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Abstract. A protein is a linear chain of amino acids that folds into a unique func-
tional structure, called its native state. In this state, proteins show repeated sub-
structures like alpha helices and beta sheets.  This suggests that native structures 
may be captured by the formalism known as Lindenmayer systems (L-systems). 
In this paper an evolutionary approach is used as the inference procedure for 
folded structures on simple lattice models. The algorithm searches the space of L-
systems which are then executed to obtain the phenotype, thus our approach is 
close to Grammatical Evolution. The problem is to find a set of rewriting rules 
that represents a target native structure on the lattice model. The proposed ap-
proach has produced promising results for short sequences. Thus the foundations 
are set for a novel encoding based on L-systems for evolutionary approaches to 
both the Protein Structure Prediction and Inverse Folding Problems. 

1   Introduction 

The Protein Structure Prediction Problem (PSP) is among the most outstanding open 
problems in Biochemistry. A successful approach for efficient and accurate prediction 
would hasten a new era for biotechnology. A protein is as a linear sequence of units, 
called amino acids, that under certain physical conditions folds into a unique func-
tional structure known as the native state or tertiary structure. This native state is the 
key to understanding a proteins’ functionality in a living organism as an enzyme, a 
storage, transport, messenger, antibody, or regulation molecule. The simplest models 
for studying the properties of protein folding and structure prediction are based on lat-
tices (of 2 or 3 dimensions), these models capture the essential aspects of the folding 
process while keeping low computational costs. The on-lattice hydrophobic-
hydrophilic (HP) model, assumes the hydrophobic effect of amino acids as the main 
force governing  folding. 

The correspondence between amino acids and positions within a lattice is called 
embedding of the protein. It was shown that finding the embedding of a protein is  
NP-hard even for very simple lattice models [7,33]. Thus, the use of heuristics and 
approximation algorithms became the most promising approach for the PSP. In 
particular, several evolutionary algorithms have been suggested for solving this 
problem [12,18,19,27,34]. All these approaches employ a direct encoding of the 
folded chain (See Section 2).  
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This paper suggests a novel encoding scheme for the PSP based on Lindenmayer 
systems. The rationale for this is twofold: 

1. A protein structure often exhibits a high degree of regularity, with a wealth of 
secondary structures, preferred motifs, and tertiary symmetries [8]; also, pro-
teins have been compared to fractals [32]. This is consistent with the recursive 
nature of L-systems where rewriting rules lead to modular, auto-similar struc-
tures. 

2. It is not clear that the encoding currently used in evolutionary algorithms for 
HP models, namely, internal coordinates (see section 2.1) are suitable for cross-
over and building block transfer between individuals [4,15,16]. 

An evolutionary algorithm is proposed as the inference procedure for folded struc-
tures under the HP model in 2D lattices. The problem is to find a set of rewriting rules 
(an L-system) that captures a target folded structure (which represents the native 
state for a given protein) on the selected lattice model.  

Evolutionary algorithms have been successfully applied to a variety of design 
problems, but it is not clear whether evolutionary techniques can scale to the com-
plexities of real world designs. It has been argued that a generative or grammatical 
encoding scheme, (i.e. an encoding that specifies how to construct the phenotype, in-
stead of a direct encoding of the phenotype) can achieve greater scalability through 
self-similar and hierarchical structure [1,2,10].  Moreover, by reusing parts of the 
genotype while generating the phenotype, a generative encoding is a more compact 
encoding of a solution. These approaches to encoding have had an enormous success; 
we point the reader to [25,30,31] for a general overview of grammatical evolution and 
to [26] for an application of grammatical evolution to a problem related to the one we 
focus on here. 

L-systems as a generative encoding have been used in previous applications of 
evolutionary algorithms to problems in biology, medicine, engineering, and computer 
graphics. The production of plant structures [3,6,13,24,28] has been the most studied 
case; where results have shown the usefulness of this encoding, both to obtain struc-
tures resembling natural organisms, and in the generation of artificial designs with 
novel features. Furthermore, L-systems grammars have proved to be a powerful geno-
type encoding to represent blood circulation of the human retina [14], physical design 
of tables, robots, and virtual creatures [9,11], and in the design of transmission towers 
[29]. 

We proceed as follows: Section 2 provides the theoretical basis of the PSP; section 
3 describes the mathematical formalism of L-systems. The proposed approach is  
presented in Section 4. Section 5 describes the experiments and results; and finally 
section 6 concludes and comments on future work. 

2   The Protein Structure Prediction Problem Simplified 

Proteins are the building blocks and functional units of all biological systems. There 
are 20 naturally occurring amino acids that make up protein chains.  The amino acid’s 
chain of a protein is known as its primary structure and usually contains about 30 to 
400 acids. The primary structure folds in space and forms secondary structures. These 
secondary structures present specific signatures like α-helices and β-sheets. In turn, 
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secondary motifs fold yet again and aggregate in space giving raise to a 3D conforma-
tion, the tertiary structure. The tertiary structure conforms a very specific geometric 
pattern (the native state).  

2.1   The HP Model 

In the HP model [5], only two types of monomers are distinguished: hydrophobic (H), 
and polar or hydrophilic (P). The hydrophobic monomers tend to occupy the center of 
the protein, staying close to each other to avoid surrounding water, whereas the polar 
residues are attracted to water and are frequently found on the convex hull of the na-
tive state. The set of valid protein structure conformations is the space of all self-
avoiding paths (on a selected lattice, e.g., square 2D, triangular, cubic, diamond, etc.), 
with each amino acid located on a lattice bead.  Hydrophobic units that are adjacent in 
the lattice but non-adjacent in the sequence (also called non-local H-H contacts) add a 
constant negative factor (generally ε=-1) and all other interactions are ignored.  The 
native state is thought to be the global energy minimum. 

In the HP model, the structures can be represented by Cartesian coordinates, inter-
nal coordinates or distance geometry. We concentrate here on internal coordinates, 
which can be defined as absolute or relative. Under the absolute encoding, the struc-
tures are represented by a list of absolute moves. In a 2D square lattice, for example, a 
structure s is encoded as a string s = {Up, Down, Left, Right}+ . When using a rela-
tive coordinates, each move is interpreted in terms of the previous one, like in LOGO 
turtle graphics; a structure s is encoded as a string s = {Forward, TurnLeft, Turn-
Right}+. Designing with black the hydrophobic residues and white the polar ones, the 
structure of Figure 1 is coded either as s =RDDLULDLDLUURULURRD (absolute 
encoding) or s = RFRRLLRLRRFRLLRRFR (relative encoding), with 9 non-local H-H 
contacts. 

 
Fig. 1. Native structure in the square 2D lattice for the primary sequence 
HPHPPHHPHPPHPHHPPHPH. The arrow indicates the starting point, and the dotted lines the 
non-local H-H contacts 

3   L-Systems  

Aristid Lindenmayer (a biologist) proposed in 1968 an axiomatic foundation for bio-
logical development called L-systems [21]. More recently, L-systems have found sev-
eral applications in computer graphics [28]; two principal areas include generation of 
fractals and realistic modeling of plants. Central to L-systems, is the notion of rewrit-
ing, where the idea is to define complex objects by successively replacing parts of  
a simple object using a set of rewriting rules or productions. The rewriting can be  
carried out recursively. The most extensively studied and best understood rewriting 
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systems operate on character strings. The essential difference between the most 
known Chomsky grammars and L-systems lies in the method of applying productions. 
In Chomsky grammars productions are applied sequentially, whereas in L-systems 
they are applied in parallel, replacing simultaneously all letters in a given word. This 
difference reflects the biological motivation of L-systems. Productions are intended to 
capture cell divisions in multicellular organisms, where many divisions may occur at 
the same time. 

3.1   D0L-Systems 

The simplest class of L-systems is the D0L-systems (deterministic and context free). 
To provide an intuitive understanding of the main idea, let us consider the example 
given by Prusinkiewicz and Lindenmayer [28] (See Figure 2.). 
 

“Lets us consider strings built of two letters a and b (they may occur many times in 
a string). For each letter we specify a rewriting rule. The rule a → ab means that the 
letter a is to be replaced by the string  ab, and the rule b → a means that the letter b 
is to be replaced by a. The rewriting process starts from a distinguished string 
called the axiom. Let us assume that it consist of a single letter b. In the first deriva-
tion step (the first step of rewriting) the axiom b is replaced by a using production b 
→ a. In the second step a is replaced by ab using the production a → ab. The word 
ab consist of two letters, both of which are simultaneously replaced in the next 
derivation step. Thus, a is replaced by ab , b is replaced by a, and the string aba re-
sults. In a similar way (by the simultaneous replacement of all letters), the string 
aba yields abaab which in turn yields abaababa, then abaababaabaab, and so on.” 

 
b 
| 
a 
_| 

a b 
_| | 

a b a 
__| | |__ 
a b a a b 

_| / __| |__ \ 
a b a a b a b a 

 
Fig. 2.  A D0L-system derivation example 

4   Method 

Our proposed approach uses an evolutionary algorithm that, given a target structure in 
internal relative coordinates (input), will evolve an L-system L (output) that, once 
evaluated, would produce a string  that matches the original target. For instance, the 
end-product of the EA run for  the structure in  Figure 1 would be an L  whose ter-
mination word is RFRRLLRLRRFRLLRRFR. 

A generational EA with linear ranking selection and elitism was used to evolve sets 
of rewriting rules or L-systems that capture a target structure. As the variation opera-
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tors, a recombination and three mutation operators were implemented.  Two stopping 
criteria were considered: (i) if an individual arises the maximum fitness, that is, its L-
system grammar exactly represents the target folding; and (ii) a predefined maximum 
number of generations is reached. The genotype encoding, initial population, genetic 
operators, and fitness evaluation are described below. Furthermore, the specific  
values for the various algorithm’s parameters used in the experiments, are listed in 
Section 5. 

4.1   Genotype Encoding and Initial Population 

The L-system’s alphabet will depend on the lattice and coordinate system used.  For 
the experiments reported here, we selected the square 2D lattice with relative coordi-
nates. Thus, the terminal characters are the symbols {F, L, R}. 

Genotypes are encoded using D0L-systems with the following characteristics: 

Alphabet: Σ=Σt ∪ Σnt  where Σt={F,L,R} terminal characters and 
Σnt={0,1,2,...,m-1} non-terminal characters 

representing rewriting rules 
 Axiom: α = S  S ∈ Σ+  

 Rewriting rules:   W0,1,2,...,m-1: w, where w ∈ Σ+  

A string representing the axiom, the number of rewriting rules and the strings rep-
resenting each rule, determine the genotype of an individual. The maximum lengths 
of the axiom and rules, as well as the number of rules are parameters that will depend 
on the length of the original folding. As the maximum values are held as parameters, 
the specific values for each individual within a population may differ.   

Let max_r, max_la, and max_lr be the maximum number of rules, and maximum 
string lengths for the axiom and production rules respectively; an individual of the ini-
tial population is generated as follows: the number of rules is randomly selected in the 
range 1 to max_r, this define the non-terminal characters allowed for the individual. 
The axiom is a randomly generated string of symbols of maximum length max_la 
where each symbol is selected with uniform distribution from the alphabet Σ. Thereaf-
ter, each rule is generated in a similar way as the axiom, with a maximum length of 
max_lr. 

4.2   Genetic Operators 

Recombination takes two individuals, p1 and p2 as parents and creates one offspring, 
o, by copying the axiom of p1 and selecting rules from either p1 or p2 with a prob-
ability of 0.5; this recombination operator resembles uniform crossover, where the in-
terchanged genes are complete rules. To maintain consistency, if a selected rule to 
conform o makes reference to a symbol (rule) not defined in o, then a repair operator 
changes that symbol for a suitable symbol (either terminal or non-terminal). Fig. 3 
shows an example of how this operator is applied. 
     A mate selection strategy (dissasortative mating) was also implemented as a 
mechanism for increasing the population genetic diversity. Dissasortative mating was 
implemented as follows: when selecting two individuals for a crossover,  the  first  par 
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Fig. 3. Genotype, phenotype and fitness from parents and offspring in a recombination where o 
inherits the rules 0,1 from p1 and 2,3 from p2 
 
ent was selected as usual. To chose the second parent, a set of s (scan size) individu-
als were selected using the GA fitness-based selection method. Thereafter, the simi-
larity between each of these s phenotypes and the first parent was computed, the phe-
notype with less similarity was chosen. For the experiments reported here, Hamming 
distance was used as the similarity measure, and the scan size s was set to 5. 

Three mutation operators were implemented that perform: (i) addition, (ii) deletion, 
or (iii) modification of a single symbol that conforms either the axiom or the rewriting 
rules of each individual. When a mutation is to be performed, 60 % of times it will be 
a modification, 30 % an addition, and 10 % deletion. 

4.3   Derivation Process, Post-processing and Fitness Calculation 

For computing an individual’s fitness, its L-system is derived. That is, starting from 
the axiom, the rewriting rules are applied in a parallel and iterated way, until either 
the number of terminal characters becomes equal to or greater than the string length 
of the target folding; or no more non-terminal characters are present in the string. 
Thereafter, a post-processing phase prunes the non-terminal symbols in the string to 
produce the phenotype. The fitness value will be the number of matches between the 
produced phenotype and the target folding, that is a generalized Hamming distance. 
So, the minimum fitness is 0 and the maximum is the length of the desired folding.  

 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 

Fig. 4. Example of a derivation process 

RFLRLLRLRRFRLLRRFL RFRRLLLRLLRLRRFRL RFRRLLRLRRFRLLRRFR 

p1 

axiom= R2 
rules={0:R03F; 1:R01L; 
           2:F310; 3:LRL3} 

fitness= 16 fitness=7

+ p2 

axiom= R2 
rules={0:R023; 1:01L3; 
          2:F310; 3:R3L1} = o

axiom= R2 
rules={0:R03F; 1:R01L; 
          2:F310; 3:R3L1} 

fitness=18

31 

R0RL RFR1 

RFR R0RL R 3LL2 RL 

RFRR 3LL2 RL R RFR1 LL RRF RL 

RFRRLLRLRRFRLLRRFR 

axiom 

1st step 

2nd step 

3rd step 

post-processing 

axiom= 31 
rules={0:3LL2; 1:R0RL; 2:RRF; 3:RFR1} 

phenotype 
fitness= 18 

genotype 

3 1

1 0

0 3 2
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Figure 4 illustrates the derivation process for an individual (Solution 1 of Table 3) 
Three derivation steps,  and the final result after a post-processing stage, are shown.  
In this case, the phenotype matches exactly  the target RFRRLLRLRRFRLLRRFR. 

5   Experiments and Results 

We selected four protein instances from the HP benchmark available at 
http://www.cs.nott.ac.uk/~nxk/hppdb.html. Thereafter, their foldings embedded in the 
2D square lattice with relative coordinates, were found using MAFRA (Memetic Al-
gorithm FRAmework) [17]. Each of the obtained foldings was set as the target for our 
evolutionary approach, using the parameters listed in Table 1. 

Table 1. Parameter values used for the experiments 

Parameter Value 
Max. Number of Generations 2000 

Population Size 50 
Mating Strategy Disassortative 5 

Mutation rate (per symbol)  Axiom 0.05 
Mutation rate (per symbol)  Rules 0.05 

Recombination rate 1.00 
Max. Number of Rules 4-5 
Max. Length for Axiom 3 
Max. Length for Rules 5 

 
Table 2 summarises the results obtained for the selected four instances. The num-

ber of successes (runs that produced the target folding exactly) out of 50 runs, and a 
selected solution (L-system) are shown for each instance. 

 

Table 2. Results for 4 instances (50 runs each) 

Instance Length Successes One Solution 

HPHPPHHPHPPHPHHPPHPH→ 
RFRRLLRLRRFRLLRRFR 

18 5/50 (4 rules) See Table 3 

HHHPPHPHPHPPHPHPHPPH → 
RRFRFRLFRRFLRLRFRR 

18 3/50 (4 rules) axiom = R2 
4 rules = {0:RLR; 
1:3F32L; 2:1FR33; 
3:R102} 

HHPPHPPHPPHPPHPPHPPHPPHH → 
RLLFLFFRRFLLFRRLRFFRRF 

22 0/50 (4 rules) 
1/50 (5 rules) 

axiom = 1R 
5 rules = { 0:4LF3; 
1:RL243; 2:00F3; 
3:RRFL; 4:0R14F} 

PPHPPHHPPPPHHPPPPHHPPPPHH → 
FFRRFFFLLFFFFRRFFFFLLFF 

23 1/50 (5 rules) axiom= 32 
4 rules = {0:20R2; 
1:132F; 2:FF012; 
3:0FLL} 

 



80 G. Escuela, G. Ochoa and N. Krasnogor 

 

Table 3. Some results obtained for the folding RFRRLLRLRRFRLLRRFR 

Solution Axiom Rewriting rules 
1 31 0:3LL2 1:R0RL 2:RRF 3:RFR1 
2 31 0:3L23 1:R0L1 2:1LR 3:RFR1 
3 31 0:3LLR 1:R02L 2:23 3:RFR1 
4 021 0:1R2LR 1:R1F1R 2:1LLR1  
5 11 0:2210L 1:RF30R 2:LR2 3:RRL 

6 (bs) 01F 0:RFR1 1:2L2 2:R0L  
7 RF3 0:3RFR 1:312L (nu) 2:RRLLR 3:20L0R 
8 RF3 0:R3L0 1:0L2R1 2:231RF 3:0R20L 
9 RF0 0:R1LL0 1:0R2FR 2:LRR  

10 RF2 0:12RR0 1:RLL3R 2:R1F0 3:RL12R 
11 12 0:RL10 1:RF2R 2:30L3L 3:12R1 
12 30 0:RFR10 1:LL3R 2:3F13 (nu) 3:0R1LR 
13 30 0:R32 1:01L2 2:030R 3:RFR1L 

(bs: best solution, since it has fewer and shorter rules) 
(nu: not used) 
 
Table 3 shows results for the first target folding (length 18). Several L-systems (of 

3 and 4 rules) that successfully capture the folded structure were found by the evolu-
tionary algorithm.  Some solutions (7 and 12) evolved rules that were not used in the 
derivation process. We distinguished solution 6 as the best obtained in this set, since it 
has fewer and shorter rules. Notice that some substrings that appear several times in 
the folded chain (e.g. RFR) also are present as part of the evolved rules. This supports 
the idea that the L-system captures the natural occurring substructures in the protein. 

 
Fig. 5. Evolutionary progression towards the target structure (1st instance in Table 2) 
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     Figure 5 shows the progression towards the target structure (1st instance in Table 2) 
as generations go by. The axiom, rules, fitness value, internal coordinates word, and 
graphical representation are displayed. 

We would like to note that during the EA run, the production of illegal (not self-
avoiding) structures was allowed (see for example the structure in generation 1 and 
100 in Fig.5). However a successful L-system is only accepted when it is fully  
self-avoiding (like in generation 305). Also note that a given target structure may 
have various internal coordinates’ representations (modulus rigid rotations), and that 
various distinct L-systems could produce the same internal coordinates word.  

It is worth mentioning that the level of difficulty for evolving an adequate L-
system widely varies with the instance selected. Additional to the folding’s length; 
some instances seem more difficult than others. Our intuition is that the level  
of modularity and repetition within the protein folding varies across the space of  
possible structures. 

6   Discussion 

An evolutionary algorithm discovered L-systems that capture a target folding under 
the HP model in 2D lattices. These promising results set the foundations of a novel 
generative encoding for evolutionary approaches to both the protein structure predic-
tion problem and inverse protein folding problem. We suggest that a generative en-
coding (i.e. a developmental approach for producing structures using a set of gram-
matical rewriting rules – L-system) may have better scaling properties than the direct 
internal coordinates encoding [1,2,10]. As noted in the previous section there are sev-
eral symmetries that could be explicitly handled as to enhance the evolutionary 
search. Further work should test this hypothesis. Longer chains and 3D lattices should 
also be explored. The final goal will be to use an evolutionary approach with an L-
system’s encoding to solve challenging instances of the protein structure prediction 
and to evolve primary sequences which fold to specific native states (inverse folding).  
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