24/06/2014

UNIVERSITY OF

STIRLING

SR A L T 7 i i
COMPUTING SCIENCE AND MATHEMATICS

Search-based Approaches and
Hyper-heuristics
Gabriela Ochoa

http://www.cs.stir.ac.uk/~goc

Computing Science
chool of Natural
sity of Stirling, Stirlin

Outline

1. Optimisation problems
— Optimisation & search
— Classic mathematical models
— Two canonical examples (Knapsack, TSP)
2. Optimisation methods
— Heuristics and metaheuristcis
— Single point algorithms
— Population-based algorithms
3. Autonomous search and hyper-heuristics

Optimisation problems

* Wide variety of applications across industry,
commerce, science and government

* Optimisation occurs in the minimisation of time,
cost and risk, or the maximisation of profit, quality,
and efficiency

* Examples

— Finding shortest round trips in graphs (TSP)

— Finding models of propositional formulae (SAT)

— Determining the 3D-structure of proteins

— Planning, scheduling, cutting & packing, logistics, transportation,
communications, timetabling, resource allocation, genome sequencing

— Software engineering: test case minimisation and
prioritisation, requirements analysis, code design and
repair, etc.

Optimisation problems are everywhere!

Logistics, transportation,

Manufacturing, production lines Timetabling
supply change management

Computer networks and

Telecommunications
Gabriela Ochoa, goc@stir.ac.uk

Software - SBSE

Cutting & packing

http://www.cs.stir.ac.uk/~goc/
http://www.cs.stir.ac.uk/~goc/
http://www.cs.stir.ac.uk/~goc/

24/06/2014

Optimisation problems

General constrained
optimisation problem:

Min/Max f(X)

Subject to: * Systematic search

g (.75) <0 i=1,.,p

Optimisation through search
Iteratively generate and evaluate

candidate solutions.

® (Stochastic) local search

Search in Computing Science

At least 4 meanings of the word search in CS

1. Search for stored data

Finding information stored in disc or
memory.

Examples: Sequential search, Binary
search

2. Search for web documents

* Finding information on the world wide
web
* Results are presented as a list of results

3. Search for paths or routes 4. Search for solutions
h X (x) = O j = 1;'--:n * Finding a! s.e.t of actions that will bringus | * Find .a solution in a large space of
J from an initial stat to a goal stat candidate solutions
Search Space: set of * Relevantto Al * Relevant to Al, Optimisation, OR
did P IA A I 1 * Examples: depth first search, breath first | * Examples: evolutionary algorithms, Tabu
can 'I ate 5ol u‘tlon‘sA Al I search, branch and bound, A*, Monte search, simulated annealing, ant colony
possible combinations of Carlo tree search. optimisation, etc.
the decision variables.
Gabriela Ochoa, goc@stir.ac.uk 3 Gabriela Ochoa, goc@stir.ac.uk
Search and optimisation in practice Optimisation problems: two categories
Many challenging applications in science and industry can be . . .
Continuous Combinatorial

formulated as optimisation problems!

Problem Model

* Problem representation
* Constraints

* Afitness function

‘ ——> Formulation
Optimisation/search Algorithm

* Exact methods

Model * Approximate (heuristic) methods

* Continuous variables

* Discrete variables

* Looking for a set (vector) of real* Looking for an object froma

numbers [45.78, 8.91, 3.36]

* Objective function has a
mathematical expression

* Special cases studied in

finite set

— Binary digits [1011101010]
— Integer [1,53,4,67,39]
— Permutation [3,5,1,2,4]

— Graph

l —> Algorithm

Solution

Solution to the Model

* Feasible candidate solution
* Lead to the optimal (or good
enough) value of the objective
function

c@stir.ac.uk

mathematics and OR: Convex,
Linear, Dynamic programming

* Generally have quite different flavours and methods for solving them
* Have become divergent

Gabriela Ochoa, goc@stir.ac.uk

24/06/2014

Classic mathematical models

Linear Programs (LP) Integer Programs (IP)

¢ LP in which some or all
variables are constrained to
take on integer values

* Asingle objective
* The objective and

constraints are linear
* Harder to solve. Software

packages: Excel, LINGO/LINDO
and MPL/CPLEX,

Importance

* Decision variables, allowed
to have any values
* Easy to solve numerically

(simplex method) . . .
* problemsin which variables

required to be integer
* many decisions are essentially
discrete (yes/no, go/no-go)

Importance
* Many applications

Integer program: canonical form

maximise c,x,+c,x,+...+c,x, (objective function)
subject to
A% +ag Xyt +a X, < by

ay1XtayXy .. +ay X, < b,

(functional constraints)

a1 X tagmo Xyt ta X, < b,
X1 Xg 5 vy Xy € Ly (set constraints)

In vector form:
maximise cx (objective function)
subjectto Ax<b (functional constraints)
x eZ", (setconstraints)

The knapsack problem

* Given a knapsack of capacity W, and a number n of items, each
with a weight and value. The objective is to maximise the total
value of the items in the knapsack

* Search space size = 2"

e R s R

maximise =~

4X,+2X,+X3+10X, +2Xg 1 If we select item i

0 Otherwise

subject to
12X, +2X,+X3 4%, +X5 < 15
X1,X5,X3,X4,%s € {0, 1}

* Can be formulated as an Integer Programming proble|
and solved efficiently using Dynamic Programming
* Binary representation [11010], using heuristic methods

Travelling salesman problem (TSP)

Given a number of cities and the costs of travelling
from one to the other, what is the cheapest
roundtrip route that visits each city and then
returns to the starting city?

Objective: Min Sum(dist(x,y)). Total cost
(distance) travelled

Configurations: permutation (ordering) of cities.
Representing the order in which cities a=~ *+~*

— s1=(ABCD), f(s1)=20+30+12+35= 97

— s2=(ABDC), f(s2)=20+34+12+42=108

— 53=(ACBD), f(s3)=42+30+34+35= 141 2 l 1

Size of the search space: (n-1)!/2
— n=10(181,000); n=30 (10%2)

24/06/2014

Neighbourhoods

* Region of the search space that is “near” to some particular
point in that space

 Define a distance function dist on the search space S
— Dist:SxS-> R
— N(x)={y €S: dist(x,y) <€}

Examples:

* Euclidean distance, for search spaces
defined over continuous variables

* Hamming distance, for search spaces
definced over binary strings

S

A search space S, a potential solution
X, and its neighbourhood N(x)

Gabriela Ochoa, goc@stirac.uk 13

Defining neighbourhoods

Binary Permutation

* 1-flip: Solutions generated * 2-swap: Solutions
by flipping a single bit in the generated by swapping two
given bit string cities from a given tour

* Every solution hasn Every solution has n(n-1)/2
neighbours neighbours

* Example:

-11001 01001

Example:
—24531 - 23541,

Gabriela Ochoa, goc@stir.ac.uk 14

Fitness landscapes

* Describe dynamics of adaptation in "
Nature (wright, 1932). Later, describe
dynamics of meta-heuristics |
* Search: adaptive-walk over a I
Landscape
¢ 3 Components L =(S,d,f)
— Search Space

— Neighborhood relation or distance metric
(operator dependant!)

— Fitness function

Gabriela Ochoa, goc@stir.ac.uk 15

Features of landscapes relevant to
heuristic search

Trentino Mountains

Number, fitness, and distribution of local
optima or peaks

Fitness differences between neighboring
points (ruggedness).

Presence and structure of plateaus, neutral
networks (terrains with equal fitness)

Earth pyramids, Tyrol, Italy

--- M. Auyantepui, Venezuela (Angel Falls, Highest
Waterfall) Gabriela Ochoa, goc@stirac.uk

24/06/2014

Summary of optimisation problems Outline

Many challenging applications in science and industry can be L .
1. Optimisation problems

formulated as optimisation problems!
Problem Model — Optimisation & search

+ Problem representation — Classic mathematical models
* Constraints
) + Afitness function — Two canonical examples (Knapsack, TSP)

‘ ———> Formulation L.)
Optimisation/search Algorithm 2. Optimisation methods
* Exact methods

Model + Approximate (heuristic) methods — Heuristics and metaheuristcis

Solution to the Model — Single point algorithms

' « Feasible candidate solution — Population-based algorithms

—> Algorithm « Lead to the optimal (or good P g Lo

enough) value of the objective 3. Autonomous search and hyper-heuristics
function

Solution

Gabriela Ochoa, goc@stir.ac.uk

Gabriela Ochoa, goc@stirac.uk

Optimisation/search algorithms Terminology and dates

* Heuristic: Greek word heuriskein, the art of discovering new

Guarantee finding optimal solution a— + Do not Guarantee finding optimal solution
* Useful when problems can be solved in | | o icion + Formost interesting optimisation problems strategies to solve problems
Polynomial time, or for small instances algorithms there is no polynomial methods are known
* Heuristics for solving optimization problems, G. Poyla (1945)

{ J
) O — A method for helping in solving of a problem, commonly informal
froct poprorimate — “rules of thumb”, educated guesses, or simply common sense
3 : Prefix meta: Greek for “upper level methodology”

[Specilpurpese [Genersipurpose Specl purse Metand Hyoer * Metaheuristics: term was introduced by Fred Glover (1986).

e Other terms: modern heuristics, heuristic optimisation,

I l_l_l s L s L 1
[Generate bounds:| T T | ceear/ || [T stochastic local search
Gl ascen, sranch and Cuttingplanes Approsimation Constructive single point Populaton bsed
Langrangean relax Heuristcs
b . S S . S S * G.Poyla, How to Solve it. Princeton University Press, Princeton NJ, 1945
Approximation algorithms: * F. Glover, Future Paths for Integer Programming and Links to Artificial Intelligence,
Computers & Ops. Res, Vol. 13, No.5, pp. 533-549, 1986.

An attempt to formalise heuristics (emerged from the field of theoretical computer science)
Polynomial time heuristics that provide some sort of guarantee on the quality of the solution

Gabriela Ochoa, goc@stir.ac.uk

Gabriel

24/06/2014

What is a heuristic?

* An optimisation method that tries to exploit
problem-specific knowledge, for which we
have no guarantee to find the optimal solution

Construction

* Search space: partial
candidate solutions

* Search step: extension
with one or more
solution components

* Example in TSP: nearest
neighbour

Improvement
Search space: complete
candidate solutions

Search step: modification
of one or more solution
components

Example in TSP: 2-opt

Gabriela Ochoa, goc@stirac.uk 2

What is a metaheuristic?

* Extended variants of improvement heuristics

* General-purpose solvers, usually applicable to
a large variety of problems

* Use two phases during search

— Intensification (exploitation): focus the applications
of operators on high-quality solutions

— Diversification (exploration): systematically
modifies existing solutions such as new areas of
the search space are explored

Gabriela Ochoa, goc@stirac.uk 2

Genealogy of metaheuristics

The Simplex Algorithm (G. Dantzig, 1947)
1947 LS (a7}

EP (62 GAE
(1.Edmonds, 1971): Al 2

Greedy heuristic (71)

AIS (86)
»
A (o

: ¥
i area) acowz)

¥ : i
o3| oA ; bohen § G v
4 M DE(94) | EDA,CA(34)
1995 VNS (95) GLS (95) v PSO (95)
1008, CMAES(98) BC (9)
Time
FIGURE 1.8 Genealogy of ics. The application to ization and/or machine
learning is taken into account as the original date. Metaheuristics: From Design to
Implementation
By El-Ghazali Talbi (2009)
Gabriela Ochoa, goc@stir.ac.uk 23

Key components of metaheuristics

Problem * Describes encoding of solutions
Representation * Application of search operators

* Often same as the objective function

* Extensions might be necessary (e.g.. Infeasible
solutions)

Sea h/Va ria Closely related to the representation
perators * Mutation, recombination, ruin-recreate
. a * Created randomly
Initial SO|UtI0n(S) * Seeding with higher quality or biased solutions

« Defines intensification/diversification mechanisms
* Many possibilities and alternatives!

Gabriela Ochoa, goc@stir.ac.uk 2

24/06/2014

Problem representations in SBSE Search operators for binary representation

M. Harman, S. A. Mansouri, and Yuanyuan Zhang (2012) Search-based software engineering:
Trends, techniques and applications. ACM Comput. Surv. 45, 1, Article 11, 61 pages. P

‘ PP P > Mutation: , e QGGG
« Alter each gene independently with

1
a probability P, (mutation rate) D OO0 D OO o

« Typically: 1/chromosome_length

* Network protocols: synthesis secure protocols
* Requirements; selection, system design,fairness analysis, etc.
* Design Tools: learning automate, sw integration, OO, etc.

Bit String/Matrix * Coding tools: splitability analysis
* SW Verification: model checking Recombination:
* Testing; test selection — . + One-point parenta EIEDE!EEIEEIDEEIE]EEIEIEIDEI
+ Maintenance: clone refactoring, library refactoring + N-point 00000DE0n0Ennaaag
Permutation + Uniform
P, typically in range (0.6, 0.9) iy, PICIOIOIBTTTY [0
Vector of Integers oooom
Vector of Real No. — [o]o]a]o[a]o]a]o] [e]o]e]e[e[e[o[o]e[e[o[o[o]e[e[e]a]o]
) A A A A L
String
Trees v ISR NSRRI T 7 T IR GIBT [e
Graphs A TR Bl ™ SBR[E T

Gabriela Ochoa, goc@stir.ac.uk Gabriela Ochoa, goc@stir.ac.uk

Search operators for permutation representation Hill-climbi ng sea rch

Mutation: Small variation in one permutation, e.g.: swapping values of . . . L. 3 5 .
two randomly chosen positions, Like climbing a mountain in thick fog with amnesia

[1[3[SI2[c[4 8] — [1[3[@2[6]4[Bl8]
Algorithm 1 Best-improvement (left) and first-improvement (right) algorithms.

Recombination: Combining two permutations into two new permutations: . . o . . o
« choose random crossover point Choose initial solution s £ S Choose initial solution s £ §
« copy first parts into children repeat , , repeat
« create second part by inserting values from other parent: choose s & V(s), such that f(s') = choose s' € V() using a pred

« in the order they appear there mazzcy s f(x) dom ordering

« beginning after crossover point if f(s) < f(s) then i 7(6) < £(s') then

« skipping values already in child s 3 8l <

end if s
until s is a Local optimum end if

until s is a Local optimum

Gabriela Ochoa, goc@stir.ac.uk

Gabriela Ochoa, goc@stir.ac.uk

24/06/2014

Hill-climbing search

Problem: depending on initial state, can get stuck in local maxima

Useful to consider state space landscape

function __global maximum

shoulder
local maximum
“flat” local maximum

current
state

Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves (f?jﬁcape from shoulders (=)loop on flat maxima

Simulated annealing

* Keyidea: provides a mechanism to escape local
optima by allowing moves that worsen the
objective function value

* Annealing: the physical process of heating up a
solid and then cooling it down (slowly) until it
crystallizes

— candidate solutions - states of physical system
— objective function - thermodynamic energy
— globally optimal solutions —> ground states

— parameter T - physical temperature
Google Scholar citations: 31,477

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. (1983). Optimization by simulated annealing.
Science, 220, 671-680.

Gabriela Ochoa, goc@stir.ac.uk 30

Simulated Annealing — Algorithm

1. Start with a random solution s

2. Choose some “nearby” solution s’

3. Ifthe new solution is better (i.e. f(s’) < f(s)) , take it as the
current solution (= accept it)

4. Ifitis worse, accept it with a probability that depends on the
deterioration f(s)-f(s’) and a global parameter T (the

temperature) Cooling schedule: a

mechanism for reducing
the temperature

_ 1 if £(s) < f(s)
Paccept(T. s.8') = /
accept (T, s,5) { — "F(~)) otherwise

Metropolis acceptance criterion

stir.ac.uk 31

Tabu search

* Key idea: use aspects of search history escape local optima by allowing moves
* Simple Tabu search
— Associate tabu attributes with candidate solutions or solution components
— Forbid steps to search positions recently visited based on tabu attributes

Procedure Tabu Search (TS)
determine initial candidate solution s
while NOT termination criterion {
determine set V" of non-tabu neighbours of s
choose a best improving candidate solution s in N”
update tabu attributes based on s’
s:=5"

The word ‘tabu’ comes from
Tongan, a language of
Polynesia, used by the locals to
indicate things that cannot be
touched because they are
sacred.

F. Glover (1989). Tabu Search - Part 1. ORSA Journal on Computing 1 (2): 190-206. Google cites: 5,675
F. Glover (1990). Tabu Search - Part 2. ORSA Journal on Computing 2 (1): 4-32. Google cites: 3,684
R. Battiti, G. Tecchiolli (1994) The reactive tabu search . ORSA journal on computing 6 (2): 126-140.

Gabriela Ochoa, goc@stir.ac.uk 32

24/06/2014

Iterated local search

* Key idea: use two stages
— Subsidiary local search for efficiently reaching local optima (intensification)
— Perturbation stage, for effectively escaping local optima (diversification)

* Acceptance criterion: to control diversification vs. intensificaction
Procedure Iterated Local Search (ILS)
determine initial candidate solution s
perform subsidiary local search on s
while NOT termination_criterion {
r=s
perform perturbation on s
perform subsidiary local search on s
based on acceptance criterion
keep s orreverttos=r

peruurbaion

AN
/ "

}

Key idea rediscovered several times with different names (80s &90s). Term jterated local search proposed
HR Lourengo, OC Martin, T Stiitzle(2003). Iterated local search. Handbook of metaheuristics, 320-353,
Springer. Google cites: 964

Gabriela Ochoa,

Evolutionary algorithms: inspiration
Natural Selection
1. Variation
. Hereditary transmission

2
3. High rate of population growth
4. Differential survival and reproduction

= - Individual >
: \ Fitness ey Quality

gﬁmess — chances for survival and reproduction

Quality — chance for seeding new solutions

NATURE COMPUTER
Environment e, Problem

Candidate Solution

Charles Darwin and Alfred Wallace: Theory of
evolution by means of Natural Selection (1859)

(“d

Origins of evolutionary algorithms

* Evolutionary Programming
— Fogel, Owens, Walsh (1962)
e Evolution Strategy:
— 60s and 70s. |. Rechenberg & H-P Schwefel
* Genetic Algorithms:
— John Holland (1975).
— David Goldberg (1989)

Google Scholar
citations: 63,968

Alan Turing (1912 — 1954). Mathematician, wartime code-breaker and pioneer of
computer science Article: “Computing Machinery and Intelligence,” (1950)
described how evolution and natural selection might be used to automatically
create an intelligent computer program

Genetic algorithms

Procedure GA

Generate [P(0)]

t=0

while NOT Termination_Criterion {
Evaluate [P(t)]
P' (t) = Select [P(t)]
P"(t) = Apply_Operators [P'(t)]
P(t+1) = Replace [P(t), P"(t)]
t=t+1

Replacement (population models)
Generational: each generation set of
parents replaced by the offspring
Steady-state: one offspring is generated
per generation. One member is replaced
Generation gap: a proportion of the
population is replaced

}

Parent selection: Better individuals get higher
chance (proportional to fitness).

* Proportional selection (roulette wheel,
stochastic universal sampling)

Scaling methods

Rank selection

Tournament selection

(1 +A)-and (u, A) selection

Gabriela Ochoa, goc@stir.ac.u

24/06/2014

* Orders of magnitude faster

Memetic (hybrid) algorithms

* Combination of GAs with el e
local search operators, or
GAs that use instance specific
knowledge in operators

and more accurate than GAs
on some problems, and are
the “state-of-the-art” on
many problems

l Mutation€—

Offsping

—

The term meme was coined by R. Dawkins (1976)
The term memetic algorithms by P. Moscato (1989)

The idea of hybridisation in GAs is older (Eiben, Smith, 2003)

Evolution strategies

Specialised in continuous search spaces: min. f: R > R

Rechenberg & Schwefel in the 60s, Technical University of
Berlin. Applied to hydrodynamic shape optimisation

Special feature: self-adaptation of mutation parameters

Procedure (1+1)-ES
t=0;
initialise solution x* = { x,*,....%,')
while NOT Termination_criterion) {
Draw z; from a Normal distr. for alli = 1,...,n

yi=xt+z [

if fixt) <f(y!) then xt*1=xt A AL

else xt*1 = yt

t=t+1 * zvalues from Normal dist. N(0, &)
} * o, step size, varied on the fly

* 1/5 success rule sets o every k iterations,
p,is the % of successful mutations « o=c/c ifp,>1/5
0.8<c<1 * o=0XC ifp,<1/5
« o=0 if p,= 1/5

Modern evolution strategies

Use a population: 4 parents, A offspring

(p + A)-ES: next generation crated from the union of parents and
offspring

(1, A)-ES: the best 1 solutions from the offspring are chosen
Recombination used for exchanging information

Self-adaptation: Incorporate strategy parameter (o, std. dev
mutation strength) into the search process

CMA-ES: (Covariance Matrix Adaptation ES, N. Hansen, A. Ostermeier, 1996)
— State-of-the-art ES, unconstrained or bounded constraint, 3 — 100 dim.

— Source code: https://www.lri.fr/~hansen/cmaes_inmatlab.html
Differential Evolution (K. Price and R. Storn, 1996)

— Recent and powerful EA for continuous optimisation, elegant and simple
— Key idea: using vector differences for perturbing the vector population

— Source code: http://wwwl.icsi.berkeley.edu/~storn/code.html

Gabriela Ochoa, goc@stir.ac.uk

Genetic programming

Evolve a population of computer programs
Applied to: machine learning tasks (prediction, classification...)
Representation

— Non-linear genomes: trees, graphs

— Linear genomes: grammatical evolution (Ryan, 1999)
Main difference with GAs:

— Search space of tree structures different sizes

— Solutions are parse-trees, syntactic structure according to some grammar
— Nodes in the parse tree are either:

« Terminal set T (leaf nodes): independent variables of the problem, zero argument
functions, random constants, terminals with side effects (eg. “turn left”)

* Function set S (interior nodes): arithmetic (+,-,*)/logic operations (A,V)

Gabriela Ochoa, goc@stir.ac.uk

10

https://www.lri.fr/~hansen/cmaes_inmatlab.html
https://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www1.icsi.berkeley.edu/~storn/code.html
http://www1.icsi.berkeley.edu/~storn/code.html

24/06/2014

Genetic programming

+
z 2 3-L
_ R Gk vy N Mutation: replace randomly
chosen sub-tree by
n / - oo randomly generated tree

Recombination: interchange

Parent 1 randomly chosen sub-trees
i + ™ .
¥ 12 B
Parent 2 Child 1 Child 2

Genetic programming origins and sources

Origin 1985: NL Cramer (1985) A Representation for the
Adaptive Generation of Simple Sequential Programs. In
Proceedings of the 1st International Conference on Genetic
Algorithms, John J. Grefenstette (Ed.). 183-187. 1992 book: On the Programming of
Computers by Means of Natural

John R. Koza Selection from The MIT Press.

Scientist and business man. Popularised GP, proposed and EVERY VOTE
funds the HUMMIES award. Millionaire, co-inventor of rub- QAL
off instant lottery game ticket, proposed a plan for electing the
US president by popular vote.

Bill Langdon
The GP Bibliography
http://www.cs.bham.ac.uk/~wbl/biblio/README.htm|

(Poli, Langdon, and McPhee, 2008)
http://www.gp-field-guide.org.uk

Gabriela Ochoa, goc@stir.ac.uk 22

Other population-based algorithms:
the social behaviour metaphor

Ant colony optimisation (ACO) Particle Swarm Optimization (PSO)

* Dorigo, Di Caro & %+ Eberhart & Kennedy, 1995

Gambardella (1991). . * Inspired by social behaviour o

Inspired by the behaviour bird flocking or fish schooling

of real ant colonies

* Aset of software agents artificial
ants search for good solutions

¢ Problem transformed to finding
the best path on a weighted
graph.

* Ants build solutions incrementally
by moving on the graph

* http://www.aco-metaheuristic.or

* http://www.scholarpedia.org/article/Ant c
olony optimization

* Solutions (called particles) fly
through the search space by
following the current optimum
particles

« Ateach iteration they accelerate
towards the best locations

* http://www.swarmintelligence.ol

+ http://www.schol dia.org/article/Par
ticle swarm optimization

Summary: Optimisationalgorithms

+ Guarantee finding optimal solution)
« Useful when problems can be solved in v
Polynomial time, or for small instances)

R

Do not Guarantee finding optimal solution
* Formost interesting optimisation problems
no polynomial methods are known

Specil purpose Generl s specil purpose Vet nd e

Genrate bounds:
cua s, Branchand cutngplnes | | | soproxmaton
Langrangean relax ouns

Metaheuristcs, modern heuristics, stochastic local search (key components):
1. Problem representation

2. Fitness function

3. Search/variation operators

4. Solution initialisation

5. Search strategy (balance exploration & exploitation, avoid local optima)

Constructive
Heuritis

Single point ‘ Population based ‘

tirac.uk 14

11

http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.cs.bham.ac.uk/~wbl/biblio/README.html
http://www.cs.bham.ac.uk/~wbl/biblio/README.html
http://www.aco-metaheuristic.org/
http://www.aco-metaheuristic.org/
http://www.aco-metaheuristic.org/
http://www.aco-metaheuristic.org/
http://www.aco-metaheuristic.org/
http://www.scholarpedia.org/article/Ant_colony_optimization
http://www.scholarpedia.org/article/Ant_colony_optimization
http://www.scholarpedia.org/article/Ant_colony_optimization
http://www.swarmintelligence.org/
http://www.swarmintelligence.org/
http://www.scholarpedia.org/article/Particle_swarm_optimization
http://www.scholarpedia.org/article/Particle_swarm_optimization
http://www.scholarpedia.org/article/Particle_swarm_optimization

24/06/2014

Outline

1. Optimisation problems
— Optimisation & search
— Classic mathematical models
— Two canonical examples (Knapsack, TSP)
2. Optimisation methods
— Heuristics and metaheuristcis
— Single point algorithms
— Population-based algorithms
3. Autonomous search and hyper-heuristics

Gabriela Ochoa, goc@stirac.uk 45

Increase in complexity

Real world problems are complex
Heuristic search algorithms are powerful but
— There are too many variants
— They are getting increasingly complex
* Many parameters
* Many design/algorithmic components
Advantage
— More variety and more flexible algorithms
— Fit to different problems
Disadvantage
— Need to select an algorithm, or

— Select the algorithm components/operators
and/or set their parameters

Gabriela Ochoa, goc@stir.ac.uk

Algorithm selection, configuration and tuning

Holy-Grail: Finding the most suitable optimisation/search algorithm
and its correct setting for solving a given problem

2/ Wi !

Algorithm
selection

Parameter
tuning

Static/dynamic
Can we automate

these processes?

goc@stirac.uk 47

.

.

Offline, Static Configuration

Autonomous/adaptive (self-*) search
approaches

Different approaches (that share common principles) have been
developed in different communities (OR, OP, Al, ML, CS)
Incorporate ideas from machine learning and statistics

Online, Dynamic Control

Adaptive operator selection
* Parameter control

Algorithm selection
Algorithm portfolios

Algorithm configuration and * Reactive search
Parameter tuning * Adaptive memetic algorithms
Racing, ParamILS, SPO * Hyper-heuristics

Hyper-heuristics

Gabriela Ochoa, goc@stir.ac.uk

12

24/06/2014

What is a Hyper-heuristic?

A higher level heuristic which manages a set of low-level
heuristics

An optimisation algorithm with a modular design

Benefits from combining the strengths of several simpler
heuristics

Uses only limited problem-specific information

Heuristics to choose Hyper-
heuristics heuristic

abriela Ochoa,

@stirac.uk 49

What Motivates Hyper-Heuristic Research?

v

Decision support systems that are
off the peg vs. Taylor made

v

Develop the ability to automatically
work well on different problems

v

Increase the generality and vs.
applicability of these methods to S

solve complex real-world problems a

Classification of hyper-heuristics

3 A 4 S »
M@ Hyper- .

\® ¢ heuristics e

P o \ [~
Heuristic Heuristic
Selection generation

~ ~ ~ ~

Construction Improvement Construction Improvement
heuristics heuristics heuristics heuristics
I I M I

Fixed, human-designed low level

v Heuristic components
heuristics

Hyper-ILS or adaptive ILS

Procedure Hyper-ILS * Pool of operators of different type
so = GeneratelnitialSolution « Reinforcement learning used to
s* = HyperimproveStage(s,) adaptively select the best operator to
while NOT Termination_criterion) { apply at each iteration
s'= HyperPerturbStage(s*) * Either or both
s"*= HyperimproveStage(s')
if f(s'*) < f(s*)

o* = g'*

— Improvement stage
— Perturbation stage

}

* Successful applications to both Vehicle routing and Course time-tabling
* Research questions
* Metrics to gather feedback from the search, how to combine them
* Mechanism for adaptive operator selection

Gabriela Ochoa, goc@stir.ac.uk 52

13

24/06/2014

Given a pool of operators

QUESTION: Given f K search operators

Simple Random Perturbation (SRP.
- {SBE) How to select (on the fly) the operator

Bt Sl b RaEGEm () to be applied next, considering the

Statistical Dynamic Perturbation (SDP)

S sandon peruvatin)

history of their performance?
Double Dynamic Perturbation (DDP) * Measuring performance > Assigning
Swap (SWP) credit < Selecting the operator: Fitness
Improvement + Extreme Credit +
Adaptive Pursuit

EA : A0S

Two Points Perturbation (2PP)
Move to Less Conflict (MLC)

Burke-Abdhulla (BA)

reward

operator @iy b) credit or
Conant-Pablos (LSA) .

Application to
Timetabling

Gabriela Ochoa, goc@stir.ac.uk 53

Summary of hyper-heuristics

* Main feature: search in a space of heuristics
» Term used for ‘heuristics to choose heuristics’ in 2000
* ldeas can be traced back to the 60s and 70s
« Two main type of approaches
— Heuristic selection
— Heuristic generation

* |deas from online and offline machine learning are relevant, as are
ideas of meta-level search

Gabriela Ochoa, goc@stir.ac.uk 54

References: Books

* Burke, E. K; Kendall, G., (Eds.) (2005) Search Methodologies:
Introductory Tutorials in Optimization and Decision Support
Techniques, Springer.

* A.E. Eiben and J.E. Smith (2003), Introduction to Evolutionary
Computing, Springer,

¢ Hoos, H; Stutzle, T. (2004) Stochastic Local Search Foundations and
Applications, Elsevier.

¢ Z. Michalewicz, D.B. Fogel (2000) How to Solve It: Modern Heuristics,
Springer.

* Rothlauf, F. (2011) Design of Modern Heuristics Principles and
Application. Natural Computing Series, Springer

* S.Russell, P. Norvig (2009) Artificial Intelligence: A Modern Approach
(3rd Edition) Prentice Hall.

« Talbi, E-G (2009), Metaheuristics: From Design to Implementation,
Wiley.

Gabriela Ochoa, goc@stir.ac.uk 55

References: Hyper-heuristics

* E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan and R. Qu (2013)

Hyper-heuristics: A Survey of the State of the Art, Journal of the Operational Research
Society. 206(1): 241-264

* E.K.Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. Woodward (2010). A

Classification of Hyper-heuristics Approaches, Handbook of Metaheuristics,
International Series in Operations Research & Management Science, M. Gendreau and
J-Y Potvin (Eds.), Springer, pp.449-468.

* E.K.Burke, M. Gendreau, G.Ochoa, J. Walker. Adaptive Iterated Local Search for Cross-

domain Optimisation. Genetic and Evolutionary Computation Conference (GECCO-
2011), ACM, pp. 1987-1994.

* G Ochoa, EK Burke (2014) HyperlILS: An Effective Iterated Local Search Hyper-Heuristic

for Combinatorial Optimisation, International Conference on the Practice and Theory of
Automated Timetabling (PATAT 2014)

* J.ASoria-Alcaraz, G.Ochoa, J. Swan, M. Carpio, H.Puga, E.K. Burke (2014) Effective

Learning Hyper-heuristics for the Course Timetabling Problem. European Journal of
Operational Research. 238(1): 77-8.

Gabriela Ochoa, goc@stirac.uk 56

14

