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Abstract. This paper extends a recently proposed model for combinatorial land-
scapes: Local Optima Networks (LON), to incorporate a first-improvement (greedy-
ascent) hill-climbing algorithm, instead of a best-improvement (steepest-ascent)
one, for the definition and extraction of the basins of attraction of the landscape
optima. A statistical analysis comparing best and first improvement network mod-
els for a set of NK landscapes, is presented and discussed. Our results suggest
structural differences between the two models with respect to both the network
connectivity, and the nature of the basins of attraction. The impact of these dif-
ferences in the behavior of search heuristics based on first and best improvement
local search is thoroughly discussed.

1 Introduction

The performance of heuristic search algorithms crucially depends on the structural as-
pects of the spaces being searched. An improved understanding of this dependency, can
facilitate the design and further successful application of these methods to solve hard
computational search problems. Local optima networks (LON) have been recently in-
troduced as a novel model of combinatorial landscapes [6–8]. This model allows the
use of complex network analysis techniques [5] in connection with the study of fitness
landscapes and problem difficulty in combinatorial optimisation. The model, inspired
by work in the physical sciences on energy surfaces [3], is based on the idea of com-
pressing the information given by the whole problem configuration space into a smaller
mathematical object which is the graph having as vertices the optima configurations of
the problem and as edges the possible weighted transitions between these optima (see
Figure 1). This characterization of landscapes as networks has brought new insights
into the global structure of the landscapes studied, particularly into the distribution of
their local optima. Moreover, some network features have been found to correlate and
suggest explanations for search difficulty on the studied domains. The study of local
optima networks has also revealed new properties of the basins of attraction.

The current methodology for extracting LONs requires the exhaustive exploration
of the search space, and the use of a best-improvement (steepest-ascent) local search
algorithm from each configuration. In this paper, we are interested in exploring how the
network structure and features of a given landscape will change, if a first-improvement
(greedy-ascent) local search algorithm is used instead for extracting the basins and tran-
sition probabilities. This is apparently simple but, in reality, requires a careful redefi-
nition of the concept of a basin of attraction. The new notions will be presented in the
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Fig. 1. Visualisation of the weighted local optima network of a small NK landscape (N = 6,
K = 2). The nodes correspond to the local optima basins (with the diameter indicating the size
of basins, and the label “fit”, the fitness of the local optima). The edges depict the transition
probabilities between basins as defined in the text.

next section. Following previous work [7, 8], we use the well-known family of NK
landscapes [4] as an example, as it allows the exploration of landscapes of tunable
ruggedness and search difficulty.

The article is structured as follows. Section 2, includes the relevant definitions and
algorithms for extracting the LONs. Section 3 describes the experimental design, and
reports the analysis of the extracted networks, including a study of both their basic
features and connectivity, and the nature of the basins of attraction of the local optima.
Finally, section 4 discusses our main findings and suggest directions for future work.

2 Definitions and algorithms

A Fitness landscape [?] is a triplet (S, V, f) where S is a set of potential solutions i.e.
a search space, V : S −→ 2S , a neighborhood structure, is a function that assigns to
every s ∈ S a set of neighbors V (s), and f : S −→ R is a fitness function that can be
pictured as the height of the corresponding solutions. In our study, the search space is
composed by binary strings of length N , therefore its size is 2N . The neighborhood is
defined by the minimum possible move on a binary search space, that is, the 1-move or
bit-flip operation. In consequence, for any given string s of length N , the neighborhood
size is |V (s)| = N . The HillClimbing algorithm to determine the local optima and
therefore define the basins of attraction, is given in Algorithm 1. It defines a mapping
from the search space S to the set of locally optimal solutions S∗.

First-improvement differs from best-improvement local search, in the way of select-
ing the next neighbor in the search process, which is related with the so-called pivot-
rule. In best-improvement, the entire neighborhood is explored and the best solution is



Algorithm 1 Best-improvement (left) and first-improvement (right) algorithms.

Choose initial solution s ∈ S
repeat

choose s
′ ∈ V (s), such that f(s

′
) =

maxx∈V (s)f(x)

if f(s) < f(s
′
) then

s ← s
′

end if
until s is a Local optimum

Choose initial solution s ∈ S
repeat

choose s
′ ∈ V (s) using a predefined ran-

dom ordering

if f(s) < f(s
′
) then

s ← s
′

end if
until s is a Local optimum

returned, whereas in first-improvement, a solution is selected uniformly at random from
the neighborhood (see Algorithm 1).

First, let us define the standard notion of a local optimum.
Local optimum (LO). A local optimum, which is taken to be a maximum here, is

a solution s∗ such that ∀s ∈ V (s), f(s) ≤ f(s∗).
Let us denote by h, the stochastic operator that associates to each solution s, the

solution obtained after applying one of the hill-climbing algorithms (see Algorithms
1) for a sufficiently large number of iterations to converge to a LO. The size of the
landscape is finite, so we can denote by LO1, LO2, LO3 . . . , LOp, the local optima.
These LOs are the vertices of the local optima network.

Now, we introduce the concept of basin of attraction to define the edges and weights
of our network model. Note that for each solution s, there is a probability that h(s) =
LOi. We denote pi(s) the probability P (h(s) = LOi). We have that for:

Best-improvement: for a given solution s, there is a (single) local optimum, and thus
an i, such that pi(s) = 1 and ∀j 6= i, pj(s) = 0.

First-improvement: for a given solution s, it is possible to have several local optima,
and thus several i1, i2, . . . , im, such that pi1(s) > 0, pi2(s) > 0, . . . , pim(s) > 0.

For both models, we have, for each solution s ∈ S,
∑n

i=1 pi(s) = 1.
Following the definition of the LON model in neutral fitness landscapes [8], we

have that:
Basin of attraction. The basin of attraction of the local optimum i is the set bi =

{s ∈ S | pi(s) > 0}. This definition is consistent with our previous definition [7] for
the best-improvement case.

The size of the basins of attraction can now be defined as follows:
Size of a basin of attraction. The size of the basin of attraction of a local optimum

i is
∑

s∈S pi(s).

Edge weight. We first reproduce the definition of edge weights for the non-neutral
landscape, and best-improvement hill-climbing [7]: For each solutions s and s

′
, let

p(s → s
′
) denote the probability that s

′
is a neighbor of s, i.e. s

′ ∈ V (s). Therefore,
we define below: p(s → bj), the probability that a configuration s ∈ S has a neighbor



in a basin bj , and p(bi → bj), the total probability of going from basin bi to basin bj ,
which is as the average over all s ∈ bi of the transition probabilities to solutions s

′ ∈ bj

(where ]bi is the size of the basin bi) :

p(s → bj) =
∑

s′∈bj

p(s → s
′
), p(bi → bj) =

1
]bi

∑

s∈bi

p(s → bj)

For first and best improvement hill-climbing, we have defined the probability pi(s)
that a solution s belongs to a basin i. We can, therefore, modify the previous definitions
to consider both types of network models:

p(s → bj) =
∑

s′∈bj

p(s → s
′
)pj(s

′
), p(bi → bj) =

1
]bi

∑

s∈bi

pi(s)p(s → bj)

In the best-improvement, we have pk(s) = 1 for all the configurations in the basin bk.
Therefore, the definition of weights for the best-improvement case is consistent with
the previous definition. Now, we are in a position to define the weighted local optima
network:

Local optima network. The weighted local optima network Gw = (N,E) is the
graph where the nodes are the local optima, and there is an edge eij ∈ E, with weight
wij = p(bi → bj), between two nodes i and j if p(bi → bj) > 0.

According to our definition of edge weights, wij = p(bi → bj) may be different
than wji = p(bj → bi). Thus, two weights are needed in general, and we have an
oriented transition graph.

3 Analysis of the local optima networks

The NK family of landscapes [4] is a problem-independent model for constructing
multimodal landscapes that can gradually be tuned from smooth to rugged. In the
model, N refers to the number of (binary) genes in the genotype (i.e. the string length)
and K to the number of genes that influence a particular gene. By increasing the value
of K from 0 to N−1, NK landscapes can be tuned from smooth to rugged. The K vari-
ables that form the context of the fitness contribution of gene si can be chosen according
to different models. The two most widely studied models are the random neighborhood
model, where the K variables are chosen randomly according to a uniform distribu-
tion among the n − 1 variables other than si, and the adjacent neighborhood model,
in which the K variables that are closest to si in a total ordering s1, s2, . . . , sn (using
periodic boundaries). No significant differences between the two models were found in
[4] in terms of the landscape global properties, such as mean number of local optima
or autocorrelation length. Similarly, our preliminary studies on the characteristics of
the NK landscape optima networks, did not show noticeable differences between the
two neighborhood models. Therefore, we conducted our full study on the more general
random model.



In order to minimize the influence of the random creation of landscapes, we consid-
ered 30 different and independent landscapes for each combination of N and K param-
eter values. In all cases, the measures reported, are the average of these 30 landscapes.
The study considered landscapes with N ∈ {14, 16} and K ∈ {2, 4, . . . , N−1}, which
are the largest possible parameter combinations that allow the exhaustive extraction of
local optima networks. Both best-improvement and first-improvement local optima net-
works (b-LON and f-LON, respectively) were extracted and analyzed.

3.1 Network features and connectivity

This section reports the most commonly used features to characterise complex net-
works, in both the f-LON and b-LON models.

Table 1. NK landscapes network properties. Values are averages over 30 random instances,
standard deviations are shown as subscripts. nv and ne represent the number of vertexes and
edges, C̄w, the mean weighted clustering coefficient. Ȳ represent the mean disparity coefficient,
d̄ the mean path length, and d̄best the mean path length to the global optimum (see text for
definitions).

K n̄v n̄e/n̄2
v C̄w Ȳ d̄ d̄best

N = 14

both b-LON f-LON b-LON b-LON f-LON b-LON f-LON b-LON f-LON
2 146 0.89 1.00 0.980.015 0.3670.0934 0.1720.0977 76194 2818 136 106

4 7010 0.64 1.00 0.920.013 0.1480.0101 0.0480.0079 896 867 268 2311

6 18415 0.37 1.00 0.790.014 0.0930.0031 0.0250.0017 1193 1406 449 4916

8 35022 0.21 1.00 0.660.015 0.0700.0020 0.0170.0008 1332 1834 6710 9520

10 58522 0.12 1.00 0.540.009 0.0580.0010 0.0140.0004 1391 2183 8411 14126

12 89622 0.07 1.00 0.460.004 0.0520.0006 0.0130.0002 1401 2472 10211 19642

13 1, 08520 0.06 1.00 0.420.004 0.0500.0006 0.0130.0002 1391 2591 1049 21838

N = 16

both b-LON f-LON b-LON b-LON f-LON b-LON f-LON b-LON f-LON
2 3315 0.81 1.00 0.960.024 0.3260.0579 0.1100.0590 5614 3911 165 125

4 17833 0.60 1.00 0.920.017 0.1370.0111 0.0330.0064 1268 12713 359 3213

6 46029 0.32 1.00 0.790.015 0.0840.0028 0.0160.0014 1703 2158 6015 7023

8 89033 0.17 1.00 0.650.010 0.0620.0011 0.0110.0004 1942 2825 8313 11826

10 1, 47034 0.09 1.00 0.530.007 0.0500.0006 0.0090.0002 2061 3403 11215 18330

12 2, 25432 0.05 1.00 0.440.003 0.0430.0003 0.0080.0001 2071 3802 14316 27148

14 3, 26429 0.03 1.00 0.380.002 0.0400.0003 0.0080.0001 2031 4111 15813 35151

15 3, 86833 0.02 1.00 0.350.002 0.0390.0004 0.0080.0000 2001 4231 16213 39187

Number of nodes and edges: The 2nd column of Table 1, reports the number of
nodes (local optima),nv , for all the studied landscapes. The b-LONs and f-LONs have
the same local optima, since both local search algorithms, although using a different
pivot-rule, are based on the bit-flip neighborhood. The networks, however, have a dif-
ferent number of edges, as can be appreciated in the 3rd and 4th columns of Table 1,



which report the number of edges normalized by the square of the number of nodes.
Clearly, the number of edges is much larger for the f-LONs. This number is always the
square of the number of nodes, which indicates that the f-LONs are complete graphs. It
is worth noticing, however, that many of the edges have very low weights (see Figure
3). For the b-LON model, the number of edges decrease steadily with increasing values
of K.

Clustering coefficient or transitivity: The clustering coefficient of a network is the
average probability that that two neighbors of a given node are also neighbors of each
other. In the language of social networks, the friend of your friend is likely also to be
your friend. The standard clustering coefficient [5] does not consider weighted edges.
We thus used the weighted clustering measure proposed by [1]. The 5th column of table
1 lists the average coefficients of the b-LONs for all N and K. It is apparent that the
clustering coefficients decrease regularly with increasing K, which indicates that either
there are less transitions between neighboring basins for high K, and/or the transitions
are less likely to occur. On the other hand, the f-LONs correspond to complete networks;
the calculation of the clustering coefficients revealed that ∀i, cw(i) = 1.0 (not shown
in the Table). Therefore, the f-LON is densely connected for all values of K.

Disparity: The disparity measure proposed in [1], Y (i), gauges the heterogeneity
of the contributions of the edges of node i to the total weight. Columns 6th and 7th

in Table 1 depict the disparity coefficients, for both network models, respectively. The
heterogeneity decreases with increasing values of K. This reflects that with high values
of K, the transitions to other basins tend to become equally likely, an indication of a
more random structure (and thus a difficult search). It can also be seen that the weights
for the f-LON model are less heterogenous (more uniform) than for the b-LON one.

Shortest path length: Another standard metric to characterize the structure of net-
works is the shortest path length (number of link hobs) between two nodes on the net-
work. In order to compute this measure on the optima network of a given landscape,
we considered the expected number of bit-flip mutations to pass from one basin to the
other. This expected number can be computed by considering the inverse of the tran-
sition probabilities between basins. More formally, the distance between two nodes is
defined by dij = 1/wij where wij = p(bi → bj). Now, we can define the length
of a path between two nodes as being the sum of these distances along the edges that
connect the respective basins. Columns 9th and 7th in Table 1 report this measure on
the two network models. In both cases, the shortest path increases with K, however,
for the b-LON the growth stagnates for larger K values. The paths are considerably
longer for the f-LON, with the exception of the lowest values of K. Some paths are
more relevant from the point of view of a stochastic local search algorithm following
a trajectory over the maxima network. Therefore, columns 10th and 11th in Table 1,
report the shortest path length to the global optimum from all the other optima in the
landscape. The trend is clear, the path lengths to the optimum increase steadily with
increasing K, and similarly, the first-improvement network shows longer paths. This
suggest that a larger number of hops will be needed to find the global optimum when a
first-improvement local search is used. We must consider, however, that the number of
evaluations needed to explore a basin, would be N times lower for first-improvement
than for best-improvement.



Outgoing weight distribution: The standard topological characterization of (un-
weighed) networks is obtained by its degree distribution. The degree of a node is defined
as its number of neighbours, and the degree distribution of a network is the distribution
over the frequencies of different degrees over all nodes in the network. For weighted
networks, a characterization of weights is obtained by the connectivity and weight dis-
tributions pin(w) and pout(w) that any given edge has incoming or outgoing weight w.
In our study, for each node i, the sum of outgoing edge weights is equal to 1 as they
represent transition probabilities. So, an important measure is the weight wii of self-
connecting edges (remaining in the same node). We have the relation: wii + si = 1.

Figure 2, reports the outgoing weight distributions pout(w) (in log-scale on x-axis)
of both the f-LON and b-LON networks on a selected landscape with K = 6, and
N = 16. One can see that the weights, i.e. the transition probabilities to neighboring
basins are small. The distributions are far from uniform or Poissonian, they are not close
to power-laws either. We couldn’t find a simple fit to the curves such as stretched ex-
ponentials or exponentially truncated power laws. It can be seen that the distributions
differ for the first and best LON models. There is a larger number of edges with low
weights for the f-LONs than for the b-LONs. Thus, even though the f-LONs are more
densely connected (indeed they are complete graphs) many of the edges have very low
weights. Figure 3 (left), shows the averages, over all the nodes in the network, of the
weights wii (i.e. the probabilities of remaining in the same basin after a bit-flip mu-
tation) for N = 16 and all the K values. Notice that, for both network models, the
weights wii are much higher when compared to those wij with j 6= i (see Fig. 3 right).
The wii are much lower for the first than for the best LON. In particular, in the b-LON,
for K = 2, 50% of the random bit-flip mutations will produce a solution within the
same basin of attraction, whereas this figure is of less than 20% in the f-LON. Indeed,
in this case, for K greater than 4, the probabilities of remaining in the same basin fall
below 10%, which suggests that escaping from local optima would be easier for a first-
improvement local searcher.
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Fig. 2. Probability distribution of the network weights wij for outgoing edges with j 6= i (in
logscale on x-axis) for N = 16, K = 6. Averages on 30 independent landscapes.
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Fig. 3. Averages of wii weights (left), and averages of wij with j 6= i weights (right), for land-
scapes with N = 16 and all the K values.

3.2 Basins of attraction features

The previous section studied and compared the basic network features and connectivity
of the first and best LONs. The exhaustive extraction of the networks, also produced
detailed information of the corresponding basins of attraction. Therefore, this section
discusses the most relevant of the basin’s features.

Size of the global optimum basin: When exploring the average size of the global
optimum basin of the f-LONs, we found that they decrease exponentially with increas-
ing ruggedness (K values). This is consistent with the results for the b-LON on these
landscapes [7]. Moreover, the basins sizes for both networks are similar, with those of
f-LON being slightly smaller. This may suggest that for the the same number of runs,
the success rate of a first-improvement heuristic would be lower. One needs to consider,
however, that the number of evaluations per run is smaller in this case.

Basin sizes of the two network models: A comparative study of the basin sizes
of the two network models revealed that they are highly correlated. Only the small-
est basins of the f-LON model are larger in size when compared to the corresponding
smallest basins in the b-LON model.

Basin size and fitness of local optima: Fig. 4 reports the correlation coefficients
ρ between the networks’ basin sizes and their fitness, for both the first and best LONs,
and landscapes with N = 16 and all the K values. It can be observed that there is a
strong correlation between fitness and basin sizes for both types of networks. Indeed,
for K ≤ 10, the correlation is over ρ > 0.8. For rugged landscapes, K > 8, the f-LON
shows reduced and decreasing coefficients as compared to the b-LON.

Number of basins per solution on the f-LONs: According to the definition of
basins (see section 2), for the f-LON, a given solution may belong to a set of basins. Fig.
5 (a) shows the average number of basins to which a solution belongs (i.e. ]{i | pi(s) >
0}). It can be observed that for N = 16 and K = 4, a solution belongs to nearly 70% of
the total number of basins, whereas for K = 14, a solution belongs to less than 30% of
the total number of basins. On average, a solution belongs to less basins for high K than
for low K. An exploration of the average number of basin per solution, according to the
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Fig. 4. Average of the correlation coefficient between the fitness of local optima and their corre-
sponding basin sizes on 30 independent landscapes for both f-LON and b-LON (N = 16, and all
the K values).

solution fitness value (Fig. 5 (b), for N = 16) reveals a striking difference. While low
fitness solutions belong to nearly all basins, high fitness solutions belong to at most one
basin. The figure suggest the presence of a phase transition, in which the threshold of
the transition is lower for high K than for low K. This suggests that the structure of the
f-LON network for solutions with high fitness, resembles that of the b-LON, whereas
the topology is different with respect to solutions with low fitness.
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Fig. 5. (a) Average number of basins to which a solution belongs. (b) For N = 16 and 3 selected
values of K, the number of basins per solution according to the solution fitness value. Averages
on 30 independent landscapes.

4 Discussion

We have extended the recently proposed Local Optima Network (LON) model to ana-
lyze the structural differences between first and best improvement local search, in terms



of the local optima network connectivity and the nature of the corresponding basins of
attraction. The results of the analysis, on a set of NK landscapes can be summarized
as follows. The impact of landscape ruggedness (K value) on the network features is
similar for both models. First-improvement induces a densely connected network (in-
deed a complete network), while this is not the case on the best-improvement model.
However, many of the edges in the f-LON networks have very low weights. In par-
ticular, the self-connections (i.e. the probabilities of remaining in the same basin after
a bit-flip mutation), are much smaller in the f-LON than in the b-LON model, which
suggests that escaping from local optima would be easier for a first-improvement lo-
cal searcher. The path lengths between local optima, and between any optima and the
global optimum, are generally larger in f-LON than in b-LON networks. We must con-
sider, however, that the number of evaluations needed to explore a basin, would be N
times lower for first-improvement than for best-improvement. We, therefore, suggest
that first-improvement is a better heuristic for exploring NK landscapes. Our prelimi-
nary empirical results support this insight, a detailed account of them will be presented
elsewhere due to space restrictions. Most of our work on the local optima model has
been based on binary spaces and NK landscapes. However, we have recently started the
exploration of permutation search spaces, specifically the Quadratic Assignment Prob-
lem (QAP) [2], which opens up the possibility of analyzing other permutation based
problems such as the traveling salesman and the permutation flow shop problems. Our
current definition of transition probabilities, although very informative, produces highly
connected networks, which are not easy to study. Therefore, we are currently consid-
ering alternative definitions and threshold values for the connectivity. Finally, although
the local optima network model is still under development, we argue that it offers an
alternative view of combinatorial fitness landscapes, which can potentially contribute
to both our understanding of problem difficulty, and the design of effective heuristic
search algorithms.
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