

M. Keijzer et al. (Eds.): EuroGP 2005, LNCS 3447, pp X-XY, 2005, pp. 73 – 83, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evolving L-Systems to Capture Protein Structure
Native Conformations

Gabi Escuela1, Gabriela Ochoa2 and Natalio Krasnogor3

1,2 Department of Computer Science, Simon Bolivar University, Caracas, Venezuela
gabiescuela@netuno.net.ve, gabro@ldc.usb.ve

3 School of Computer Science and I.T., University of Nottingham
Natalio.Krasnogor@nottingham.ac.uk

Abstract. A protein is a linear chain of amino acids that folds into a unique func-
tional structure, called its native state. In this state, proteins show repeated sub-
structures like alpha helices and beta sheets. This suggests that native structures
may be captured by the formalism known as Lindenmayer systems (L-systems).
In this paper an evolutionary approach is used as the inference procedure for
folded structures on simple lattice models. The algorithm searches the space of L-
systems which are then executed to obtain the phenotype, thus our approach is
close to Grammatical Evolution. The problem is to find a set of rewriting rules
that represents a target native structure on the lattice model. The proposed ap-
proach has produced promising results for short sequences. Thus the foundations
are set for a novel encoding based on L-systems for evolutionary approaches to
both the Protein Structure Prediction and Inverse Folding Problems.

1 Introduction

The Protein Structure Prediction Problem (PSP) is among the most outstanding open
problems in Biochemistry. A successful approach for efficient and accurate prediction
would hasten a new era for biotechnology. A protein is as a linear sequence of units,
called amino acids, that under certain physical conditions folds into a unique func-
tional structure known as the native state or tertiary structure. This native state is the
key to understanding a proteins’ functionality in a living organism as an enzyme, a
storage, transport, messenger, antibody, or regulation molecule. The simplest models
for studying the properties of protein folding and structure prediction are based on lat-
tices (of 2 or 3 dimensions), these models capture the essential aspects of the folding
process while keeping low computational costs. The on-lattice hydrophobic-
hydrophilic (HP) model, assumes the hydrophobic effect of amino acids as the main
force governing folding.

The correspondence between amino acids and positions within a lattice is called
embedding of the protein. It was shown that finding the embedding of a protein is
NP-hard even for very simple lattice models [7,33]. Thus, the use of heuristics and
approximation algorithms became the most promising approach for the PSP. In
particular, several evolutionary algorithms have been suggested for solving this
problem [12,18,19,27,34]. All these approaches employ a direct encoding of the
folded chain (See Section 2).

74 G. Escuela, G. Ochoa and N. Krasnogor

This paper suggests a novel encoding scheme for the PSP based on Lindenmayer
systems. The rationale for this is twofold:

1. A protein structure often exhibits a high degree of regularity, with a wealth of
secondary structures, preferred motifs, and tertiary symmetries [8]; also, pro-
teins have been compared to fractals [32]. This is consistent with the recursive
nature of L-systems where rewriting rules lead to modular, auto-similar struc-
tures.

2. It is not clear that the encoding currently used in evolutionary algorithms for
HP models, namely, internal coordinates (see section 2.1) are suitable for cross-
over and building block transfer between individuals [4,15,16].

An evolutionary algorithm is proposed as the inference procedure for folded struc-
tures under the HP model in 2D lattices. The problem is to find a set of rewriting rules
(an L-system) that captures a target folded structure (which represents the native
state for a given protein) on the selected lattice model.

Evolutionary algorithms have been successfully applied to a variety of design
problems, but it is not clear whether evolutionary techniques can scale to the com-
plexities of real world designs. It has been argued that a generative or grammatical
encoding scheme, (i.e. an encoding that specifies how to construct the phenotype, in-
stead of a direct encoding of the phenotype) can achieve greater scalability through
self-similar and hierarchical structure [1,2,10]. Moreover, by reusing parts of the
genotype while generating the phenotype, a generative encoding is a more compact
encoding of a solution. These approaches to encoding have had an enormous success;
we point the reader to [25,30,31] for a general overview of grammatical evolution and
to [26] for an application of grammatical evolution to a problem related to the one we
focus on here.

L-systems as a generative encoding have been used in previous applications of
evolutionary algorithms to problems in biology, medicine, engineering, and computer
graphics. The production of plant structures [3,6,13,24,28] has been the most studied
case; where results have shown the usefulness of this encoding, both to obtain struc-
tures resembling natural organisms, and in the generation of artificial designs with
novel features. Furthermore, L-systems grammars have proved to be a powerful geno-
type encoding to represent blood circulation of the human retina [14], physical design
of tables, robots, and virtual creatures [9,11], and in the design of transmission towers
[29].

We proceed as follows: Section 2 provides the theoretical basis of the PSP; section
3 describes the mathematical formalism of L-systems. The proposed approach is
presented in Section 4. Section 5 describes the experiments and results; and finally
section 6 concludes and comments on future work.

2 The Protein Structure Prediction Problem Simplified

Proteins are the building blocks and functional units of all biological systems. There
are 20 naturally occurring amino acids that make up protein chains. The amino acid’s
chain of a protein is known as its primary structure and usually contains about 30 to
400 acids. The primary structure folds in space and forms secondary structures. These
secondary structures present specific signatures like α-helices and β-sheets. In turn,

 Evolving L-Systems to Capture Protein Structure Native Conformations 75

secondary motifs fold yet again and aggregate in space giving raise to a 3D conforma-
tion, the tertiary structure. The tertiary structure conforms a very specific geometric
pattern (the native state).

2.1 The HP Model

In the HP model [5], only two types of monomers are distinguished: hydrophobic (H),
and polar or hydrophilic (P). The hydrophobic monomers tend to occupy the center of
the protein, staying close to each other to avoid surrounding water, whereas the polar
residues are attracted to water and are frequently found on the convex hull of the na-
tive state. The set of valid protein structure conformations is the space of all self-
avoiding paths (on a selected lattice, e.g., square 2D, triangular, cubic, diamond, etc.),
with each amino acid located on a lattice bead. Hydrophobic units that are adjacent in
the lattice but non-adjacent in the sequence (also called non-local H-H contacts) add a
constant negative factor (generally ε=-1) and all other interactions are ignored. The
native state is thought to be the global energy minimum.

In the HP model, the structures can be represented by Cartesian coordinates, inter-
nal coordinates or distance geometry. We concentrate here on internal coordinates,
which can be defined as absolute or relative. Under the absolute encoding, the struc-
tures are represented by a list of absolute moves. In a 2D square lattice, for example, a
structure s is encoded as a string s = {Up, Down, Left, Right}+ . When using a rela-
tive coordinates, each move is interpreted in terms of the previous one, like in LOGO
turtle graphics; a structure s is encoded as a string s = {Forward, TurnLeft, Turn-
Right}+. Designing with black the hydrophobic residues and white the polar ones, the
structure of Figure 1 is coded either as s =RDDLULDLDLUURULURRD (absolute
encoding) or s = RFRRLLRLRRFRLLRRFR (relative encoding), with 9 non-local H-H
contacts.

Fig. 1. Native structure in the square 2D lattice for the primary sequence
HPHPPHHPHPPHPHHPPHPH. The arrow indicates the starting point, and the dotted lines the
non-local H-H contacts

3 L-Systems

Aristid Lindenmayer (a biologist) proposed in 1968 an axiomatic foundation for bio-
logical development called L-systems [21]. More recently, L-systems have found sev-
eral applications in computer graphics [28]; two principal areas include generation of
fractals and realistic modeling of plants. Central to L-systems, is the notion of rewrit-
ing, where the idea is to define complex objects by successively replacing parts of
a simple object using a set of rewriting rules or productions. The rewriting can be
carried out recursively. The most extensively studied and best understood rewriting

76 G. Escuela, G. Ochoa and N. Krasnogor

systems operate on character strings. The essential difference between the most
known Chomsky grammars and L-systems lies in the method of applying productions.
In Chomsky grammars productions are applied sequentially, whereas in L-systems
they are applied in parallel, replacing simultaneously all letters in a given word. This
difference reflects the biological motivation of L-systems. Productions are intended to
capture cell divisions in multicellular organisms, where many divisions may occur at
the same time.

3.1 D0L-Systems

The simplest class of L-systems is the D0L-systems (deterministic and context free).
To provide an intuitive understanding of the main idea, let us consider the example
given by Prusinkiewicz and Lindenmayer [28] (See Figure 2.).

“Lets us consider strings built of two letters a and b (they may occur many times in
a string). For each letter we specify a rewriting rule. The rule a → ab means that the
letter a is to be replaced by the string ab, and the rule b → a means that the letter b
is to be replaced by a. The rewriting process starts from a distinguished string
called the axiom. Let us assume that it consist of a single letter b. In the first deriva-
tion step (the first step of rewriting) the axiom b is replaced by a using production b
→ a. In the second step a is replaced by ab using the production a → ab. The word
ab consist of two letters, both of which are simultaneously replaced in the next
derivation step. Thus, a is replaced by ab , b is replaced by a, and the string aba re-
sults. In a similar way (by the simultaneous replacement of all letters), the string
aba yields abaab which in turn yields abaababa, then abaababaabaab, and so on.”

b
|
a
_|

a b
_| |

a b a
__| | |__
a b a a b

_| / __| |__ \
a b a a b a b a

Fig. 2. A D0L-system derivation example

4 Method

Our proposed approach uses an evolutionary algorithm that, given a target structure in
internal relative coordinates (input), will evolve an L-system L (output) that, once
evaluated, would produce a string that matches the original target. For instance, the
end-product of the EA run for the structure in Figure 1 would be an L whose ter-
mination word is RFRRLLRLRRFRLLRRFR.

A generational EA with linear ranking selection and elitism was used to evolve sets
of rewriting rules or L-systems that capture a target structure. As the variation opera-

 Evolving L-Systems to Capture Protein Structure Native Conformations 77

tors, a recombination and three mutation operators were implemented. Two stopping
criteria were considered: (i) if an individual arises the maximum fitness, that is, its L-
system grammar exactly represents the target folding; and (ii) a predefined maximum
number of generations is reached. The genotype encoding, initial population, genetic
operators, and fitness evaluation are described below. Furthermore, the specific
values for the various algorithm’s parameters used in the experiments, are listed in
Section 5.

4.1 Genotype Encoding and Initial Population

The L-system’s alphabet will depend on the lattice and coordinate system used. For
the experiments reported here, we selected the square 2D lattice with relative coordi-
nates. Thus, the terminal characters are the symbols {F, L, R}.

Genotypes are encoded using D0L-systems with the following characteristics:

Alphabet: Σ=Σt ∪ Σnt where Σt={F,L,R} terminal characters and
Σnt={0,1,2,...,m-1} non-terminal characters

representing rewriting rules
 Axiom: α = S S ∈ Σ+

 Rewriting rules: W0,1,2,...,m-1: w, where w ∈ Σ+

A string representing the axiom, the number of rewriting rules and the strings rep-
resenting each rule, determine the genotype of an individual. The maximum lengths
of the axiom and rules, as well as the number of rules are parameters that will depend
on the length of the original folding. As the maximum values are held as parameters,
the specific values for each individual within a population may differ.

Let max_r, max_la, and max_lr be the maximum number of rules, and maximum
string lengths for the axiom and production rules respectively; an individual of the ini-
tial population is generated as follows: the number of rules is randomly selected in the
range 1 to max_r, this define the non-terminal characters allowed for the individual.
The axiom is a randomly generated string of symbols of maximum length max_la
where each symbol is selected with uniform distribution from the alphabet Σ. Thereaf-
ter, each rule is generated in a similar way as the axiom, with a maximum length of
max_lr.

4.2 Genetic Operators

Recombination takes two individuals, p1 and p2 as parents and creates one offspring,
o, by copying the axiom of p1 and selecting rules from either p1 or p2 with a prob-
ability of 0.5; this recombination operator resembles uniform crossover, where the in-
terchanged genes are complete rules. To maintain consistency, if a selected rule to
conform o makes reference to a symbol (rule) not defined in o, then a repair operator
changes that symbol for a suitable symbol (either terminal or non-terminal). Fig. 3
shows an example of how this operator is applied.
 A mate selection strategy (dissasortative mating) was also implemented as a
mechanism for increasing the population genetic diversity. Dissasortative mating was
implemented as follows: when selecting two individuals for a crossover, the first par

78 G. Escuela, G. Ochoa and N. Krasnogor

Fig. 3. Genotype, phenotype and fitness from parents and offspring in a recombination where o
inherits the rules 0,1 from p1 and 2,3 from p2

ent was selected as usual. To chose the second parent, a set of s (scan size) individu-
als were selected using the GA fitness-based selection method. Thereafter, the simi-
larity between each of these s phenotypes and the first parent was computed, the phe-
notype with less similarity was chosen. For the experiments reported here, Hamming
distance was used as the similarity measure, and the scan size s was set to 5.

Three mutation operators were implemented that perform: (i) addition, (ii) deletion,
or (iii) modification of a single symbol that conforms either the axiom or the rewriting
rules of each individual. When a mutation is to be performed, 60 % of times it will be
a modification, 30 % an addition, and 10 % deletion.

4.3 Derivation Process, Post-processing and Fitness Calculation

For computing an individual’s fitness, its L-system is derived. That is, starting from
the axiom, the rewriting rules are applied in a parallel and iterated way, until either
the number of terminal characters becomes equal to or greater than the string length
of the target folding; or no more non-terminal characters are present in the string.
Thereafter, a post-processing phase prunes the non-terminal symbols in the string to
produce the phenotype. The fitness value will be the number of matches between the
produced phenotype and the target folding, that is a generalized Hamming distance.
So, the minimum fitness is 0 and the maximum is the length of the desired folding.

Fig. 4. Example of a derivation process

RFLRLLRLRRFRLLRRFL RFRRLLLRLLRLRRFRL RFRRLLRLRRFRLLRRFR

p1

axiom= R2
rules={0:R03F; 1:R01L;
 2:F310; 3:LRL3}

fitness= 16 fitness=7

+ p2

axiom= R2
rules={0:R023; 1:01L3;
 2:F310; 3:R3L1} = o

axiom= R2
rules={0:R03F; 1:R01L;
 2:F310; 3:R3L1}

fitness=18

31

R0RL RFR1

RFR R0RL R 3LL2 RL

RFRR 3LL2 RL R RFR1 LL RRF RL

RFRRLLRLRRFRLLRRFR

axiom

1st step

2nd step

3rd step

post-processing

axiom= 31
rules={0:3LL2; 1:R0RL; 2:RRF; 3:RFR1}

phenotype
fitness= 18

genotype

3 1

1 0

0 3 2

 Evolving L-Systems to Capture Protein Structure Native Conformations 79

Figure 4 illustrates the derivation process for an individual (Solution 1 of Table 3)
Three derivation steps, and the final result after a post-processing stage, are shown.
In this case, the phenotype matches exactly the target RFRRLLRLRRFRLLRRFR.

5 Experiments and Results

We selected four protein instances from the HP benchmark available at
http://www.cs.nott.ac.uk/~nxk/hppdb.html. Thereafter, their foldings embedded in the
2D square lattice with relative coordinates, were found using MAFRA (Memetic Al-
gorithm FRAmework) [17]. Each of the obtained foldings was set as the target for our
evolutionary approach, using the parameters listed in Table 1.

Table 1. Parameter values used for the experiments

Parameter Value
Max. Number of Generations 2000

Population Size 50
Mating Strategy Disassortative 5

Mutation rate (per symbol) Axiom 0.05
Mutation rate (per symbol) Rules 0.05

Recombination rate 1.00
Max. Number of Rules 4-5
Max. Length for Axiom 3
Max. Length for Rules 5

Table 2 summarises the results obtained for the selected four instances. The num-

ber of successes (runs that produced the target folding exactly) out of 50 runs, and a
selected solution (L-system) are shown for each instance.

Table 2. Results for 4 instances (50 runs each)

Instance Length Successes One Solution

HPHPPHHPHPPHPHHPPHPH→
RFRRLLRLRRFRLLRRFR

18 5/50 (4 rules) See Table 3

HHHPPHPHPHPPHPHPHPPH →
RRFRFRLFRRFLRLRFRR

18 3/50 (4 rules) axiom = R2
4 rules = {0:RLR;
1:3F32L; 2:1FR33;
3:R102}

HHPPHPPHPPHPPHPPHPPHPPHH →
RLLFLFFRRFLLFRRLRFFRRF

22 0/50 (4 rules)
1/50 (5 rules)

axiom = 1R
5 rules = { 0:4LF3;
1:RL243; 2:00F3;
3:RRFL; 4:0R14F}

PPHPPHHPPPPHHPPPPHHPPPPHH →
FFRRFFFLLFFFFRRFFFFLLFF

23 1/50 (5 rules) axiom= 32
4 rules = {0:20R2;
1:132F; 2:FF012;
3:0FLL}

80 G. Escuela, G. Ochoa and N. Krasnogor

Table 3. Some results obtained for the folding RFRRLLRLRRFRLLRRFR

Solution Axiom Rewriting rules
1 31 0:3LL2 1:R0RL 2:RRF 3:RFR1
2 31 0:3L23 1:R0L1 2:1LR 3:RFR1
3 31 0:3LLR 1:R02L 2:23 3:RFR1
4 021 0:1R2LR 1:R1F1R 2:1LLR1
5 11 0:2210L 1:RF30R 2:LR2 3:RRL

6 (bs) 01F 0:RFR1 1:2L2 2:R0L
7 RF3 0:3RFR 1:312L (nu) 2:RRLLR 3:20L0R
8 RF3 0:R3L0 1:0L2R1 2:231RF 3:0R20L
9 RF0 0:R1LL0 1:0R2FR 2:LRR

10 RF2 0:12RR0 1:RLL3R 2:R1F0 3:RL12R
11 12 0:RL10 1:RF2R 2:30L3L 3:12R1
12 30 0:RFR10 1:LL3R 2:3F13 (nu) 3:0R1LR
13 30 0:R32 1:01L2 2:030R 3:RFR1L

(bs: best solution, since it has fewer and shorter rules)
(nu: not used)

Table 3 shows results for the first target folding (length 18). Several L-systems (of

3 and 4 rules) that successfully capture the folded structure were found by the evolu-
tionary algorithm. Some solutions (7 and 12) evolved rules that were not used in the
derivation process. We distinguished solution 6 as the best obtained in this set, since it
has fewer and shorter rules. Notice that some substrings that appear several times in
the folded chain (e.g. RFR) also are present as part of the evolved rules. This supports
the idea that the L-system captures the natural occurring substructures in the protein.

Fig. 5. Evolutionary progression towards the target structure (1st instance in Table 2)

 Evolving L-Systems to Capture Protein Structure Native Conformations 81

 Figure 5 shows the progression towards the target structure (1st instance in Table 2)
as generations go by. The axiom, rules, fitness value, internal coordinates word, and
graphical representation are displayed.

We would like to note that during the EA run, the production of illegal (not self-
avoiding) structures was allowed (see for example the structure in generation 1 and
100 in Fig.5). However a successful L-system is only accepted when it is fully
self-avoiding (like in generation 305). Also note that a given target structure may
have various internal coordinates’ representations (modulus rigid rotations), and that
various distinct L-systems could produce the same internal coordinates word.

It is worth mentioning that the level of difficulty for evolving an adequate L-
system widely varies with the instance selected. Additional to the folding’s length;
some instances seem more difficult than others. Our intuition is that the level
of modularity and repetition within the protein folding varies across the space of
possible structures.

6 Discussion

An evolutionary algorithm discovered L-systems that capture a target folding under
the HP model in 2D lattices. These promising results set the foundations of a novel
generative encoding for evolutionary approaches to both the protein structure predic-
tion problem and inverse protein folding problem. We suggest that a generative en-
coding (i.e. a developmental approach for producing structures using a set of gram-
matical rewriting rules – L-system) may have better scaling properties than the direct
internal coordinates encoding [1,2,10]. As noted in the previous section there are sev-
eral symmetries that could be explicitly handled as to enhance the evolutionary
search. Further work should test this hypothesis. Longer chains and 3D lattices should
also be explored. The final goal will be to use an evolutionary approach with an L-
system’s encoding to solve challenging instances of the protein structure prediction
and to evolve primary sequences which fold to specific native states (inverse folding).

References

1. Bentley, P. J.: Exploring component-based representations: the secret of creativity by evo-
lution? Fourth International Conference on Adaptive Computing in Design and Manufac-
ture (ACDM 2000), 2000.

2. Bentley, P. J. and S. Kumar.: Three ways to grow designs: A comparison of embryogenies
of an evolutionary design problem. In Banzhaf, Daida, Eiben, Garzon, Honavar, Jakiel,
and Smith, editors, Genetic and Evolutionary Computation Conference, pages 35–43,
1999.

3. Curry, R.: On the Evolution of Parametric L-systems. Technical Report 1999-644-07.
University of Calgary, Canadá, 1999.

4. De la Canal, E., Krasnogor, N., Marcos, D., Pelta, D. and Risi, W.: Encoding and Cross
over Mismatch in a Molecular Design Problem. Proceedings of Artificial Intelligence in
Design '98 (AID98). 1998.

5. Dill, K.: Theory for the folding and stability of globular proteins. Biochemistry, 24:1501,
1985.

6. Ebner, M., Grigore, A., Heffer, A., y Albert, J.: Coevolution produces an arms race among
virtual plants. In James A. Foster, Evelyne Lutton, Julian Miller, Conor Ryan, and Andrea
G. B. Tettamanzi (editors): Proceedings of the Fifth European Conference on Genetic Pro-
gramming (EuroGP 2002), Kinsale, Ireland, pp. 316-325, Springer-Verlag, 2002.

82 G. Escuela, G. Ochoa and N. Krasnogor

7. Fraenkel, A.: Complexity of protein folding. Bull. Math Biol, 55:1199-1210, 1993.
8. Helling, R., Li, H., Miller, J., Mélin, R., Wingreen, N., Zeng, C., and Tang, C.: The Des-

ignability of Protein Structures. J. Mol. Graph. Model. 19, 157. 2001.
9. Hornby, G. and Pollack, J.: Evolving L-Systems to Generate Virtual Creatures. Computers

and Graphics. 25:6, pp 1041-1048, 2001.
10. Hornby, G. and Pollack, J.: The advantages of Generative Grammatical Encodings for

Physical Design. Congress on Evolutionary Computation 2001 (CEC01), 2001.
11. Hornby, G., Lipson, H., and Pollack, J.: Evolution of Generative Design Systems for

Modular Physical Robots. IEEE International Conference on Robotics and Automation
(ICRA), 2001.

12. Khimasia, M. and Coveney, P.: Protein structure prediction as a hard optimization prob-
lem: The genetic algorithm approach. In Molecular Simulation, volume 19, pages 205-
226, 1997.

13. Kókai, G. Tóth, Z. and Ványi, R.: Evolving Artificial Trees described by Parametric L-
Systems. In Proc. IEEE Canadian Conference on Electrical & Computer Engineering,
Shaw Conference Centre, Canada, pages 1722-1728, 1999.

14. Kókai, G., Tóth, Z. and Ványi, R.: Modelling Blood Vesels of the Eye with Parametric L-
Systems using Evolutionary Algorithms. In the Proc Joint European Conference on Artifi-
cial Intelligence in Medicine and Medical Decision Making, Denmark published by
Springer-Verlag LNCS series 1620 pages 433-443, 1999.

15. Krasnogor, N. Pelta, D., Martinez, P. and De la Canal, E.: Genetic Algorithms for the Pro-
tein Folding Problem: a Critical View. Engineering of Intelligent Systems (E.I.S. 98), Pro-
ceedings of the conference, 1997.

16. Krasnogor, N., Marcos, D., Pelta, D. and Risi, W.: Protein Structure Prediction as a Com-
plex Adaptive System. Proceedings of Frontiers in Evolutionary Algorithms (FEA98),
1998.

17. Krasnogor, N. and Smith, J.: MAFRA: A Java Memetic Algorithms Framework. In A. Wu,
editor, Workshop Program, Proceedings of the 2000 Genetic and Evolutionary Computa-
tion Conference. Morgan Kaufmann, 2000.

18. Krasnogor, N., Blackburnem, B., Hirst, J. and Burke, E.: Multimeme Algorithms for Pro-
tein Structure Prediction. Proceedings of Parallel Problem Solving From Nature. Lecture
Notes in Computer Science, 2002.

19. Krasnogor, N.: Studies on the Theory and Design Space of Memetic Algorithms. Ph.D.
Dissertation, University of the West of England, 2002. Available [On-line] on
http://www.cs.nott.ac.uk/~nxk/papers.html

20. Liang, F. and Wong, W.: Evolutionary Monte Carlo for protein folding simulations. Jour-
nal of Chemical Physics, 115(7):3374-3380, 2001.

21. Lindenmayer, A.: Mathematical models for cellular interactions in development, parts I-II.
Journal of Theoretical Biology 18: 280-315, 1968.

22. Mock, K.: Wildwood: The Evolution of L-Systems Plants for Virtual Environments. In
Proc ICEC 98. IEEE-Press, Anchorage, Alaska, 1998.

23. Noser, H., Stucki, P., Walser, H.: Integration of Optimization by Genetic Algorithms into
an L-System Animation System. Proceedings of Computer Animation 2001, Seoul, Korea,
November 7-8, 2001, pp. 106-112, 2001.

24. Ochoa, G.: On genetic algorithms and Lindenmayer Systems. In A. Eiben, T. Baeck, M.
Schoenauer, y H.P. Schwefel, editors. Parallel Problem Solving from Nature V, pages
335-344. Springer-Verlag, 1998.

25. O’Neil M and Ryan C.: Grammatical Evolution: Evolutionary Automatic Programming in
an Arbitrary Language. Series : Genetic Programming , Vol. 4. Springer, 2003.

26. Ortega A., Dalhoun A. and Alfonseca M.: Grammatical Evolution to Design Fractal
Curves with a Given Dimension. IBM Journal Res & Dev, Vol7, Nro 47, 2003.

 Evolving L-Systems to Capture Protein Structure Native Conformations 83

27. Patton, A., Punch, W. and Goodman, E.: A Standard GA approach to native protein con-
formation prediction. In Proceedings of the Sixth International Conference on Genetic Al-
gorithms, pages 574-581. Morgan Kauffman, 1995.

28. Prusinkiewicz, P. and Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer-
Verlag, 1990.

29. Rudolph, S. and Alber, R.: An Evolutionary approach to the inverse problem in Rule-based
design representations. Proceedings of the 7th International Conference on Artificial Intel-
ligence in Design (AID’02), Cambridge University, UK, 2002, Kluwer Academic Publish-
ers.

30. Ryan C., Collins J.J. and O’Neil M.: Grammatical Evolution: Evolving Programs for an
Arbitrary Language. Proceedings of the First European Workshop on Genetic Program-
ming. 1998.

31. Ryan C., O’Neil M. and Collins J.J.: “Grammatical Evolution: Solving Trigonometric
Identities”. Proceedings of Mendel 1998: 4th International Mendel Conference on Genetic
Algorithms, Optimisation Problems, Fuzzy Logic, Neural Networks, Rough Sets. 1998

32. Sadana, A. and Vo-Dinh, T.: Biomedical implications of protein folding and misfolding.
Biotechnol. Appl. Biochem. 33, (7–16). Great Britain, 2001.

33. Unger, I. and Moult, J.: Finding the lowest free energy conformation of a protein is an NP-
hard problem: Proof and implications. Bull Math. Biol., 55:1183-1198, 1993.

34. Unger, I. and Moult, J.: Genetic Algorithms for protein folding simulations. Journal of
Molecular Biology, 231 (1);75-81, 1993.

