscape has little structure with a small range of fitness values,

so that a standard local search heuristic such as best improvement or first improvement

will quickly find a satisfactory solution. In contrast, in the landscapes generated by

real-like instances, there will be almost separated groups of minima and thus a parallel-

search heuristic that simultaneously explores several regions of the search space, or a

restart strategy like iterated local search, could be more effective. Also, in this case the

use of a non-local move operator would perhaps be beneficial.

5. Summary and Conclusions

In this work, we have presented a new methodology to study the structure of the

configuration spaces of hard combinatorial problems. It essentially consists in build-

ing the network which has as nodes the locally optimal configurations and as edges

the weighted oriented transitions between optima. In particular, here we applied the

approach to the detection of communities in the optima networks produced by two

different classes of instances of the QAP, which is a hard combinatorial optimization

problem. We provided evidence for the fact that the two problem instance classes give

rise to very different configuration spaces and thus their optima networks are also dis-

tinct. These results are consistent for both the filtered and unfiltered networks analyzed.

For the so-called real-like class of instances the networks possess a clear modular struc-

ture, while the optima networks belonging to the class of random uniform instances are

less well partitionable into clusters. This has been convincingly supported by using

several statistical tests.

The purely topological view of the distribution of local optima in the two problem

instances classes, was complemented by a study indicating a higher correlation be-

tween the fitness values of neighboring vertices in the real-like case. The consequences

for heuristically searching the corresponding problem spaces are at least twofold. First,

in the case of random uniform configuration spaces a simple local heuristic search, such
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as hill-climbing, should be sufficient to quickly find satisfactory solutions since they

are homogeneously distributed. In contrast, in the real-like case they are much more

clustered in regions of the search space. This leads to more modular optima networks

and using multiple parallel searches would probably be a good strategy. These ideas

clearly deserve further investigation. Also, in this paper we have used exhaustive search

of the configuration spaces in order to build the LONs. This is adequate but it can be

done only for relatively small instances, as the space size increases super-exponentially.

Thus, our next step will be to develop efficient sampling techniques for larger problem

sizes.
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