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Abstract—In this work we conduct a comparative study of
several publicly available, state-of-the-art hyper-heuristics for
HyFlex in order to assess their generality across domains. To
this purpose we extend the HyFlex benchmark set with 3 new
problem domains: The 0-1 Knap Sack, Quadratic Assignment
and Max-Cut Problem. To our knowledge, this is the first public
extension of the benchmark since the CHeSC 2011 competition.
In addition, this is the first study testing the Fair-Share Iterated
Local Search (FS-ILS) method, designed in prior research, using
a semi-automated design approach, on new unseen problem
domains. We show that, of the methods compared, Adap-HH
(CHeSC 2011 winner) clearly perfoms the most consistently,
overall. In addition, we identify a weakness of, as well as a
way to further simplify the FS-ILS method. Finally, we found
that, overall, the state-of-the-art methods compared, generalized
much better than a naive baseline.

I. INTRODUCTION

Many interesting combinatorial optimization problems
cannot be solved in polynomial time, i.e. they are NP-hard.
A classical example is the Traveling Salesman Problem.
Luckily, in practice, optimal solutions are often not required
and non-exact methods can be used instead. One approach
that recently received a lot of attention are the so called meta-
heuristic optimization methods [1], [2]. These methods often
quickly find good solutions to large and otherwise intractable
problems, by iteratively trying to improve a (set of) candidate
solution(s).

In recent history, most research in this area has been
presented in a problem-specific way. From a theoretical
point of view this approach was motivated by the No Free
Lunch Theorem [3], stating that on average, performance over
all instances is the same for every method, and therefore
advocating a made-to-measure approach. From a practical
perspective, benchmarking accross multiple domains is a
challenging endeavor. To do so, we need implementations for
all these domains, and to set up a meaningful comparison we
also require benchmark instances and solutions that can serve
as a baseline. As a consequence of this problem-specific
approach, existing methods are not readily applied to newly
encountered problems, or even new instances of the same
problem. Furthermore, the cost of developing and applying
made-to-measure meta-heuristic solutions is high, resulting
in only few practical applications.
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Therefore, recently, there is a renewed interest in more
general methods. Rather than attempting to outperform
made-to-measure methods, these methods provide a cheap
off-the-peg alternative. A popular approach in this renais-
sance are hyper-heuristics [4]. A hyper-heuristic combines a
given set of low level heuristics, to solve a given problem
instance, in a problem independent way. Here, low level
heuristics are domain-specific construction, perturbation and
recombination heuristics. A hyper-heuristic can be applied to
any domain, given a set of low level heuristics is provided
for it first. While the potential of hyper-heuristics in more
general, problem-independent search was recognized early
on1 [5], due to the aforementioned practical challenges, the
empirical analysis of most hyper-heuristic methods focused
on a comparison of peak-performance, on a single domain.
The creation of the HyFlex framework [6] in 2010, built to
support the CHeSC 2011 competition, has greatly simplified
cross-domain benchmarking and has been used in the imple-
mentation of many hyper-heuristics ever since. Not only does
it provide problem-specific components and benchmark in-
stances for 6 different combinatorial optimization problems,
the results obtained by the competition’s 20 contestants, serve
as a good baseline for comparisons.

To fairly assess a method’s generality, however, it is
important to test it on as many new domains as possible,
as the potential variability in domains is vast [7]. Here the
word new is crucial, i.e. the method/domain should not have
been tested using this domain/method during any phase of its
design, as otherwise we risk over-fitting. Even more so, since
generative methods are being used to design hyper-heuristics
[8], [9]. During the original CHeSC competition this was
taken into account by making only 4 out of the 6 domains
available before the competition. In later work, however, it
is often unclear whether such separation is considered.

In this paper we perform a comparative study of several
publicly available hyper-heuristics for HyFlex in order to
assess their generality across domains. To this purpose we
extend the HyFlex benchmark set, providing benchmark
instances and problem specific components for 3 additional
problem domains.2 To the authors knowledge, this is, to date,
the first public extension of the HyFlex benchmark since the
CHeSC 2011 competition. In addition, this is the first study
testing the Fair-Share Iterated Local Search (FS-ILS) method
[10], designed using a semi-automated design approach, on
new (unseen) problem domains.

1Note that the No Free Lunch Theorem is no argument against hyper-
heuristic methods as on every problem domain, the domain-specific aspects
of the method (low level heuristics) differ, i.e. a different method is used.

2Available here https://github.com/Steven-Adriaensen/hyflext (domains)
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The remainder of the paper is organized as follows. Sec-
tion II introduces the HyFlex framework. In Section III we
describe the methods considered in our comparison. Section
IV introduces each of the new problem domains. In Section
V we compare the performance of several hyper-heuristics
on all 9 domains. Finally, in Section VI we conclude.

II. HYFLEX

In this section we briefly describe the HyFlex framework
and how it became and still is an important benchmark for
selection hyper-heuristics.

HyFlex is a modular and flexible Java class library for
developing and testing iterative general-purpose heuristic
search algorithms. HyFlex currently provides 6 different
problem domains: Maximum Satisfiability, Bin Packing,
Permutation Flow Shop, Personnel Scheduling, Traveling
Salesman (TSP) and Vehicle Routing Problem (VRP). Each
of which consists of:

• A set of 10-12 benchmark instances, to be solved.

• An evaluation function, measuring the cost of a
candidate solution, to be minimized.

• A set of low-level heuristics: One construction
heuristic and multiple perturbation and recombina-
tion heuristics, sub-divided in 4 categories:

1) mutation: Perform a small modification on
the solution, by changing some solution
components.

2) ruin-recreate: Partly destroy a solution to
rebuild or recreate it afterwards.

3) local-search: Similar to mutation, but may
include an iterative improvement process
and guarantees that the output solution is
at least as good as the input.

4) crossover: Combine two solutions, into a
new solution.

Each of these may furthermore be parametrized by
the intensity of mutation (α) and depth of search (β)
parameters.

One of HyFlex’s core design principles is that all access
to these domain-specific components must occur through
a problem independent interface. Thanks to this explicit
separation, any method using HyFlex can be readily applied
to any instance of another problem domain implemented in
HyFlex, without alterations.

HyFlex has been used to support the first Cross-domain
Heuristic Search Challenge (CHeSC 2011), during which all
20 contestants were tested (31, 10 min. runs) on 30 instances,
5 from each of the 6 problem domains implemented in
HyFlex. To test generalization to new instances, 2 of the 5
instances used in the competition were not available before
submission, i.e. were hidden. To test generalization to new
domains, the TSP and VRP domains were hidden as well.
The winner [11] was the algorithm obtaining the highest
accumulated score across all these instances.

After the competition, HyFlex became a benchmark for
selection hyper-heuristics and has been used in the imple-
mentation of many ever since. Figure 1 shows the number
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Fig. 1. An Overview of the use of HyFlex in published research

of citations3 and use4 of HyFlex over the last 5 years. In
comparing these numbers to those of other frameworks for
testing cross-domain hyper-heuristics [12], Hyperion [13]
and hMod [14], which are cited 17 and 5 times respectively,
we find HyFlex (cited 95 times, since 2011) to be the most
widely adopted to date. Note that this doesn’t mean HyFlex is
the best or without flaws. On the contrary, we’d like to argue
that due to some unfortunate design choices, HyFlex shows
only a glimpse of what is possible using hyper-heuristics. In
particular, it provides too little information about domains,
instances and solutions that the high-level search method
can exploit. Furthermore, providing a good implementation
for a problem domain requires a lot of effort and expert
knowledge, which might be available for classical benchmark
problems, but less so for real-world problems.

III. HYPER-HEURISTIC METHODS

In this section we describe the methods considered in our
comparison in more detail. Table I gives an overview of these
methods and their properties. Note that we include the Lines
Of Code metric (loc), as an indication of (code-)complexity.

TABLE I. OVERVIEW OF THE METHODS COMPARED

method author style loc license
Adap-HH M. Misir Select-Accept 4477 GNU GPL
EPH D. Meignan Population-based 1158 Apache 2.0
FS-ILS S. Adriaensen Iterated Local Search 216 MIT
NR-FS-ILS S. Adriaensen Iterated Local Search 166 MIT
ANW-HH S. Adriaensen Select-Accept 27 MIT
AA-HH S. Adriaensen Select(-Accept) 21 MIT

A. Adap-HH

Adap-HH [11], made publicly available under the name
GIHH,5 is the method that won the CHeSC 2011 com-
petition. At the highest level it follows a rather classical
single point iterative selection and acceptance scheme, at
a lower level it successfully combines various adaptive
mechanisms. Adap-HH maintains an Adaptive Heuristic Set.
Here, performance metrics are maintained for each of the
low level heuristics and after a number of iterations (phase)
the performance of each heuristic is re-assessed and a quality

3# Articles referencing [6], as listed by Google Scholar™.
4# Articles that use HyFlex in their experiments.
5http://allserv.kahosl.be/∼mustafa.misir/gihh.html



index is assigned. Within each phase, heuristics are applied
with a frequency dependent on the assigned quality index.
Also, each phase, heuristics of poor quality are temporarily
(or even indefinitely) excluded. An acceptance condition,
called Adaptive Iteration Limited List-based Threshold Ac-
cepting, is used to decide whether to accept the solutions,
generated by these heuristics, as new incumbent solution or
not. Here, a list of evaluation values of previously found
new best solutions is maintained and only proposals no
worse than the kth element of this list are accepted. The
value of k is adapted dynamically during the search. Next
to these basic features Adap-HH also implements a restart
condition, heuristic adaptation mechanism for α and β and
a hybridization scheme (considering pairs of heuristics).

B. EPH

An Evolutionary Programming Hyper-heuristic [15] with
co-evolution.6 This population-based approach ended up
5th in the CHeSC competition. The method maintains two
populations, one of candidate solutions, another of heuristic
sequences. Both populations co-evolve in the sense that the
new solutions introduced in the population are generated
by applying the heuristic sequences, and the fitness of the
heuristic sequences is related to how they perform on the
current solutions. The solution population evolves as follows:
First an initial population is generated using the construction
heuristic. Then the heuristic sequences are applied to these
solutions (in order to evaluate their performance). The re-
sulting solution replaces the worst solution in the population
if it has a cost different from all others in the population
and lower than the worst. A heuristic sequence consists
of a set of perturbation heuristics (from categories 1, 2
and 4), followed by a set of local-search heuristics. Local-
search heuristics are either applied once, or using a Variable
Neighbourhood Descent (VND) strategy. Each perturbation
and local-search heuristic has an associated α and β value.
The population of heuristic sequences is initialized randomly
and each generation the population is first doubled (by
recombination and mutation) and then N individuals are
selected based on their fitness using tournament selection.
Parameters of the method (e.g. population sizes, use of VND)
are determined during a dedicated initialization phase.

C. (NR-)FS-ILS

Fair-Share Iterated Local Search7 is a hyper-heuristic
following an Iterated Local Search scheme. First, it generates
an initial candidate solution using the construction heuristic.
Then it iteratively selects a perturbation heuristic (from
categories 1 and 2) and applies it to the incumbent candidate
solution, followed by iterative improvement, applying the
heuristics from the Local-search category in a tabu-portfolio,
to generate a proposal candidate solution. Then an adaptation
of the metropolis acceptance condition is used to decide
whether to accept it as new incumbent solution or not.
Finally either a new iteration is performed or the search
is restarted. A key algorithmic concept is the acceptance
rate proportional, selection of the perturbation heuristics.
Unlike Adap-HH and EPH, FS-ILS did not contest in the

6http://www.lalea.fr/public/index.php?cmd=smarty\&id=11 len
7https://github.com/Steven-Adriaensen/FS-ILS

CHeSC 2011 competition, rather it was obtained in later
research using a semi-automated design approach [8]. During
its design the 30 CHeSC competition instances were used.
While [10] did test FS-ILS’s generality on new instances
and showed it to be competitive to Adap-HH on the HyFlex
benchmark set, no evaluation on instances of new domains
was performed. Also, accidental complexity analysis sug-
gested that the restart condition might not add sufficient value
to motivate its complexity, therefore we also consider the
variant without restart (NR-FS-ILS) in our experiments.

D. AA-HH and ANW-HH (Xnaive)

AA-HH and ANW-HH are 2 simple, single point hyper-
heuristics. Each of them iteratively generates a proposal by
applying a heuristic (from categories 1, 2 and 3) selected
uniformly at random. They differ in that AA-HH Accepts
All proposals, while ANW-HH Accepts No Worsening pro-
posals as new incumbent solution. We include these (rather
naive) methods in our comparison because they are simple.
Therefore, it is easier to interpret their results and the state-
of-the-art methods described above (hereinafter collectively
referred to as Xsoa), to motivate their complexity, should
clearly generalize better. For the sake of reproduction, these
methods are also made publicly available.8

E. ASAP Default Hyper-heuristics

To avoid biasing our domains to a particular method,
we didn’t use any of the aforementioned methods during
the design and testing phase. Instead we used the 8 ASAP
Default Hyper-heuristics, which were developed during the
preparation and testing of the CHeSC 2011 competition
software. These methods were inspired by state-of the-art
approaches and the design principles of some of these hyper-
heuristics, can be found in [16]. Results for these hyper-
heuristics were made available for the 4 public domains and
were used in a rehearsal competition which was conducted
weekly, prior to the competition.

IV. ADDITIONAL PROBLEM DOMAINS

In this section we extend the HyFlex benchmark set,
adding 3 new domains. In what follows we briefly introduce
each of them. Table II gives an overview of # heuristics
provided by each domain, per category. A description of the
heuristics provided by these new domains can be found in
the Appendix. More information about the original domains
can be found on the CHeSC 2011 website.9

TABLE II. # HEURISTICS IN EACH DOMAIN, PER CATEGORY

problem domain abbrev. init ls mut rr xo total
Max-SAT SAT 1 2 4 1 2 10
Bin Packing BP 1 2 3 2 1 9
Permutation Flow Shop PFS 1 4 5 2 3 15
Personnel Scheduling PSP 1 4 1 3 3 12
Traveling Salesman TSP 1 6 5 1 3 16
Vehicle Routing VRP 1 4 4 2 2 13
0-1 Knap Sack KP 1 6 5 2 3 17
Quadratic Assignment QAP 1 2 2 3 2 10
Max-Cut MAC 1 3 2 3 2 11

8https://github.com/Steven-Adriaensen/hyflext (naive)
9http://www.asap.cs.nott.ac.uk/external/chesc2011/index.html



A. 0-1 Knapsack Problem (KP)

Given a set of n items I , with associated weight
w : I → R and profit p : I → R functions, and knapsack
capacity V . Find the subset K that maximizes the total
profit

∑
i∈K p(i) and that satisfies the capacity constraint,

i.e.
∑
i∈K w(i) < V . Here the search-space S is the subset

of 2I where each candidate solution satisfies the capacity
constraint. The cost function c : S → R maps each subset
K to its negated total profit. This domain provides 10
benchmark instances, generated using the generator10 used
in [17]. Table III gives the optimal solution qualities (fopt)
as well as the parameters11 used to generate each instance.

TABLE III. INSTANCES PROVIDED IN THE KP DOMAIN

index n type (t) seed (i) fopt∗
0 1K no small weights (15) 12 104046
1 2K uncorrelated (1) 13 1263861
2 2K weakly corr. (2) 14 243145
3 2K almost str. corr. (5) 17 431363
4 2K no small weights (15) 23 396167
5 5K uncorrelated (1) 24 4417737
6 5K weakly corr. (2) 25 954172
7 5K uncorr., similar weights (9) 32 1577175
8 5K almost str. corr. (5) 28 1530536
9 5K no small weights (15) 34 1467454

B. Quadratic Assignment Problem (QAP)

Given a set of n facilities F , a set of n locations L,
d : L × L → R a function specifying the distance between
each pair of locations and f : F × F → R a function
specifying the flow between each pair of facilities. Find an
assignment of facilities to distinct locations that minimizes
the sum of the distances multiplied by the corresponding
flows. The search space S consists of all bijections F → L.
The cost function is c(s) =

∑
x,y∈F f(x, y)d(s(x), s(y)).

This domain provides 10 benchmark instances, taken from
the QAPLIB library [18]. The properties and best known
solution qualities (fprev) of these instances, are summarized
in Table IV.

TABLE IV. INSTANCES PROVIDED IN THE QAP DOMAIN

index name n fprev
0 sko100a 100 152002
1 sko100b 100 153890
2 sko100c 100 147862
3 sko100d 100 149576
4 tai100a 100 21052466
5 tai100b 100 1185996137
6 tai150b 150 441786736
7 tai256c 256 43849646
8 tho150 150 7620628
9 wil100 100 273038

C. Max-Cut Problem (MAC)

Given a weighted graph G, with vertices V , edges
E ⊂ V × V and weight function w : E → R. Find a
cut, i.e. a partition of V into two disjoint subsets, such
that the sum of the weights of the edges crossing both
partitions is maximized. The search-space consists of all

10Available here http://www.diku.dk/∼pisinger/codes.html
11The range of coefficients is [1, r = 10K] and # tests is always 1K

TABLE V. INSTANCES PROVIDED IN THE MAC DOMAIN

index name type weights |V | |E| fprev
0 g3-8 torus Z 512 1536 41684814
1 g3-15 torus Z 3375 10125 283206561
2 g14 planar 1 800 4694 3064
3 g15 planar 1 800 4661 3050
4 g16 planar 1 800 4672 3052
5 g22 random 1 2000 19990 13359
6 g34 torus 1, -1 2000 4000 1384
7 g55 random 1 5000 12498 10299
8 pm3-8-50 torus 1, -1 512 1536 458
9 pm3-15-50 torus 1, -1 3375 10125 3014

possible cuts V → {1, 2} of G. Let p be a cut of G and
E× = {(vi, vj) ∈ E|p(vi) 6= p(vj)} the set of crossing
edges, the cost of p is then given by −

∑
e∈E× w(e). This

domain provides 10 benchmark instances: Instances 2-7
were generated using Rudy, a graph generator by Giovanni
Rinaldi12. Instances 0-1, 8-9 are torus graphs taken from the
7th DIMACS Implementation Challenge.13 The properties
and best known solution qualities (fprev) of these instances
are summarized in Table V.

V. COMPARATIVE STUDY

A. Experimental Setup

As during the CHeSC competition, 31 runs were per-
formed on each instance, for each method, using the default
parameter settings. In total 6 different methods were tested on
98 (68 old, 30 new) instances of 9 domains. All experiments
were performed on the same machine, equipped with Intel
Xeon E5320 (1.86GHz) processors, 8 GB RAM and running
Scientific Linux 5.5 (64-bit). Each run, a method was given
a time limit, corresponding to 10 minutes on the machine
used during the CHeSC competition.14 As such it is, to
some extent, possible to compare results obtained on other
machines, to those reported in this paper. To avoid bias,
none of the methods compared were ever tested on the new
instances prior to our experiments. In addition, to cancel
out the influence of potential periodic variations in system
performance, the runs of different methods were interleaved.

B. Results

This section is structured as follows: First we compare
the methods on the original HyFlex benchmark (see Section
V-B1), next we compare them on the 3 new domains (see
Sections V-B2,V-B3 and V-B4 resp.). Finally, in Section
V-B5 we have a look at their performance over all instances.
For each instance of the new domains median results are
reported. Due to space constraints median results for the
original HyFlex domains are omitted.15 In addition we report
the following performance measures for each domain: Let
Cx,i the set of results obtained by a method x ∈ X on an
instance i ∈ P , where X and P are the sets of methods and
instances considered, respectively.

• rank: The rank of each method x ∈ X on instance
i ∈ P , ranked by increasing µrank.

12The full set can be found at http://web.stanford.edu/∼yyye/yyye/Gset/
13http://dimacs.rutgers.edu/Challenges/Seventh/Instances/
14Using the benchmark program provided on the CHeSC 2011 website
15You find them here https://github.com/Steven-Adriaensen/hyflext (data)



• µrank: The average rank of the median cost c̃x,i
obtained by each method x ∈ X on an instance i,
ranked by increasing cost.

• µnorm: The average normalized evaluation function
value [19]. Let cmini = MINr∈Cx,i,∀x∈X(r) be
the minimum and cmaxi = MAXr∈Cx,i,∀x∈X(r)
be the maximum cost obtained by any method on
some instance i, then fnorm(r) =

r−cmin
i

cmax
i −cmin

i
and

µnorm(x) = AV Gr∈Cx,i,∀i∈P (fnorm(r)).

• σrunnorm: AV Gi∈P (STDr∈Cx,i(fnorm(r)))

• σπnorm: STDi∈P (AV Gr∈Cx,i
(fnorm(r)))

• best: The # instances i ∈ P for which c̃x,i = c̃minx,i .

• worst: The # instances i ∈ P for which c̃x,i = c̃maxx,i .

Note that σrunnorm gives a measure of variation in the solution
quality obtained in different runs on the same instance,
while σπnorm measures variations in performance on different
instances of the same domain.

TABLE VI. COMPARISON OF PERFORMANCE ON HYFLEX

Maximum Satisfiability (SAT)
rank method µrank µnorm σrunnorm σπnorm best worst

1 FS-ILS 1.33 0.02 0.01 0.02 12 0
2 NR-FS-ILS 2.25 0.03 0.02 0.03 4 0
3 Adap-HH 2.42 0.03 0.02 0.02 4 0
4 EPH 4.0 0.1 0.04 0.04 0 0
5 ANW-HH 5.0 0.39 0.06 0.14 0 0
6 AA-HH 6.0 0.86 0.08 0.03 0 12

Bin Packing (BP)
rank method µrank µnorm σrunnorm σπnorm best worst

1 EPH 2.33 0.09 0.04 0.07 6 0
2 Adap-HH 2.92 0.17 0.07 0.22 2 1
3 NR-FS-ILS 2.92 0.12 0.04 0.1 1 0
4 ANW-HH 3.17 0.16 0.04 0.17 3 0
5 FS-ILS 3.75 0.13 0.04 0.11 0 0
6 AA-HH 5.92 0.89 0.03 0.18 0 11

Personnel Scheduling (PSP)
rank method µrank µnorm σrunnorm σπnorm best worst

1 EPH 1.92 0.13 0.09 0.08 7 0
2 NR-FS-ILS 2.21 0.15 0.07 0.11 3 0
3 FS-ILS 3.08 0.15 0.06 0.12 2 0
4 Adap-HH 3.46 0.18 0.1 0.15 0 0
5 ANW-HH 4.58 0.3 0.15 0.2 1 3
6 AA-HH 5.75 0.48 0.12 0.25 0 9

Permutation Flow Shop (PFS)
rank method µrank µnorm σrunnorm σπnorm best worst

1 NR-FS-ILS 1.54 0.13 0.07 0.05 10 0
2 FS-ILS 2.21 0.16 0.07 0.06 3 0
3 Adap-HH 2.75 0.18 0.07 0.07 3 0
4 EPH 3.5 0.21 0.08 0.06 2 0
5 AA-HH 5.25 0.6 0.06 0.09 0 3
6 ANW-HH 5.75 0.7 0.14 0.07 0 9

Traveling Salesman (TSP)
rank method µrank µnorm σrunnorm σπnorm best worst

1 NR-FS-ILS 2.4 0.05 0.02 0.02 1 0
2 EPH 2.45 0.06 0.02 0.03 3 0
3 Adap-HH 2.55 0.05 0.02 0.03 4 0
4 FS-ILS 2.6 0.06 0.02 0.03 3 0
5 AA-HH 5.5 0.53 0.16 0.12 0 5
6 ANW-HH 5.5 0.5 0.19 0.17 0 5

Vehicle Routing (VRP)
rank method µrank µnorm σrunnorm σπnorm best worst

1 FS-ILS 2.2 0.07 0.04 0.06 2 0
2 NR-FS-ILS 2.3 0.09 0.03 0.08 3 0
3 Adap-HH 2.9 0.07 0.02 0.09 2 0
4 EPH 3.3 0.17 0.1 0.13 3 0
5 ANW-HH 4.7 0.31 0.09 0.22 0 2
6 AA-HH 5.6 0.78 0.05 0.31 0 8

HyFlex domains (Pold)
rank method µrank µnorm σrunnorm σπnorm best worst

1 NR-FS-ILS 2.26 0.1 0.04 0.09 22 0
2 FS-ILS 2.54 0.1 0.04 0.09 22 0
3 Adap-HH 2.84 0.12 0.05 0.14 15 1
4 EPH 2.92 0.13 0.06 0.09 21 0
5 ANW-HH 4.76 0.39 0.11 0.24 4 19
6 AA-HH 5.68 0.69 0.08 0.25 0 48

1) Original HyFlex domains: Table VI summarizes the
performance of each method on all 68 instances in the
original HyFlex benchmark set (Pold), grouped per domain.
Overall we find that (NR-)FS-ILS outperforms Adap-HH,
which in turn outperforms EPH. Note that all of these
methods, in the past, have been tested on (at least) the
subset of instances used during the CHeSC 2011 competition
(PCHeSC). We find the relative performance of these meth-
ods on each domain to be largely consistent with the outcome
of the CHeSC 2011 competition and that reported in [10].
This with some exceptions: EPH seems to be slightly more
competitive, in particular we observe that it outperforms
Adap-HH on the BP domain, while on PCHeSC , Adap-
HH clearly outperforms EPH. As σπnorm of Adap-HH is
large, this is most likely caused by Adap-HH performing
very good on some, while poorly on other BP instances
and PCHeSC just happening to contain more of the former.
Also, we find that NR-FS-ILS performs better than FS-ILS
(Overall, and on 4 out the 6 domains), while [10] showed
FS-ILS to perform significantly better on PCHeSC . Similar
to what was observed during the rehearsal competition, we
find that Adap-HH, EPH and (NR-)FS-ILS (Xsoa) clearly
outperform rather naive alternatives such as AA-HH and
ANW-HH (Xnaive).

2) 0-1 Knap Sack Problem (KP): Table VII summa-
rizes the performance and VIII gives the median cost ob-
tained by each method on the 0-1 Knap Sack Problem.
Here we observe that Adap-HH and EPH perform well,
while (NR-)FS-ILS does not. Key to understanding why
(NR-)FS-ILS (and ANW-HH) perform poorly, is the obser-
vation that the variability per run (σrunnorm) is high for these
methods. Also, we find that (NR-)FS-ILS performs worse for
larger, more difficult instances. The iterative improvement
phase on these instances (starting from an empty solution)
can last up to several minutes and the quality of the candidate
solution generated varies strongly.

TABLE VII. COMPARISON OF PERFORMANCE ON KP

0-1 Knap Sack Problem (KP)
rank method µrank µnorm σrunnorm σπnorm best worst

1 Adap-HH 1.6 0.03 0.02 0.03 8 0
2 EPH 1.85 0.05 0.03 0.08 5 0
3 AA-HH 3.5 0.15 0.01 0.26 2 0
4 NR-FS-ILS 4.65 0.36 0.19 0.19 1 6
5 ANW-HH 4.65 0.33 0.15 0.32 0 4
6 FS-ILS 4.75 0.39 0.22 0.21 1 2

TABLE VIII. MEDIAN SOLUTION QUALITIES OBTAINED FOR KP

π Adap-HH FS-ILS NR-FS-ILS EPH AA-HH ANW-HH
0 -104046 -104046 -104046 -104046 -104025 -103350
1 -1258634 -1220103 -1231767 -1253074 -1209914 -1208666
2 -242104 -236813 -239578 -240663 -238397 -232545
3 -431351 -431297 -431312 -431333 -431311 -431304
4 -396167 -395941 -395654 -396167 -396167 -396013
5 -4328770 -3756992 -3697266 -4283926 -4248962 -4252143
6 -937868 -906490 -895516 -936200 -923973 -923425
7 -1577175 -1572999 -1572999 -1577175 -1577175 -1572999
8 -1530463 -1347297 -1346608 -1530471 -1530453 -1530453
9 -1467353 -1463681 -1462759 -1467357 -1467353 -1466892

3) Quadratic Assignment Problem: Table IX summarizes
the performance and X gives the median cost obtained by
each method on the Quadratic Assignment Problem. Here,
(NR-)FS-ILS performs best and the Xsoa perform better than
the Xnaive methods. Note that AA-HH clearly outperforms
ANW-HH, which performs worst on all QAP instances.



TABLE IX. COMPARISON OF PERFORMANCE ON QAP

Quadratic Assignment Problem (QAP)
rank method µrank µnorm σrunnorm σπnorm best worst

1 NR-FS-ILS 1.95 0.1 0.05 0.08 5 0
2 Adap-HH 2.5 0.1 0.05 0.07 2 0
3 FS-ILS 2.85 0.1 0.04 0.08 3 0
4 EPH 3.7 0.13 0.06 0.07 0 0
5 AA-HH 4.0 0.15 0.03 0.11 1 0
6 ANW-HH 6.0 0.63 0.15 0.07 0 10

TABLE X. MEDIAN SOLUTION QUALITIES OBTAINED FOR QAP

π Adap-HH FS-ILS NR-FS-ILS EPH AA-HH ANW-HH
0 152214 152196 152196 152388 152402 154520
1 154164 154088 154166 154390 154290 156642
2 147970 148002 147978 148122 148190 150930
3 149850 149858 149828 150144 149992 152090
4 21366690 21309210 21321550 21401250 21518130 21646580
5 1187876000 1187491000 1187383000 1189221000 1189321000 1237911000
6 502937700 503088700 502654000 502409100 502293800 514793700
7 44858390 44874030 44873020 44860940 44866880 44929370
8 8163764 8169250 8162592 8163304 8168990 8321922
9 273414 273362 273336 273630 273512 275644

4) Max Cut Problem: Table XI summarizes the perfor-
mance and XII gives the median cost obtained by each
method on the Max-Cut problem. Here we observe, some-
what surprisingly, that AA-HH performs best, followed by
Adap-HH. Looking closer we find that AA-HH performs
best on all instances with unit weight edges (2-9), but
ranking only 5th on instance 0. This most likely because the
worsening proposed by exploratory operators in the weighted
case tends to be much greater (and more variable) than in the
unit case. EPH and especially ANW-HH perform clearly the
worst. The performance of (NR-)FS-ILS varies strongly from
instance to instance (high σπnorm). We find performance to
be mediocre to poor on the larger instances (1,5,7,9), while
competitive on the smaller.

TABLE XI. COMPARISON OF PERFORMANCE ON MAC

Max Cut Problem (MAC)
rank method µrank µnorm σrunnorm σπnorm best worst

1 AA-HH 1.5 0.16 0.05 0.1 8 0
2 Adap-HH 2.25 0.19 0.07 0.07 1 0
3 NR-FS-ILS 3.1 0.31 0.07 0.2 0 0
4 FS-ILS 3.95 0.34 0.08 0.22 1 2
5 EPH 4.6 0.47 0.12 0.14 0 1
6 ANW-HH 5.6 0.7 0.1 0.08 0 7

TABLE XII. MEDIAN SOLUTION QUALITIES OBTAINED FOR MAC

π Adap-HH FS-ILS NR-FS-ILS EPH AA-HH ANW-HH
0 -41175603 -41348693 -41145032 -40953212 -40502841 -38772645
1 -269692927 -255265025 -257764081 -260608752 -263151470 -258016734
2 -3044 -3041 -3044 -3023 -3046 -2996
3 -3025 -3020 -3025 -3004 -3033 -2976
4 -3026 -3026 -3028 -3004 -3035 -2982
5 -13126 -13083 -13091 -13065 -13177 -12964
6 -1314 -1302 -1304 -1206 -1322 -1232
7 -9823 -9632 -9668 -9794 -9878 -9657
8 -450 -450 -450 -430 -454 -404
9 -2786 -2676 -2680 -2648 -2814 -2578

5) Summary: Table XIII summarizes the performance of
each method on all 98 instances in the extended HyFlex
benchmark set (Pall), partitioned in Pold and Pnew. At
first sight (rank and µrank on Pall) one might conclude
that NR-FS-ILS generalizes best. When looking at µnorm,
however, Adap-HH performs best accross Pall. Furthermore,
the σnorm and min values suggest the performance of Adap-
HH to be more reliable. Remark that Adap-HH ranks 2nd

or 3rd on 7 out of the 9 domains (KP 1st and PSP 4th)
and only performs worst on a single instance. In addition
generalization should be measured w.r.t. new instances (not

TABLE XIII. COMPARISON OF PERFORMANCE ACROSS THE
EXTENDED HYFLEX BENCHMARK

HyFlex domains (Pold)
rank method µrank µnorm σrunnorm σπnorm best worst

1 NR-FS-ILS 2.26 0.1 0.04 0.09 22 0
2 FS-ILS 2.54 0.1 0.04 0.09 22 0
3 Adap-HH 2.84 0.12 0.05 0.14 15 1
4 EPH 2.92 0.13 0.06 0.09 21 0
5 ANW-HH 4.76 0.39 0.11 0.24 4 19
6 AA-HH 5.68 0.69 0.08 0.25 0 48

New domains (Pnew)
rank method µrank µnorm σrunnorm σπnorm best worst

1 Adap-HH 2.12 0.11 0.04 0.09 11 0
2 AA-HH 3.0 0.15 0.03 0.18 11 0
3 NR-FS-ILS 3.23 0.26 0.1 0.2 6 6
4 EPH 3.38 0.22 0.07 0.2 5 1
5 FS-ILS 3.85 0.28 0.12 0.22 5 4
6 ANW-HH 5.42 0.55 0.13 0.25 0 21

Extended Hyflex Benchmark (Pall)
rank method µrank µnorm σrunnorm σπnorm best worst

1 NR-FS-ILS 2.56 0.15 0.06 0.15 28 6
2 Adap-HH 2.62 0.11 0.05 0.12 26 1
3 FS-ILS 2.94 0.15 0.06 0.17 27 4
4 EPH 3.06 0.15 0.07 0.14 26 1
5 AA-HH 4.86 0.53 0.06 0.34 11 48
6 ANW-HH 4.96 0.44 0.12 0.26 4 40

used during design), i.e. Pnew for cross-domain generaliza-
tion. Here we find that Adap-HH clearly outperforms all
others. Curiously AA-HH ranks 2nd, i.e. we can’t generalize
the clear superiority of Xsao over Xnaive observed on Pold
(see Section V-B1). However we’d like to argue that this
seemingly dramatic realization should not be worrying. It is
no “problem” that a naive method performs better on some
particular domains, as long as the overall performance is
worse, i.e. it generalizes poorly. Overall we find Xnaive to be
performing clearly worse than Xsao on Pall and this for all
measures of performance. Also, both methods show similar
performance, suggesting that the extended benchmark set is
well-balanced (i.e. unbiased w.r.t. pure exploration, exploita-
tion). Finally, as FS-ILS performs worse than (NR-)FS-ILS
on Pall and nearly all domains considered (except for SAT),
we can further simplify it by omitting the restart condition.

VI. CONCLUSION

In this paper we’ve conducted a comparative study of
several publicly available, state-of-the-art hyper-heuristics for
HyFlex in order to assess their generality across domains.
To this purpose we’ve extended the HyFlex benchmark set
with 3 new problem domains, i.e. the 0-1 Knap Sack (KP),
Quadratic Assignment (QAP) and Max-Cut Problem (MAC).
In what follows we summarize our findings:

• Of the methods compared, Adap-HH clearly gener-
alizes best to the new domains and performs most
consistently overall.

• (NR-)FS-ILS performs poorly on the KP domain,
most likely due to the long intensification phases it
performs in uninteresting areas of the search space.

• On the full and extended benchmarks FS-ILS does
not seem to benefit from its restart condition (on the
contrary), we can therefore omit it without loss of
performance (with as exception the SAT domain).

• While AA-HH is surprisingly competitive on the
new domains, overall the state-of-the-art methods
compared, clearly generalize better than their naive
counterparts.



The main downside of Adap-HH is its high complexity.
One might argue that “complexity is not an issue, as methods
are used as a black-box”. We’d like to argue to the contrary.
For software in general, the black-box argument can be
rephrased as “It does not matter how my code looks like,
the user doesn’t see it anyway”. This is a known fallacy, as
used software also needs to be maintained and therefore be
maintainable. We believe this to be even more relevant in a
research context. Therefore, interesting future research would
be to apply accidental complexity analysis to Adap-HH.

Note that 2 out of the 3 authors of this paper, were
also involved in the design of FS-ILS. This leads to an
obvious risk of bias in our comparison. Furthermore, given
our experimental results it wouldn’t have been difficult to
select domains and instances in such way that ours would
have come out on top. In the setup of our experiments we’ve
taken the nescessary precautions to avoid such bias and have
made the reproducability of our experiments a main concern.
The results reported for FS-ILS itself aren’t that good. This
is not problematic, on the contrary, it led us to identify a
weakness of our method. Furthermore, we believe that it
should be feasible to resolve this issue in future research.

When looking for community support, we found many
authors to be interested in having their method included
in our comparison. Including all, however, was beyond the
scope of this work. Therefore, we plan to publish a more
extensive comparison of the state-of-the-art in the near future.
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APPENDIX

0-1 Knapsack Problem (KP)

Initialization:
Constructs a candidate solution representing the empty set.

Local search Heuristics:

0) PACKRANDOM: Packs a randomly fitting item.
1) PACKBEST: Packs most valuable fitting item.
2) PACKPPP: Packs a randomly fitting item, improv-

ing the Profit Per Pound
∑

j∈K p(j)∑
j∈K w(j) of the solution.

3) PACKLIGHT: Packs the lightest fitting item.
4) SWAPFIRST: Substitute a random packed piece by

a random more expensive fitting piece.
5) SWAPBEST: Perform the substitution of 2 pieces,

improving the total profit most.



Mutational Heuristics:

6) SWAPRANDOM: Randomly substitutes 2 pieces.
7) SWAPPPP: Randomly substitutes 2 pieces, improv-

ing the Profit Per Pound of the solution.
8) REMOVERANDOM: Unpacks a random piece.
9) REMOVEWORST: Unpacks the cheapest piece.

10) REMOVEHEAVY : Unpacks the heaviest piece.

The SWAP, REMOVE mutations are repeated d5αe and
dα|K|e times, respectively.

Ruin-Recreate Heuristics:
These heuristics first unpack dα|K|e randomly selected
pieces, subsequently they pack pieces, till no more fit.

11) REPACKBEST: Each time packs the most valuable
fitting piece.

12) REPACKPPP: Each time packs the fitting piece,
improving the Profit Per Pound of the solution most.

Crossover Heuristics:

13) INTERSECTION: The output solution packs the
items packed in both input solutions.

14) RANDOMUNION: Starting from the empty solution,
each time packs a random fitting piece, packed in
either of the input solutions.

15) BESTUNION: Starting from the empty solution,
each time packs the fitting piece, packed in either of
the input solutions, improving the total profit most.

Quadratic Assignment Problem (QAP)

Initialization
Assigns facilities to locations, uniformly at random.

Local search Heuristics:

0) SWAPFIRSTII: Iteratively swaps the locations of 2
random facilities, improving the solution.

1) SWAPBESTII: Iteratively swaps the locations of the
2 facilities, improving the solution most.

Both local-search heuristics terminate at a local optimum.

Mutational Heuristics:

2) SWAPRANDOM: Swaps the locations of 2 random
facilities, repeated d5αe times.

3) SWAPBEST: Swaps the locations of the 2 facilities,
resulting in the best solution quality. This operation
is repeated d1000α3e times or until an improving
solution is found. Within a single application the
same pair of facilities are never swapped twice.

Ruin-Recreate Heuristics:

4) RREASSIGN: Unassigns dαn2 e facilities and reas-
signs them uniformly at random.

5) GREEDYREASSIGNF: First unassigns dαne facil-
ities. Next re-assigns facilities x to a location, in
order of decreasing sum of flows

∑
y∈F f(x, y) +

f(y, x), minimizing the cost of the partial assign-
ment c(s′) =

∑
x,y∈F ′ f(x, y)d(s(x), s(y)), with

F ′ ⊂ F the assigned facilities.
6) GREEDYREASSIGNL: As 5, but instead free lo-

cations x are re-assigned to facilities in order of
decreasing sum of distances

∑
y∈L d(x, y)+d(y, x).

Crossover Heuristics:
The domain provides the 2 classic permutation crossover
operations, shown to perform best on QAP in [20].

7) PMX: Partially Matched Crossover.
8) OX: Order Crossover.

Max-Cut Problem (MAC)

Initialization:
Vertices are greedily inserted in a random order in the
partition that minimizes the cost of the cut on the sub-graph
Gpartial of G, containing only the vertices and edges
between vertices, that were already inserted.

Local search Heuristics:

0) SWAPFIRST: Changes the partition of a random
vertex that improves the quality of the solution.

1) SWAPBEST: Changes the partition of the vertex
improving the quality of the solution most.

2) SWAPNEIGHBOURS: Changes the partition of the 2
neighbouring vertices improving the quality of the
solution most. This move is performed only once.

The SWAPFIRST and SWAPBEST heuristics are repeated for
d100βe iterations or until no improving move exists.

Mutational Heuristics:

3) SWAPRANDOM: Changes the partition of a ran-
domly selected vertex (repeated d10αe times).

4) SWAPRANDOMNEIGHBOURS: Changes the parti-
tion of the 2 randomly selected neighbouring ver-
tices (repeated d5αe times).

Ruin-Recreate Heuristics:

5) RANDOMRR: Removes d50αe random vertices and
re-inserts them in a random partition.

6) GREEDYRR: Removes d50αe random vertices and
re-inserts them greedily, inserting the vertex in the
partition, resulting in the best sub-cut.

7) RADIALRR: Removes d5αe random vertices and
all their neighbours, and re-inserts them as in 6.

Crossover Heuristics:

8) ONEPOINTXO: Performs the one point crossover
on the partitioning of vertices (ordered by id).

9) MULTIPLEPARENTXO: Performs the multiple par-
ent crossover described in [21].


