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Abstract. This paper proposes an alternative definition of edges (escape edges)
for the recently introduced network-based model of combinatorial landscapes:
Local Optima Networks (LON). The model compresses the information given by
the whole search space into a smaller mathematical object that is the graph hav-
ing as vertices the local optima and as edges the possible weighted transitions
between them. The original definition of edges accounted for the notion of tran-
sitions between the basins of attraction of local optima. This definition, although
informative, produced densely connected networks and required the exhaustive
sampling of the basins of attraction. The alternative escape edges proposed here
do not require a full computation of the basins. Instead, they account for the
chances of escaping a local optima after a controlled mutation (e.g. 1 or 2 bit-
flips) followed by hill-climbing. A statistical analysis comparing the two LON
models for a set of NK landscapes, is presented and discussed. Moreover, a pre-
liminary study is presented, which aims at validating the LON models as a tool for
analyzing the dynamics of stochastic local search in combinatorial optimization.

1 Introduction

The performance of heuristic search algorithms crucially depends on the structural as-
pects of the spaces being searched. An improved understanding of this dependency,
can facilitate the design and further successful application of these methods to solve
hard computational search problems. Local optima networks (LON) have been recently
introduced as a novel model of combinatorial landscapes [10, 11]. This model allows
the use of complex network analysis techniques [7] in connection with the study of
fitness landscapes and problem difficulty in combinatorial optimization. The model is
based on the idea of compressing the information given by the whole problem config-
uration space into a smaller mathematical object, which is the graph having as vertices
the optima configurations of the problem and as edges the possible transitions between
these optima. This characterization of landscapes as networks has brought new insights
into the global structure of the landscapes studied, particularly into the distribution of
their local optima. Moreover, some network features have been found to correlate and
suggest explanations for search difficulty on the studied domains.

The definition of the edges in the LON model critically impacts upon its descrip-
tive power with regards to heuristic search. The initial definition of edges in [10, 11],
basin-transition edges, accounted for the notion of transitions between the local optima
basins’ frontiers. This definition, although informative, produces highly connected net-
works and requires the exhaustive sampling of the basins of attraction. We explore in
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this article an alternative definition of edges, which we term escape edges, that does not
require a full computation of the basins. Instead, the edges account for the chances (of
a prospective heuristic search algorithm) of escaping a local optima after a controlled
mutation (e.g. 1 or 2 bit-flips) followed by hill-climbing. This new definition produces
less dense and easier to build LONs, which are more amenable to sampling and get
us closer to a fitness landscape model that can be used to understand (and eventually
exploit) the dynamics of local search on combinatorial problems.

The first goal of the present study is to compare and explore the relationships be-
tween the two LON models, based on (i) basin-transition edges and (ii) escape edges,
respectively. Thereafter, we present a preliminary study that aims at validating the LON
models in their descriptive power of the dynamics of stochastic local search algorithms.
We conduct this validation by considering the behavior of two well-known stochastic
local search heuristics, namely, Tabu Search [4] and Iterated Local Search [6]. The well
known family of NK landscapes [5] is used in our study.

The article is structured as follows. Section 2, includes the relevant definitions and
algorithms for extracting the LONs. Section 3, describes the experimental design, and
reports a comparative analysis of the extracted networks of the two models. Section 4,
presents our model validation study. Finally, section 5 discusses our main findings and
suggest directions for future work.

2 Definitions and algorithms

A Fitness landscape [9] is a triplet (S, V, f) where S is a set of potential solutions i.e.
a search space, V : S −→ 2S , a neighborhood structure, is a function that assigns to
every s ∈ S a set of neighbors V (s), and f : S −→ R is a fitness function that can be
pictured as the height of the corresponding solutions. In our study, the search space is
composed of binary strings of length N , therefore its size is 2N . The neighborhood is
defined by the minimum possible move on a binary search space, that is the single bit-
flip operation. Thus, for a bit string s of lengthN , the neighborhood size is |V (s)| = N .

TheHillClimbing algorithm to determine the local optima and therefore define the
basins of attraction, is given in Algorithm 1. It defines a mapping from the search space
S to the set of locally optimal solutions S∗. Hill climbing algorithms differ in their so-
called pivot-rule. In best-improvement local search, the entire neighborhood is explored
and the best solution is returned, whereas in first-improvement, a neighbor is selected
uniformly at random and is accepted if it improves on the current fitness value. We
consider here a best-improvement local searcher (see Algorithm 1). For a comparison
between first and best-improvement LON models, the reader is referred to [8]

2.1 Nodes

As discussed above, a best-improvement local search algorithm based on the 1-move
operation is used to determine the local optima. A local optimum (LO), which is taken
to be a maximum here, is a solution s∗ such that ∀s ∈ V (s), f(s) ≤ f(s∗).

Let us denote by h(s), the stochastic operator that associates to each solution s,
the solution obtained after applying the best-improvement hill-climbing algorithm (see
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Algorithm 1 Best-improvement local search (hill-climbing).
Choose initial solution s ∈ S
repeat

choose s
′
∈ V (s), such that f(s

′
) = maxx∈V (s)f(x)

if f(s) < f(s
′
) then

s← s
′

end if
until s is a Local optimum

Algorithm 1) until convergence to a LO. The size of the landscape is finite, so we can
denote by LO1, LO2, LO3 . . . , LOp, the local optima. These LOs are the vertices of
the local optima network.

2.2 Basin-transition edges

The basin of attraction of a local optimum LOi ∈ S is the set bi = {s ∈ S | h(s) =
LOi}. The size of the basin of attraction of a local optimum i is the cardinality of bi,
denoted ]bi. Notice that for non-neutral4 fitness landscapes, as are standard NK land-
scapes, the basins of attraction as defined above, produce a partition of the configuration
space S. Therefore, S = ∪i∈S∗bi and ∀i ∈ S ∀j 6= i, bi ∩ bj = ∅.

We can now define the weight of an edge that connects two feasible solutions in the
fitness landscape. For each pair of solutions s and s

′
, p(s→ s

′
) is the probability to pass

from s to s
′

with the given neighborhood structure. In the case of binary strings of size
N , and the neighborhood defined by the single bit-flip operation, there are N neighbors
for each solution, therefore, considering a uniform selection of random moves:
if s
′ ∈ V (s) , p(s→ s

′
) = 1

N and
if s
′ 6∈ V (s) , p(s→ s

′
) = 0.

The probability to go from solution s ∈ S to a solution belonging to the basin bj , is5:

p(s→ bj) =
∑
s′∈bj

p(s→ s
′
) .

Thus, the total probability of going from basin bi to basin bj , i.e. the weight wij of edge
eij , is the average over all s ∈ bi of the transition probabilities to solutions s

′ ∈ bj :

p(bi → bj) =
1

]bi

∑
s∈bi

p(s→ bj) .

2.3 Escape edges

The escape edges are defined according to a distance function d (minimal number of
moves between two solutions), and a positive integer D > 0.

4 For a definition of basins that deals with neutrality, the reader is referred to [11].
5 Notice that p(s→ bj) ≤ 1 and notice also that this definition, disregarding the fitness values,

is purely topological and is not related to any particular search heuristic.
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There exists an edge eij between LOi and LOj if it exists a solution s such that
d(s, LOi) ≤ D and h(s) = LOj . The weight wij of this edge is then: wij = ]{s ∈
S | d(s, LOi) ≤ D and h(s) = LOj}, which can be normalized by the number of
solutions within reach w.r.t. such a distance ]{s ∈ S | d(s, LOi) ≤ D}.

2.4 Local optima network

The weighted local optima networkGw = (N,E) is the graph where the nodes ni ∈ N
are the local optima, and there is an edge eij ∈ E, with weight wij = p(bi → bj),
between two nodes ni and nj if p(bi → bj) > 0.

According to both definitions of edge weights, wij = p(bi → bj) may be different
than wji = p(bj → bi). Thus, two weights are needed in general, and we have an
oriented transition graph.

Figure 1 depicts a representative example of the alternative LON models. The fig-
ures corresponds to a real NK landscape with N = 18, K = 2, which is the lowest
ruggedness value explored in our study. The left plot illustrates the basin-transition
edges, while the center and right plots the escape edges with D = 1 and D = 2,
respectively. Notice that the basin-transition edges (left) produce a densely connected
network, while the escape edges produce more sparse networks.
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Fig. 1. Local optima network of an NK-landscape instance with N = 18, K = 2. Left: basin-
transition edges. Center and Right: escape edges with D = 1 and D = 2, respectively. The
size of the circles is proportional to the logarithm of the size of the corresponding basins of
attraction; the darker the color, the better the local optimum fitness. The edges’ width scales with
the transition probability (weight) between local optima, according to the respective definitions.
Notice that the basin-transition edges model (Left) is much more densely connected.

3 Comparative analysis of the LON models

In this section, we compare the LONs resulting from the different edges definitions
discussed above. We chose to perform this analysis on the NK-model artificial land-
scapes, primarily to be able to compare directly with previous work [10, 11], but also



Local Optima Networks with Escape Edges V

because this problem provides a framework that is of general interest in studying the
structure of complex combinatorial problems [5].

TheNK family of correlated landscapes is in fact a problem-independent model for
constructing multimodal landscapes that can gradually be tuned from smooth to rugged.
In the model, N refers to the number of (binary) genes in the genotype, i.e. the string
length, and K to the epistatic interaction, i.e. the number of genes that influence a par-
ticular gene. By increasing the value ofK from 0 toN −1, the landscapes can be tuned
from smooth to rugged. The K variables that form the context of the fitness contribu-
tion of a gene, can be chosen according to different models, the two most widely studied
being the random neighborhood model and the adjacent neighborhood model. As no
significant differences between the two were found, neither in terms of the landscape
global properties [5] nor in terms of their local optima networks (preliminary studies),
we conduct our full study on the more general random model.

In order to minimize the influence of the random creation of landscapes, we consid-
ered 30 different and independent problem instances for each combination of N and K
parameter values. In all cases, the measures reported are the average of these 30 land-
scapes. In the present study, N = 18 and K ∈ {2, 4, 6, 8, 10, 12, 14, 16, 17}, which
are the largest possible parameter combinations that allow the exhaustive extraction of
local optima networks. LONs for the two definitions of edges: (i) basin-transition and
(ii) escape edges with D ∈ {1, 2}, were extracted and analyzed6.

Table 1. Local optima network features. Values are averages over 30 random instances, standard
deviations are shown as subscripts. K = epistasis value of the corresponding NK-landscape
(N = 18); Nv = number of vertices; Dedge = density of edges (Ne/(Nv)

2 × 100%); Lopt =
average shortest path to reach the global optimum (dij = 1/wij).

K Nv Dedge (%) Lopt

all Basin-trans. Esc.D1 Esc.D2 Basin-trans. Esc.D1 Esc.D2

2 43.027.7 74.18213.128 8.2984.716 22.7509.301 21.28.0 16.84.7 33.514.1
4 220.639.1 54.0614.413 1.4630.231 7.0660.810 41.710.5 19.25.1 53.712.4
6 748.470.2 26.3431.963 0.4690.047 3.4660.279 80.019.1 22.23.9 66.712.9
8 1668.873.5 12.7090.512 0.2280.009 2.2010.066 110.113.8 24.04.9 76.69.1
10 3147.6109.9 6.2690.244 0.1320.004 1.5310.036 152.819.3 27.35.0 90.78.4
12 5270.3103.9 3.2400.079 0.0880.001 1.1150.015 185.123.8 30.36.7 108.312.3
14 8099.6121.1 1.7740.035 0.0640.001 0.8380.009 200.216.0 38.99.6 124.78.6
16 11688.1101.3 1.0300.013 0.0510.000 0.6470.004 211.815.0 47.911.4 146.211.2
17 13801.074.1 0.8010.007 0.0470.000 0.5740.002 214.317.5 55.712.5 155.912.2

3.1 Network features and connectivity

Number of nodes and edges. The 2nd column of Table 1, reports the number of nodes
(local optima), Nv , which is the same for all the studied landscapes and models. The

6 Some of the the tools for fitness landscape analysis and the local search heuristics, were used
from the “ParadisEO” library [2]; data treatment and network analysis are done in “R” with
the “igraph” package [3].
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number of nodes increase exponentially with increasing values of K. The networks,
however, have a different number of edges, as can be appreciated in the 3rd, 4th, and
5th columns of Table 1, which report the number of edges normalized by the square
of the number of nodes (density of edges). Clearly, the density is higher for the basin-
transition edges, followed by the escape edges with D = 2, and the smaller density
corresponds to D = 1. The trend is, however, that density decreases steadily with
increasing values of K, which supports the correlation between the two models.

With the basin-transition edges, LONs are densely connected, especially when K
is low: 74% and 54% of all possible edges are present, on average, for K ∈ {2, 4}.
The escape edges produce sparsely connected graphs. Indeed, the D = 1-escape edge
model, produces networks that are not completely connected, with the number of con-
nected components ranging between 1.67 and 8.37 in average. The global optimum,
though, always happens to belong to the largest connected component, which, in our
analysis, comprises an average proportion of solutions raising, with increasing values
of K, from 0.9392764 to 0.9999879.

The networks with escape edges and D = 2, are always connected. The density
decreases with the epistasis degree. For high Ks, the density values are close to those
of the basin-transition networks. Figure 2 (Left) illustrates what is happening in terms
of the average degree of the outgoing links. First, notice that the difference with the
basin-transition networks is maximal when K is between 4 and 12. Whereas for D = 1
the outgoing degree only increases from 1.7 to 5.5 across the range of K values, for
D = 2 the growth is faster and reaches 78.2, not far from the 109.5 score of the LON
with basin-transition edges. The size of the basins could provide an explanation for this:
at high values of K basins are so small that a 2-bit mutation from the local optimum is
almost enough to recover the complete topology.
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Fig. 2. Average out-degree (Left) and average clustering coefficient (Right) vs epistasis value.

Clustering coefficient. LONs with basins-transitions edges present a somewhat
symmetric structure: when two nodes i and j are connected, both edges eij and eji
are present (even though their weights are in general different, wij 6= wji). Moreover,



Local Optima Networks with Escape Edges VII

those connections often form triangular closures whose frequency is given by the global
clustering coefficient. As Figure 2 (Right) shows, this measure of transitivity is lower
with the escape-transition edges, but the difference could be due to the different number
of edges of those LONs. Values for D = 1 are remarkably low, even if the calculation
disregarded the direction of edges. Overall though, the decreasing trend w.r.t. the land-
scape ruggedness, remains common. In other words, even with escape-transition edges,
the clustering coefficient can be retained as a measure related to problem complexity: it
decreases with the non-linearity of the (NK-) problem.

Shortest paths. Due to the differences in topology, in the escape edges networks
not all the paths are possible: few nodes might be disconnected, or they might not be
reachable due to direction constraints (these are more “asymmetric” networks, as can be
seen in Fig. 1). Thus, while evaluating shortest paths, only paths connecting reachable
couples of nodes are averaged. Moreover, there are different ranges of weights, so the
values displayed in Figure 3 have been normalized. An unexpected behavior can be
observed for D = 2: the average path length peaks at K = 4 and stays always high.
Maybe the increasing connectivity of nodes (see Fig. 2) counteracts their increase in
numbers. However, some paths are more important than others, for example those who
lead to the global optimum (see Fig. 3 (right)). With respect to these paths, all the LON
models show the same trend: the paths increase in length as ruggedness increases.
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Fig. 3. Shortest paths over the LON vs epistasis value. Left: average geodesic distance between
optima. Right: average shortest path to the global optimum. Each curve has been divided by its
respective maximum value.

3.2 Characterization of weights

Disparity. Figure 2 (Left) gave the average connectivity of vertices, counting outgoing
links. One might then ask whether or not there are preferential directions when leaving
a particular basin, i.e. if for a given node i, the weights wij (with j 6= i) are equivalent.
For this purpose, we measure the disparity Y2 [1], which gauges the heterogeneity of
the contributions of the edges of node i to the total weight. For a large enough degree
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zi, when there is not a dominant weight, then Y2 ≈ 1/zi. The connectivity of LONs
with escape edges with D = 1 is weak, and it is difficult to draw conclusions based on
disparity only, as Figure 4 (left) illustrates. In the example illustrated, where K = 4,
(i.e. relatively low epistasis, and so not a random structure), Y2 approaches 1/z for
escape-D = 1, whereas it has distinctively higher values for both the escape-D = 2,
and the basin-transition edges.

However, the common trend is that disparity decreases with increasing epistasis: as
the landscapes become more rugged, the transition probabilities to leave a particular
basins appear to become more uniform, which could relate to the search difficulty. This
is clear from Fig 4 (right), where Y2 approaches 1/z on average as K grows.
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Fig. 4. Disparity of edges’ weights. Left: scatter plot of disparity against outgoing degree (lin-log
scale) for an instance with epistasis K = 4. Right: average vertex disparity for outgoing edges
vs epistasis value. Dotted lines represent the inverse of the outgoing degree.

Strength. In a general weighted network, the degree of a vertex naturally extends
into its strength, which measures its weighted connectivity. In LON model, basins size,
as well as connectivity, generally correlate with fitness value [8]. Thus we ask if the
incoming strength of a given node, i.e. the sum of the transition probabilities for all
the incoming connections, correlates with the fitness of its LO. Figure 5 gives a clear
affirmative answer for all the definition of edges.

Correlation of weights among edges’ definitions. The LON models resulting from
the alternative definition of edges show different structures but common trends w.r.t. the
features that are related to problem difficulty. We conclude this subsection by directly
comparing the transition probabilities that result from the alternative edge definitions.
For this purpose, Figure 6 shows the Spearman’s rank correlation between the corre-
sponding rows of the weighted adjacency matrix, for different LON models of the same
instance. The statistic is always positive, but, given the sparser nature of the escape-
D = 1 networks, the result is weaker in this case. With D = 2, though, the correlation
with the basin-transition definition is consistently good, which agrees with the previous
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Fig. 5. Correlation between the strength of a node and its fitness value. Left: scatter plot of fitness
against weighted connectivity (lin-log scale) for an instance with epistasis K = 4. Right: average
correlation Spearman’s coefficient between in-strength and fitness value vs epistasis value.

findings on this topology. Indeed, as the landscape ruggedness increases, the correlation
between D = 1 and D = 2 becomes smaller.

4 Model validation: local search dynamics

In this section, we analyze the connection between the LON model and dynamics of
local search (LS) in an attempt to validate its descriptive power. Does a LS follow the
edges of the LON? Which edge definition is the most accurate to predict the dynamics
of a local search heuristic? This is a preliminary study on one particular NK-landscape
instance with N = 18 and K = 4, a larger analysis will be the subject of future work.

4.1 Experiment setup

We choose two simple but efficient stochastic LS heuristics, namely Iterated Local
Search (ILS) [6], and Tabu Search (TS) [4]. Both are given 2.6 ∗ 104 function eval-
uations (≈ 10% of the search space), or stop when reaching the global optimum.

The search trajectory is traced and filtered according to the basins of attraction: each
solution belongs to one basin, so it is labelled by the corresponding local optimum. We
then considered that a LS stays in the same basin, if the solutions st and st+1 both
belong to the same basin and the fitness increases: f(st) ≤ f(st+1). Otherwise, the LS
jumps from one basin to another one. In that manner, when accumulated from a number
of independent runs of the LS, 104 in our experiments, it is possible to compare the
empirical transition frequencies between basins with the corresponding edge weights
of a given LON. Such a high number of independent runs is necessary because often
times single trajectories go through few LOs and only once.

When a LS performs a transition between two basins that are not connected in the
LON model, we add to the latter a virtual edge with weight equal to 0.0. Of course, we



X S. Verel, F. Daolio, G. Ochoa, and M. Tomassini

0.0 0.1 0.2 0.3 0.4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Escape D1 wij

Ba
sin

s w
ij

0.0 0.1 0.2 0.3 0.4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Escape D2 wij

Ba
sin

s w
ij

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Epistasis Value

W
ei

gh
t−

W
ei

gh
t c

or
re

la
tio

n

●

●

●

●
● ● ● ● ●

●

Wij−Bas vs Wij−Esc.D1
Wij−Bas vs Wij−Esc.D2
Wij−Esc.D1 vs Wij−Esc.D2

Fig. 6. Correlation between the weights resulting from the the new and the old definition of edges.
Left: scatter plot for an instance with epistasis K = 4. Right: average Spearman’s rank correlation
coefficient vs epistasis value. No self-loops.

do not consider the LON edges that are not sampled, as it is not possible to compute
the transition frequency between nodes that have not been visited. Finally, the LS under
study are based on hill-climbing, thus the LON self-loops are also discarded.

4.2 Results

Figure 7 shows the scatter plots for the correlations between the edges weights of the
different LON models and the empirical transition frequencies between basins.

Iterated Local Search. Our implementation is based on a steepest-ascent (best-
improvement) hill-climbing, which, at each iteration, moves to the best neighboring
solution, and stops on a local optimum. The ILS perturbation is the k bit-flip mutation,
which flips k bits at random, k ∈ {1, 2} in the present study. A mutation is accepted as
a new solution if its fitness value is strictly better than the current one. Intuitively, the
ILS follows the same edges of the escape definition: from the LO, k bits are flipped; the
the main difference lies in the acceptance criterion used by the ILS. Indeed (see Fig. 7),
correlations are all significant. As expected, for the 1-bit-flip perturbation, Spearman
coefficient is higher for escape edges with D = 1, and lower for D = 2-escape edges
(0.49 for D = 1, 0.45 for D = 2, and 0.48 for basin edges). For the 2-bit-flips pertur-
bation, the highest correlation is for the escape edges with D = 2, and the smallest for
escape edges with D = 1 (0.41 for D = 1, 0.75 for D = 2, and 0.72 for basin edges).
Notice how figures for basin edges and D = 2-escape edges are very similar.

Tabu Search. Our implementation uses the 1-bit-flip mutation, and, in order to
obtain a better diversification, a set of moves are forbidden during the search; those
tabu-moves are stored in a memory that lasts λ = N = 18 iterations. A tabu move is
nonetheless accepted when it finds a new best-so-far solution. Referring to Figure 7,
the correlation values are 0.27 for the D = 1-escape edges, 0.53 for D = 2, and 0.79
for the basin edges. All values are significant and positive, particularly so for the more
interesting LON definitions: D = 2-escape edges and basin edges.
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Fig. 7. Correlation (Spearman coefficient) between the edge weight and the empirical transition
frequency of a local search. 104 independent runs on an NK-instance with N = 18, K = 4.
From top to bottom, Iterated Local Search with 1- and 2-bit-flips, and Tabu Search have been
tested. From left to right, the empirical frequencies are plotted against the corresponding edge
weights according to the Escape D ∈ {1, 2} and Basins definition, respectively. Only transitions
between different basins are considered (no self-loops).

The result of this preliminary study is encouraging because it shows that the LON
could capture the coarse-grained dynamics of a LS. In particular, the escape edge defi-
nition with D = 2 seems to be informative enough to correlate with the trajectories of
a simple ILS, or a simple TS. Of course, further studies have to confirm this result for a
larger class of LS, a broader number of instances, and on other problems, as to delineate
the validity domain of the LON model.

5 Concluding remarks

The local optima networks (LON) model is a mesoscopic representation of a prob-
lem search space, which deals with the local-optima basins of attractions as the meso-
state level of description. In this contribution, an alternative definition of edges (escape
edges), has been proposed. Our statistical analysis, on a set of NK-landscapes, shows
that the escape edges are as informative as the original (basin- transition) edges. We
reach this conclusion because, for both LON models, the analyzed network features
(such as the clustering coefficient, disparity, correlation between in-strength and fitness
of local optima, and path length to global optimum) are always consistent with the non-
linearity of the problem (the K parameter ), which tunes the landscape ruggedness.
Indeed, the edges’ weights are positively correlated between the different definitions.
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We also present a preliminary analysis that aims at validating the model. We show
that the dynamics of simple stochastic local search heuristics such as Iterated Local
Search, or Tabu Search, tend to follow the edges of LONs according to the rate defined
by the weights. The model validation in the present study is a first step. Starting from the
work by Reidys and Stadler [9] on combinatorial fitness landscapes, we could conduct
a spectral analysis of the LON model. From the adjacency matrix of the LON graphs, it
should be possible to build a Markov Chain having the previously discussed transition
probabilities. That would allow us to compare the stationary distribution of different
LON models of the same search space. In this case, an empirical assessment could be
performed in a more informed way, because we could estimate the number of local
search runs that are necessary to have a good sampling, as in a Monte Carlo method.
The model validation could, then, go together with a prediction of the LS dynamics.

Overall, the present study opens up relevant perspectives. The escape edges defini-
tion will allow us to design a sampling methodology of the LONs. The enumeration of
the basins of attraction is impossible on realistic search spaces. Therefore, the original
definition of edges is restricted to study small search spaces. With the new definition,
and through sampling of large networks such as breadth-first search, forest-fire or snow-
ball sampling, we will be able to study the properties of LONs for real-world combi-
natorial search spaces. Our hope is that, by combining the LON model of the search
dynamics and the ability to build LONs for large search spaces, we will be able to per-
form off-line parameter tuning of evolutionary algorithms and local search heuristics.
Moreover, if the LON features are collected along the search process, on-line control of
the parameters could also be achieved.
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