
24/06/2014

1

Search-based Approaches and
Hyper-heuristics

Gabriela Ochoa
http://www.cs.stir.ac.uk/~goc/

Computing Science and Mathematics,

School of Natural Sciences

University of Stirling, Stirling, Scotland

Outline

1. Optimisation problems
– Optimisation & search

– Classic mathematical models

– Two canonical examples (Knapsack, TSP)

2. Optimisation methods
– Heuristics and metaheuristcis

– Single point algorithms

– Population-based algorithms

3. Autonomous search and hyper-heuristics

Gabriela Ochoa, goc@stir.ac.uk 2

Optimisation problems
• Wide variety of applications across industry,

commerce, science and government
• Optimisation occurs in the minimisation of time,

cost and risk, or the maximisation of profit, quality,
and efficiency

• Examples
– Finding shortest round trips in graphs (TSP)
– Finding models of propositional formulae (SAT)
– Determining the 3D-structure of proteins
– Planning, scheduling, cutting & packing, logistics, transportation,

communications, timetabling, resource allocation, genome sequencing

– Software engineering: test case minimisation and
prioritisation, requirements analysis, code design and
repair, etc.

Gabriela Ochoa, goc@stir.ac.uk 3

Optimisation problems are everywhere!

Logistics, transportation,
supply change management

Manufacturing, production lines Timetabling

Cutting & packing
Computer networks and
Telecommunications

Software - SBSE

Gabriela Ochoa, goc@stir.ac.uk 4

http://www.cs.stir.ac.uk/~goc/
http://www.cs.stir.ac.uk/~goc/
http://www.cs.stir.ac.uk/~goc/

24/06/2014

2

Optimisation problems
General constrained
optimisation problem:

Optimisation through search

Iteratively generate and evaluate

candidate solutions.

• Systematic search

• (Stochastic) local search

Search Space: set of
candidate solutions. All
possible combinations of
the decision variables.

Min/Max f()

x


Subject to:

0)(xg
i



0)(xh
j


i = 1,…,p

j = 1,…,n

Gabriela Ochoa, goc@stir.ac.uk 5

Search in Computing Science

1. Search for stored data

• Finding information stored in disc or

memory.
• Examples: Sequential search, Binary

search

2. Search for web documents

• Finding information on the world wide

web
• Results are presented as a list of results

3. Search for paths or routes
• Finding a set of actions that will bring us

from an initial stat to a goal stat
• Relevant to AI
• Examples: depth first search, breath first

search, branch and bound, A*, Monte
Carlo tree search.

4. Search for solutions
• Find a solution in a large space of

candidate solutions
• Relevant to AI, Optimisation, OR
• Examples: evolutionary algorithms, Tabu

search, simulated annealing, ant colony
optimisation, etc.

At least 4 meanings of the word search in CS

Gabriela Ochoa, goc@stir.ac.uk 6

Search and optimisation in practice

Real-world
(SE) problem

Model

Solution

Formulation

Algorithm

Problem Model
• Problem representation
• Constraints
• A fitness function

Solution to the Model
• Feasible candidate solution
• Lead to the optimal (or good
enough) value of the objective
function

Optimisation/search Algorithm
• Exact methods
• Approximate (heuristic) methods

Many challenging applications in science and industry can be
formulated as optimisation problems!

Gabriela Ochoa, goc@stir.ac.uk 7

Optimisation problems: two categories

Continuous

• Continuous variables

• Looking for a set (vector) of real
numbers [45.78, 8.91, 3.36]

• Objective function has a
mathematical expression

• Special cases studied in
mathematics and OR: Convex,
Linear, Dynamic programming

Combinatorial

• Discrete variables

• Looking for an object from a
finite set
– Binary digits [1011101010]

– Integer [1, 53, 4, 67, 39]

– Permutation [3,5,1,2,4]

– Graph

• Generally have quite different flavours and methods for solving them
• Have become divergent

Gabriela Ochoa, goc@stir.ac.uk 8

24/06/2014

3

Classic mathematical models

Linear Programs (LP)

• A single objective

• The objective and
constraints are linear

• Decision variables, allowed
to have any values

• Easy to solve numerically
(simplex method)

Importance

• Many applications

Integer Programs (IP)

• LP in which some or all
variables are constrained to
take on integer values

• Harder to solve. Software
packages: Excel, LINGO/LINDO
and MPL/CPLEX,

Importance

• problems in which variables
required to be integer

• many decisions are essentially
discrete (yes/no, go/no-go)

Gabriela Ochoa, goc@stir.ac.uk 9

Integer program: canonical form
maximise c1x1+c2x2+…+cnxn (objective function)

subject to

 a11x1+a12x2+…+a1nxn  b1 (functional constraints)

 a21x1+a22x2+…+a2nxn  b2

 ….

 am1x1+am2x2+…+amnxn  bm
 x1, x2 , …, xn  Z+ (set constraints)

In vector form:
 maximise cx (objective function)
 subject to Ax  b (functional constraints)
 x  Zn

+ (set constraints)

Gabriela Ochoa, goc@stir.ac.uk 10

The knapsack problem
• Given a knapsack of capacity W, and a number n of items, each

with a weight and value. The objective is to maximise the total
value of the items in the knapsack

maximise

 4x1+2x2+x3+10x4 +2x5

subject to

 12x1+2x2+x3+4x4+x5  15

 x1,x2,x3,x4,x5  {0, 1}

Xi =
1 If we select item i
0 Otherwise

• Can be formulated as an Integer Programming problem,
and solved efficiently using Dynamic Programming

• Binary representation [11010], using heuristic methods

Maximise Subject to

• Search space size = 2n

• n = 100, 2100 ≈ 1030

Gabriela Ochoa, goc@stir.ac.uk 11

Travelling salesman problem (TSP)

• Given a number of cities and the costs of travelling
from one to the other, what is the cheapest
roundtrip route that visits each city and then
returns to the starting city?

• Objective: Min Sum(dist(x,y)). Total cost
(distance) travelled

• Configurations: permutation (ordering) of cities.
Representing the order in which cities are visited
– s1= (A B C D), f(s1)= 20+30+12+35= 97

– s2= (A B D C), f(s2)= 20+34+12+42=108

– s3= (A C B D), f(s3)= 42+30+34+35= 141

• Size of the search space: (n-1)!/2
– n= 10 (181,000); n=30 (1032)

Gabriela Ochoa, goc@stir.ac.uk 12

24/06/2014

4

Neighbourhoods

• Region of the search space that is “near” to some particular
point in that space

• Define a distance function dist on the search space S
– Dist: S x S → R

– N(x) = {y Є S: dist(x,y) ≤ ε }

S
. x

N(x)

A search space S, a potential solution
x, and its neighbourhood N(x)

Examples:
• Euclidean distance, for search spaces

defined over continuous variables
• Hamming distance, for search spaces

definced over binary strings

Gabriela Ochoa, goc@stir.ac.uk 13

Defining neighbourhoods

Binary

• 1-flip: Solutions generated
by flipping a single bit in the
given bit string

• Every solution has n
neighbours

• Example:

– 1 1 0 0 1 → 0 1 0 0 1

Permutation

• 2-swap: Solutions
generated by swapping two
cities from a given tour

• Every solution has n(n-1)/2
neighbours

• Example:

– 2 4 5 3 1 → 2 3 5 4 1,

Gabriela Ochoa, goc@stir.ac.uk 14

Fitness landscapes

• Describe dynamics of adaptation in
Nature (Wright, 1932). Later, describe
dynamics of meta-heuristics

• Search: adaptive-walk over a
Landscape

• 3 Components L = (S,d,f)
– Search Space

– Neighborhood relation or distance metric
(operator dependant!)

– Fitness function

Gabriela Ochoa, goc@stir.ac.uk 15

Features of landscapes relevant to
heuristic search

• Number, fitness, and distribution of local
optima or peaks

• Fitness differences between neighboring
points (ruggedness).

• Presence and structure of plateaus, neutral
networks (terrains with equal fitness)

M. Fuji, Japan

Earth pyramids, Tyrol, Italy

Trentino Mountains

M. Auyantepui, Venezuela (Angel Falls, Highest
Waterfall) Gabriela Ochoa, goc@stir.ac.uk 16

24/06/2014

5

Summary of optimisation problems

Real-world
(SE) problem

Model

Solution

Formulation

Algorithm

Problem Model
• Problem representation
• Constraints
• A fitness function

Solution to the Model
• Feasible candidate solution
• Lead to the optimal (or good
enough) value of the objective
function

Optimisation/search Algorithm
• Exact methods
• Approximate (heuristic) methods

Many challenging applications in science and industry can be
formulated as optimisation problems!

Gabriela Ochoa, goc@stir.ac.uk 17

Outline

1. Optimisation problems
– Optimisation & search

– Classic mathematical models

– Two canonical examples (Knapsack, TSP)

2. Optimisation methods
– Heuristics and metaheuristcis

– Single point algorithms

– Population-based algorithms

3. Autonomous search and hyper-heuristics

Gabriela Ochoa, goc@stir.ac.uk 18

Optimisation/search algorithms

Optimisation
algorithms

Exact

Special purpose

Generate bounds:
dual ascent,

Langrangean relax

General purpose

Branch and
bound

Cutting planes

Approximate

Special purpose

Approximation
Greedy /

Constructive
Heuristics

Meta and Hyper
heuristics

Single point Population based

Gabriela Ochoa, goc@stir.ac.uk

• Guarantee finding optimal solution
• Useful when problems can be solved in

Polynomial time, or for small instances

• Do not Guarantee finding optimal solution
• For most interesting optimisation problems

there is no polynomial methods are known

Approximation algorithms:
• An attempt to formalise heuristics (emerged from the field of theoretical computer science)
• Polynomial time heuristics that provide some sort of guarantee on the quality of the solution

19

Terminology and dates
• Heuristic: Greek word heuriskein, the art of discovering new

strategies to solve problems

• Heuristics for solving optimization problems, G. Poyla (1945)
– A method for helping in solving of a problem, commonly informal

– “rules of thumb”, educated guesses, or simply common sense

• Prefix meta: Greek for “upper level methodology”

• Metaheuristics: term was introduced by Fred Glover (1986).

• Other terms: modern heuristics, heuristic optimisation,
stochastic local search

• G. Poyla, How to Solve it. Princeton University Press, Princeton NJ, 1945

• F. Glover, Future Paths for Integer Programming and Links to Artificial Intelligence,
Computers & Ops. Res, Vol. 13, No.5, pp. 533-549, 1986.

Gabriela Ochoa, goc@stir.ac.uk 20

24/06/2014

6

What is a heuristic?

• An optimisation method that tries to exploit
problem-specific knowledge, for which we
have no guarantee to find the optimal solution

Improvement
• Search space: complete

candidate solutions

• Search step: modification
of one or more solution
components

• Example in TSP: 2-opt

Construction
• Search space: partial

candidate solutions

• Search step: extension
with one or more
solution components

• Example in TSP: nearest
neighbour

Gabriela Ochoa, goc@stir.ac.uk 21

What is a metaheuristic?

• Extended variants of improvement heuristics

• General-purpose solvers, usually applicable to
a large variety of problems

• Use two phases during search
– Intensification (exploitation): focus the applications

of operators on high-quality solutions

– Diversification (exploration): systematically
modifies existing solutions such as new areas of
the search space are explored

Gabriela Ochoa, goc@stir.ac.uk 22

Genealogy of metaheuristics

Metaheuristics: From Design to
Implementation
 By El-Ghazali Talbi (2009)

The Simplex Algorithm (G. Dantzig, 1947)

(J.Edmonds, 1971):

Gabriela Ochoa, goc@stir.ac.uk 23

Key components of metaheuristics

Gabriela Ochoa, goc@stir.ac.uk

• Describes encoding of solutions

• Application of search operators

Problem
Representation

• Often same as the objective function

• Extensions might be necessary (e.g.. Infeasible
solutions)

Fitness Function

• Closely related to the representation

• Mutation, recombination, ruin-recreate

Search/Variation
Operators

• Created randomly

• Seeding with higher quality or biased solutions Initial Solution(s)

• Defines intensification/diversification mechanisms

• Many possibilities and alternatives! Search Strategy

24

24/06/2014

7

Problem representations in SBSE

Bit String/Matrix

• Network protocols: synthesis secure protocols

• Requirements: selection, system design,fairness analysis, etc.

• Design Tools: learning automate, sw integration, OO, etc.

• Coding tools: splitability analysis

• SW Verification: model checking

• Testing: test selection, …

• Maintenance: clone refactoring, library refactoring

Permutation
• Test case prioritisation

• Requirements prioritisation

Vector of Integers • …

Vector of Real No. • …

String • …

Trees • …

Graphs • …

Gabriela Ochoa, goc@stir.ac.uk

M. Harman, S. A. Mansouri, and Yuanyuan Zhang (2012) Search-based software engineering:
Trends, techniques and applications. ACM Comput. Surv. 45, 1, Article 11, 61 pages.

25

Search operators for binary representation

Recombination:

• One-point

• N-point

• Uniform

• Pc typically in range (0.6, 0.9)

Mutation:

• Alter each gene independently with

a probability Pm (mutation rate)

• Typically: 1/chromosome_length

Gabriela Ochoa, goc@stir.ac.uk 26

Search operators for permutation representation

Recombination: Combining two permutations into two new permutations:

• choose random crossover point

• copy first parts into children

• create second part by inserting values from other parent:

• in the order they appear there

• beginning after crossover point

• skipping values already in child

8 7 6 4 2 5 3 1

1 3 5 2 4 6 7 8

8 7 6 4 5 1 2 3

1 3 5 6 2 8 7 4

Mutation: Small variation in one permutation, e.g.: swapping values of

two randomly chosen positions,

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Gabriela Ochoa, goc@stir.ac.uk 27

Hill-climbing search

Like climbing a mountain in thick fog with amnesia

Gabriela Ochoa, goc@stir.ac.uk 28

24/06/2014

8

Hill-climbing search

Problem: depending on initial state, can get stuck in local maxima

Gabriela Ochoa, goc@stir.ac.uk 29

Simulated annealing
• Key idea: provides a mechanism to escape local

optima by allowing moves that worsen the
objective function value

• Annealing: the physical process of heating up a
solid and then cooling it down (slowly) until it
crystallizes
– candidate solutions → states of physical system

– objective function → thermodynamic energy

– globally optimal solutions → ground states

– parameter T → physical temperature

Gabriela Ochoa, goc@stir.ac.uk

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. (1983). Optimization by simulated annealing.
Science, 220, 671–680.

Google Scholar citations: 31,477

30

Simulated Annealing – Algorithm

1. Start with a random solution s

2. Choose some “nearby” solution s’

3. If the new solution is better (i.e. f(s’) ≤ f(s)) , take it as the
current solution (= accept it)

4. If it is worse, accept it with a probability that depends on the
deterioration f(s)-f(s’) and a global parameter T (the
temperature)

Metropolis acceptance criterion

Cooling schedule: a
mechanism for reducing
the temperature

Gabriela Ochoa, goc@stir.ac.uk 31

Tabu search

Procedure Tabu Search (TS)
determine initial candidate solution s
while NOT termination criterion {
 determine set N’ of non-tabu neighbours of s
 choose a best improving candidate solution s’ in N’
 update tabu attributes based on s’
 s := s’
}

• Key idea: use aspects of search history escape local optima by allowing moves

• Simple Tabu search

– Associate tabu attributes with candidate solutions or solution components

– Forbid steps to search positions recently visited based on tabu attributes

F. Glover (1989). Tabu Search - Part 1. ORSA Journal on Computing 1 (2): 190–206. Google cites: 5,675
F. Glover (1990). Tabu Search - Part 2. ORSA Journal on Computing 2 (1): 4-32. Google cites: 3,684
R. Battiti, G. Tecchiolli (1994) The reactive tabu search . ORSA journal on computing 6 (2): 126-140.

The word 'tabu' comes from
Tongan, a language of
Polynesia, used by the locals to
indicate things that cannot be
touched because they are
sacred.

Gabriela Ochoa, goc@stir.ac.uk 32

24/06/2014

9

Iterated local search

Procedure Iterated Local Search (ILS)
determine initial candidate solution s
perform subsidiary local search on s
while NOT termination_criterion {
 r = s
 perform perturbation on s
 perform subsidiary local search on s
 based on acceptance criterion
 keep s or revert to s = r
}

• Key idea: use two stages
– Subsidiary local search for efficiently reaching local optima (intensification)

– Perturbation stage, for effectively escaping local optima (diversification)

• Acceptance criterion: to control diversification vs. intensificaction

Key idea rediscovered several times with different names (80s &90s). Term iterated local search proposed
HR Lourenço, OC Martin, T Stützle(2003). Iterated local search. Handbook of metaheuristics, 320-353,
Springer . Google cites: 964

Gabriela Ochoa, goc@stir.ac.uk 33

Evolutionary algorithms: inspiration

NATURE

Environment

Individual

Fitness

COMPUTER

Problem

Candidate Solution

Quality

Quality  chance for seeding new solutions

Fitness  chances for survival and reproduction

Natural Selection
1. Variation
2. Hereditary transmission
3. High rate of population growth
4. Differential survival and reproduction

Charles Darwin and Alfred Wallace: Theory of
evolution by means of Natural Selection (1859)

Gabriela Ochoa, goc@stir.ac.uk 34

Origins of evolutionary algorithms

• Evolutionary Programming

– Fogel, Owens, Walsh (1962)

• Evolution Strategy:

– 60s and 70s. I. Rechenberg & H-P Schwefel

• Genetic Algorithms:

– John Holland (1975).

– David Goldberg (1989)

Alan Turing (1912 – 1954). Mathematician, wartime code-breaker and pioneer of

computer science Article: ‘‘Computing Machinery and Intelligence,’’ (1950)

described how evolution and natural selection might be used to automatically

create an intelligent computer program

Google Scholar
citations: 63,968

Gabriela Ochoa, goc@stir.ac.uk 35

Genetic algorithms
Procedure GA

Generate [P(0)]
t = 0
while NOT Termination_Criterion {

Evaluate [P(t)]
P' (t) = Select [P(t)]
P''(t) = Apply_Operators [P'(t)]
P(t+1) = Replace [P(t), P''(t)]
t = t + 1

}

Tournament selection

Parent selection: Better individuals get higher
chance (proportional to fitness).
• Proportional selection (roulette wheel,

stochastic universal sampling)
• Scaling methods
• Rank selection
• Tournament selection
• (μ + λ)- and (μ , λ) selection

Replacement (population models)
• Generational: each generation set of

parents replaced by the offspring
• Steady-state: one offspring is generated

per generation. One member is replaced
• Generation gap: a proportion of the

population is replaced

Gabriela Ochoa, goc@stir.ac.uk 36

24/06/2014

10

Memetic (hybrid) algorithms

• Combination of GAs with
local search operators, or
GAs that use instance specific
knowledge in operators

• Orders of magnitude faster
and more accurate than GAs
on some problems, and are
the “state-of-the-art” on
many problems

(Eiben, Smith, 2003)

• The term meme was coined by R. Dawkins (1976)
• The term memetic algorithms by P. Moscato (1989)
• The idea of hybridisation in GAs is older

Gabriela Ochoa, goc@stir.ac.uk 37

Evolution strategies
• Specialised in continuous search spaces: min. f : Rn  R

• Rechenberg & Schwefel in the 60s, Technical University of
Berlin. Applied to hydrodynamic shape optimisation

• Special feature: self-adaptation of mutation parameters

Procedure (1+1)-ES
 t = 0;
 initialise solution xt =  x1

t,…,xn
t 

 while NOT Termination_criterion) {
 Draw zi from a Normal distr. for all i = 1,…,n
 yi

t = xi
t + zi

 if f(xt) < f(yt) then xt+1 = xt

 else xt+1 = yt
t = t+1

 }
• z values from Normal dist. N(0, )
• , step size, varied on the fly
• 1/5 success rule sets  every k iterations

•  =  / c if ps > 1/5
•  =  x c if ps < 1/5
•  =  if ps = 1/5

• ps is the % of successful mutations
• 0.8  c  1

Gabriela Ochoa, goc@stir.ac.uk 38

Modern evolution strategies
• Use a population: μ parents, λ offspring

• (μ + λ)-ES: next generation crated from the union of parents and
offspring

• (μ , λ)-ES: the best μ solutions from the offspring are chosen

• Recombination used for exchanging information

• Self-adaptation: Incorporate strategy parameter (, std. dev
mutation strength) into the search process

• CMA-ES: (Covariance Matrix Adaptation ES, N. Hansen, A. Ostermeier, 1996)

– State-of-the-art ES, unconstrained or bounded constraint, 3 – 100 dim.

– Source code: https://www.lri.fr/~hansen/cmaes_inmatlab.html

• Differential Evolution (K. Price and R. Storn, 1996)

– Recent and powerful EA for continuous optimisation, elegant and simple

– Key idea: using vector differences for perturbing the vector population

– Source code: http://www1.icsi.berkeley.edu/~storn/code.html

 Gabriela Ochoa, goc@stir.ac.uk 39

Genetic programming

• Evolve a population of computer programs

• Applied to: machine learning tasks (prediction, classification…)

• Representation
– Non-linear genomes: trees, graphs

– Linear genomes: grammatical evolution (Ryan, 1999)

• Main difference with GAs:
– Search space of tree structures different sizes

– Solutions are parse-trees, syntactic structure according to some grammar

– Nodes in the parse tree are either:
• Terminal set T (leaf nodes): independent variables of the problem, zero argument

functions, random constants, terminals with side effects (eg. “turn left”)

• Function set S (interior nodes): arithmetic (+,-,*)/logic operations (˄,˅)

Gabriela Ochoa, goc@stir.ac.uk 40

https://www.lri.fr/~hansen/cmaes_inmatlab.html
https://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www1.icsi.berkeley.edu/~storn/code.html
http://www1.icsi.berkeley.edu/~storn/code.html

24/06/2014

11

Genetic programming













15
)3(2

y
x Mutation: replace randomly

chosen sub-tree by
randomly generated tree

Parent 1

Parent 2

Recombination: interchange
randomly chosen sub-trees

Child 1 Child 2

Gabriela Ochoa, goc@stir.ac.uk 41

Genetic programming origins and sources

Origin 1985: NL Cramer (1985) A Representation for the
Adaptive Generation of Simple Sequential Programs. In
Proceedings of the 1st International Conference on Genetic

Algorithms, John J. Grefenstette (Ed.). 183-187.

Gabriela Ochoa, goc@stir.ac.uk

John R. Koza
Scientist and business man. Popularised GP, proposed and
funds the HUMMIES award. Millionaire, co-inventor of rub-
off instant lottery game ticket, proposed a plan for electing the
US president by popular vote.

1992 book: On the Programming of
Computers by Means of Natural
Selection from The MIT Press.

(Poli, Langdon, and McPhee, 2008)
http://www.gp-field-guide.org.uk

Bill Langdon
The GP Bibliography
http://www.cs.bham.ac.uk/~wbl/biblio/README.html

42

Other population-based algorithms:
the social behaviour metaphor

Ant colony optimisation (ACO)

• Dorigo, Di Caro &
Gambardella (1991).

• Inspired by the behaviour
of real ant colonies

• A set of software agents artificial
ants search for good solutions

• Problem transformed to finding
the best path on a weighted
graph.

• Ants build solutions incrementally
by moving on the graph

• http://www.aco-metaheuristic.org/

• http://www.scholarpedia.org/article/Ant_c
olony_optimization

Particle Swarm Optimization (PSO)

• Eberhart & Kennedy, 1995

• Inspired by social behaviour of
bird flocking or fish schooling

• Solutions (called particles) fly
through the search space by
following the current optimum
particles

• At each iteration they accelerate
towards the best locations

• http://www.swarmintelligence.org/

• http://www.scholarpedia.org/article/Par
ticle_swarm_optimization

 Gabriela Ochoa, goc@stir.ac.uk 43

Summary: Optimisationalgorithms

Optimisation
algorithms

Exact

Special purpose

Generate bounds:
dual ascent,

Langrangean relax

General purpose

Branch and
bound

Cutting planes

Approximate

Special purpose

Approximation

Greedy /
Constructive

Heuristics

Meta and Hyper
heuristics

Single point Population based

Gabriela Ochoa, goc@stir.ac.uk

• Guarantee finding optimal solution
• Useful when problems can be solved in

Polynomial time, or for small instances

• Do not Guarantee finding optimal solution
• For most interesting optimisation problems

no polynomial methods are known

Metaheuristcs, modern heuristics, stochastic local search (key components):
1. Problem representation
2. Fitness function
3. Search/variation operators
4. Solution initialisation
5. Search strategy (balance exploration & exploitation, avoid local optima)

44

http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.cs.bham.ac.uk/~wbl/biblio/README.html
http://www.cs.bham.ac.uk/~wbl/biblio/README.html
http://www.aco-metaheuristic.org/
http://www.aco-metaheuristic.org/
http://www.aco-metaheuristic.org/
http://www.aco-metaheuristic.org/
http://www.aco-metaheuristic.org/
http://www.scholarpedia.org/article/Ant_colony_optimization
http://www.scholarpedia.org/article/Ant_colony_optimization
http://www.scholarpedia.org/article/Ant_colony_optimization
http://www.swarmintelligence.org/
http://www.swarmintelligence.org/
http://www.scholarpedia.org/article/Particle_swarm_optimization
http://www.scholarpedia.org/article/Particle_swarm_optimization
http://www.scholarpedia.org/article/Particle_swarm_optimization

24/06/2014

12

Outline

1. Optimisation problems
– Optimisation & search

– Classic mathematical models

– Two canonical examples (Knapsack, TSP)

2. Optimisation methods
– Heuristics and metaheuristcis

– Single point algorithms

– Population-based algorithms

3. Autonomous search and hyper-heuristics

Gabriela Ochoa, goc@stir.ac.uk 45

Increase in complexity
• Real world problems are complex

• Heuristic search algorithms are powerful but

– There are too many variants

– They are getting increasingly complex

• Many parameters

• Many design/algorithmic components

• Advantage

– More variety and more flexible algorithms

– Fit to different problems

• Disadvantage

– Need to select an algorithm, or

– Select the algorithm components/operators
and/or set their parameters

Gabriela Ochoa, goc@stir.ac.uk 46

Algorithm selection, configuration and tuning

Gabriela Ochoa, goc@stir.ac.uk

Holy-Grail: Finding the most suitable optimisation/search algorithm
and its correct setting for solving a given problem

Can we automate
these processes?

Algorithm
selection

Algorithm
configuration

Parameter
tuning

Static/dynamic

47

Autonomous/adaptive (self-*) search
approaches

• Different approaches (that share common principles) have been
developed in different communities (OR, OP, AI, ML, CS)

• Incorporate ideas from machine learning and statistics
Offline, Static Configuration
• Algorithm selection
• Algorithm portfolios
• Algorithm configuration and

Parameter tuning
• Racing, ParamILS, SPO

• Hyper-heuristics

Online, Dynamic Control
• Adaptive operator selection
• Parameter control
• Reactive search
• Adaptive memetic algorithms
• Hyper-heuristics

Gabriela Ochoa, goc@stir.ac.uk 48

24/06/2014

13

What is a Hyper-heuristic?

• A higher level heuristic which manages a set of low-level
heuristics

• An optimisation algorithm with a modular design

• Benefits from combining the strengths of several simpler
heuristics

• Uses only limited problem-specific information

Gabriela Ochoa, goc@stir.ac.uk

Hyper-
heuristic
Hyper-

heuristic

Heuristic 1 Heuristic 1 Heuristic 2 Heuristic 2 Heuristic 3 Heuristic 3 Heuristic n Heuristic n

Heuristics to choose
heuristics

49

What Motivates Hyper-Heuristic Research?

 Decision support systems that are

off the peg vs. Taylor made

 Develop the ability to automatically

work well on different problems

 Increase the generality and

applicability of these methods to

solve complex real-world problems

Gabriela Ochoa, goc@stir.ac.uk

vs.

50

Classification of hyper-heuristics

Hyper-
heuristics

Heuristic
Selection

Construction
heuristics

Improvement
heuristics

Heuristic
generation

Construction
heuristics

Improvement
heuristics

Heuristic components Fixed, human-designed low level
heuristics

Gabriela Ochoa, goc@stir.ac.uk 51

Hyper-ILS or adaptive ILS

• Pool of operators of different type

• Reinforcement learning used to
adaptively select the best operator to
apply at each iteration

• Either or both
– Improvement stage

– Perturbation stage

Procedure Hyper-ILS

s0 = GenerateInitialSolution

s* = HyperImproveStage(s0)

while NOT Termination_criterion) {

 s'= HyperPerturbStage(s*)

 s'*= HyperImproveStage(s')

 if f(s'*) < f(s*)

 s* = s'*

}

• Successful applications to both Vehicle routing and Course time-tabling
• Research questions

• Metrics to gather feedback from the search, how to combine them
• Mechanism for adaptive operator selection

Gabriela Ochoa, goc@stir.ac.uk 52

24/06/2014

14

Given a pool of operators

Simple Random Perturbation (SRP)

Best Single Perturbation (BSP)

Statistical Dynamic Perturbation (SDP)

Double Dynamic Perturbation (DDP)

Swap (SWP)

Two Points Perturbation (2PP)

Move to Less Conflict (MLC)

Burke-Abdhulla (BA)

Conant-Pablos (LSA)

Gabriela Ochoa, goc@stir.ac.uk

QUESTION: Given f K search operators

• How to select (on the fly) the operator

to be applied next, considering the

history of their performance?

• Measuring performance  Assigning

credit  Selecting the operator: Fitness

Improvement + Extreme Credit +

Adaptive Pursuit

Application to
Timetabling

53

Summary of hyper-heuristics

• Main feature: search in a space of heuristics
• Term used for ‘heuristics to choose heuristics’ in 2000
• Ideas can be traced back to the 60s and 70s
• Two main type of approaches

– Heuristic selection
– Heuristic generation

• Ideas from online and offline machine learning are relevant, as are
ideas of meta-level search

 A hyper-heuristic is an automated methodology for selecting or
generating heuristics to solve computational search problems

Gabriela Ochoa, goc@stir.ac.uk 54

References: Books
• Burke , E. K; Kendall, G., (Eds.) (2005) Search Methodologies:

Introductory Tutorials in Optimization and Decision Support
Techniques, Springer.

• A.E. Eiben and J.E. Smith (2003), Introduction to Evolutionary
Computing, Springer,

• Hoos, H; Stutzle, T. (2004) Stochastic Local Search Foundations and
Applications, Elsevier.

• Z. Michalewicz, D.B. Fogel (2000) How to Solve It: Modern Heuristics,
Springer.

• Rothlauf, F. (2011) Design of Modern Heuristics Principles and
Application. Natural Computing Series, Springer

• S. Russell, P. Norvig (2009) Artificial Intelligence: A Modern Approach
(3rd Edition) Prentice Hall.

• Talbi, E-G (2009), Metaheuristics: From Design to Implementation,
Wiley.

Gabriela Ochoa, goc@stir.ac.uk 55

References: Hyper-heuristics
• E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan and R. Qu (2013)

Hyper-heuristics: A Survey of the State of the Art, Journal of the Operational Research
Society. 206(1): 241-264

• E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. Woodward (2010). A
Classification of Hyper-heuristics Approaches, Handbook of Metaheuristics,
International Series in Operations Research & Management Science, M. Gendreau and
J-Y Potvin (Eds.), Springer, pp.449-468.

• E. K. Burke, M. Gendreau, G. Ochoa, J. Walker. Adaptive Iterated Local Search for Cross-
domain Optimisation. Genetic and Evolutionary Computation Conference (GECCO-
2011), ACM, pp. 1987-1994.

• G Ochoa, EK Burke (2014) HyperILS: An Effective Iterated Local Search Hyper-Heuristic
for Combinatorial Optimisation, International Conference on the Practice and Theory of
Automated Timetabling (PATAT 2014)

• J.A Soria-Alcaraz, G. Ochoa, J. Swan, M. Carpio, H. Puga , E.K. Burke (2014) Effective
Learning Hyper-heuristics for the Course Timetabling Problem. European Journal of
Operational Research. 238(1): 77-8.

Gabriela Ochoa, goc@stir.ac.uk 56

