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Error Thresholds and Optimal Mutation Rates in

Genetic Algorithms

Gabriela Ochoa

Summary

When applying a genetic algorithm to solve a given problem, the designer faces a large number
of choices, with little theoretical guidance and few rules of thumb about how to proceed. Among
these choices, the setting of evolutionary parameters (e.g. mutation rate, recombination rate, pop-
ulation size and selection parameters) is important since their values determine the performance
of the algorithm to a great extent. However, finding a good combination of parameters is not
an easy task since they interact with one another non-linearly and cannot be optimised one at a
time. Moreover, ‘optimal’ parameter settings are believedto be problem-dependent. The mutation
rate is acknowledged as one of the most sensitive parameters, so good heuristics for setting the
mutation rate are welcomed.

This thesis brings the fundamental notion of theerror thresholdsof replication from molec-
ular evolution into the field of evolutionary computation. Error thresholds are intuitively related
to the idea of an optimal balance between exploration and exploitation in genetic search. So, it
is hypothesised and empirically demonstrated here, that error thresholds are related to the more
familiar notion of optimal mutation rates in GAs. This finding sheds new light on the sensitivity
of the mutation rate and points toward useful heuristics forsetting this parameter. Some results on
the effects and usefulness of recombination are also presented. This dissertation also introduces
consensus sequenceplots, which are adapted from theoretical biology, as a new visualisation tool
to the genetic algorithms community. They are used for locating error thresholds on general land-
scapes, and are shown to reveal several features of the landscape structure. The insights and
empirical evidence gathered here support a heuristic that sets a rate based on one mutation per
genotype, to be scaled according to the selection pressure and also potentially modified for very
redundant genotypes. However, since the selection pressure can be controlled, this rule is shown
to hold over a wide range of problem types.
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Chapter 1

Introduction

Darwin’s theory of evolution through natural selection is amarvellous scientific idea; simple, yet

powerful, it is able to explain the origins and diversity of life on Earth. It also explains the broad

range of complex adaptations of living organisms to their environment. The process of natural

evolution only requires four basic conditions: A population or group of entities, variation among

the members of the population, hereditary transmission between parents and offspring, and a sort-

ing process that changes the proportion of different individuals within the population over the

generations. Chief among these sorting processes arechance(random variation in the survival

or reproduction of different variants) andnatural selection(consistent, non-random differences

among variants in their rates of survival or reproduction) (Futuyama, 1998). All these compo-

nents, considered at an abstract level, may be easily implemented in a computer program giving

rise to artificial evolutionary systems. In the 1950s and 1960s several computer scientists indepen-

dently studied evolutionary systems with the idea that evolution could be used as an optimisation

tool for engineering problems. Among these early approaches, three major methodologies have

consolidated over the last three decades:Evolutionary Programming(Fogel et al., 1966),Evolu-

tion Strategies(Rechenberg, 1973), andGenetic Algorithms(Holland, 1975).

Genetic Algorithms (GAs) are stochastic search methods that mimic the process of natural

evolution. They maintain a population of potential solutions to a given problem (individualsor

genotypes). The ability of each individual to solve the problem is measured by afitness function.

To simulate evolution, the population is subject to geneticvariation (mutationandrecombination)

and survival of the fittest (selection) through an iterative process that generates increasinglybetter

solutions. Besides classic applications in function and combinatorial optimisation, GAs have been

applied successfully in a wide range of real-world domains including the design of telecommuni-

cation networks, computer programs, electronic circuits,robot controllers, and biochemical drugs.

Applications oriented research is quite successful and dominates the field (if one considers the

number of published papers). In contrast, the theoretical foundations are still weak. Consequently,

new users fall repeatedly in the same traps, because there are only few rules of thumb for GA

design and parameterisation.

Research attempting to improve the design and parameterisation of GAs can be focused along

two lines: theoretical and empirical (Fogel, 1995). The theoretical approach seeks to discover
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mathematical truths about algorithms which will, hopefully, hold over a broad application domain.

The empirical approach attempts to assess algorithm performance in specific domains through sta-

tistical means. Both procedures are inherently limited. Mathematical proofs about the properties

of algorithms may seem at first sight more powerful than mere empirical evidence. EAs, however,

incorporate complex non-linear stochastic process. To make formal analysis tractable, the actual

algorithm has to be simplified. Moreover, only very simple toy-problems are tackled, missing the

complexities of real-world domains. Hence, one may legitimately question the practical relevance

of such theoretical studies. On the other hand, through an empirical approach, algorithms can be

tested over successive trials on a specific problem, and a statistical estimation of their performance

can be determined. Although the performance of an algorithmon one sample problem may not

convey general information, the position adopted in this thesis is that it is possible to induce gen-

eral properties of complex algorithms by assessing their performance across a variety of landscape

structures. Moreover, with this approach, and assuming that landscapes can be characterised by

certain features, specific algorithm properties may be identified for different kinds of landscapes.

Another source of inspiration towards understanding and improving the practice of GAs is still

natural evolution, and particularly molecular evolution.Molecular evolution has been a source of

inspiration for evolutionary computation techniques. As aconcrete example, molecular biologists

have discovered non-functional sequences of DNA, calledintrons; the work of Levenick (1991,

1999) and others (Wu & Lindsay, 1995), demonstrates that theinsertion of introns into bit strings

can improve the performance of GAs. In a similar vein, this thesis attempts to bring the notion of

error threshold1 from the field of molecular evolution to the field of GAs. It also seeks to assess

the relevance and potential practical applications of thisnotion in the context of GAs. Specifically,

research from molecular evolution suggests that:

The speed of the [evolutionary] optimization can be tuned bythe replication preci-
sion. Optimization will be fastest close to the error threshold, since too exact copying
reduces the chance of producing new advantageous mutants. In nature, a number
of viruses have been shown to operate close to their error threshold. This enhances
their flexibility to adapt to a continuously changing fitnesslandscape. [(Bonhoeffer &
Stadler, 1993), p. 365].

Moreover, analytical expressions of the error threshold onsimple landscapes, suggest how

other components in the evolutionary process will affect this threshold. Hence, this thesis postu-

lates that this knowledge may provide useful insights into the design of effective GAs, and may

help to predict the effects and interactions of evolutionary parameters in the search process.

1.1 Quasispecies and Error Thresholds

Quasispecies theory was derived by Eigen and Schuster (1979) to describe the dynamics of repli-

cating nucleic acid molecules under the influence of mutation and selection. The theory was

originally developed in the context of pre-biotic evolution (studies of the origin of life), but in a

wider sense it describes any population of reproducing organisms. A quasispecies is defined as the

stationary population distribution of replicating macromolecules under mutation and selection.

1The error threshold of replication is defined as the minimal replication accuracy necessary to maintain the genetic
information in the population.
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The most prominent feature of the quasispecies model is the existence of an error threshold of

replication. If replication were error free, no mutants would arise and evolution would stop. On

the other hand, evolution would also be impossible if the error rate of replication were too high

(since selection would not be able to maintain the genetic information in the population). The

notion of error threshold allows us to quantify the resulting minimal replication accuracy that still

maintains adaptation.

1.2 Error Thresholds and Optimal Mutation Rates

The notion of error threshold is intuitively related to the idea of an optimal balance betweenex-

ploitationandexplorationin genetic search. Too low a mutation rate implies too littleexploration;

in the limit of zero mutation, no new individuals would ariseand the search process would stag-

nate. On the other hand, with an excessively high mutation rate (close to 1.0), the evolutionary

process would degenerate into random search with no exploitation of the information acquired in

preceding generations.

Any optimal mutation rate must lie between these two extremes, but its precise position will

depend on the other evolutionary parameters and the characteristics of the problem at hand. It can,

however, be postulated that a mutation rate close to the error threshold would be optimal for the

problem under study, because it would maximise the search done through mutation subject to the

constraint of not losing information already gained.

Some biological evidence supports the idea that evolution is effective close to the error thresh-

old; certain viruses (such as the HIV virus), which are very efficient evolving entities, seem to

operate very close to their error threshold (Nowak & Schuster, 1992; Bonhoeffer & Stadler, 1993).

Moreover, the existence of a relationship between error thresholds and optimal mutation rates

has been suggested before in the evolutionary computation community (Hesser & Männer, 1991;

Kauffman, 1993). Neither of these works, however, confirm the existence of such a relationship,

nor explore the relevance of the notion of error threshold inthe context of genetic algorithms.

1.3 Aims

The purpose of this thesis is to bring the notion of error thresholds from the field of molecular

evolution to the field of genetic algorithms, and to establish the relevance of this notion in the

context of GAs. More precisely, the aims of this work are the following:� To establish whether the phenomenon of an error threshold can be observed in populations
of bit strings evolving under a GA� To relate error thresholds to the more familiar notion of optimal mutation rates in GAs� To propose general principles for setting near-optimal evolutionary parameters in GAs in
the light of this new knowledge

To achieve this, it is necessary to:� Estimate both error thresholds and optimal mutation rates on a wide range of landscape
structures including real-world domains, and compare these two measures against each
other.
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bination, selection pressure, population size, population replacement, and elitism) on both
error thresholds and optimal mutation rates.

1.4 Organisation

This dissertation is organised as follows:

Chapter 2 introduces the general field of evolutionary computation, and describes in detail the

most widely known of its approaches: genetic algorithms (GAs). The different components and

variants of GAs are discussed, revealing the GA as a family ofalgorithms rather than a single

algorithm. The chapter also discusses the many decisions involved when designing a GA. Among

such decisions, parameter setting is discussed in more detail, and a classification of approaches to

parameter setting is proposed. Also, a detailed review of approaches so far for effective setting of

the mutation rate is presented.

Chapter 3 discusses the notion offitness landscapesand presents some properties of landscapes

that are known to have an influence on evolutionary search. Italso describes the families of

abstract fitness landscapes and real-world domains that areused as test problems throughout this

dissertation.

Chapter 4 surveys relevant knowledge about quasispecies and error thresholds from molecular

evolution. A preliminary empirical study demonstrating the existence of error thresholds in GAs

evolving on simple landscapes is presented. This study reproduces experiments from a molecular

biology paper (Boerlijst et al., 1996), but uses a GA insteadof the quasispecies model as the

underlying model of evolution. Some additional experiments using sexual selection, not included

in (Boerlijst et al., 1996), are presented. In particular, assortative mating (preference for similar

organisms) and dissortative mating (preference for dissimilar mates) are studied.

Chapter 5 introducesconsensus sequence2 plots. These plots, borrowed and adapted from

molecular biology, are new to the genetic algorithms community. They constitute an empirical

approach for locating error thresholds on complex landscapes. Consensus sequence plots are

then used to study the effect of modifying various evolutionary parameters on the magnitude of

error thresholds. Specifically, genotype length, selection pressure, population size, elitism, steady-

state population replacement, recombination, and assortative mating, are considered. Thereafter,

the occurrence of error thresholds is investigated on a widerange of landscape structures: from

smooth to very rugged, and from abstract landscapes to real-world domains. The existence and

characteristics of the error threshold are shown to depend on the fitness landscape structure. Hence,

it is postulated that consensus sequence plots may serve as atool for visualising the structure of a

fitness landscape.

Chapter 6 explores the postulated relationship between error thresholds and optimal mutation

rates. The correlation between these two measures is assessed by comparing error thresholds (as

estimated in Chapter 5) with optimal mutation rates (as estimated in this chapter) on both abstract

landscapes and real-world domains. The effect of modifyingvarious evolutionary parameters

on the magnitude of optimal mutation rates is also studied. Finally, optimal mutation rates are

investigated on a wide range of landscape structures.

2The termsequenceis in this thesis interchangeable with string or genotype.
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Chapter 7 presents a summary, and discusses the main contributions and limitations of this

dissertation. Some suggestions for further research are also discussed.

1.5 Published Work

Some of the work contained in this dissertation has previously been published elsewhere, specifi-

cally:� Most of Chapter 4 has been published as:

Ochoa, G., Harvey, I. (1998) Recombination and Error Thresholds in Finite Populations.
Foundations of Genetic Algorithms 5, pp. 245–264.� Parts of Chapters 5 and 6 appeared in:

Ochoa, G., Harvey, I., Buxton, H. (1999). On Recombination and Optimal Mutation Rates.
Proceedings of the Genetic and Evolutionary Computation Conference, Vol. 1, pp. 488–
495.

Ochoa, G., Harvey, I., Buxton, H. (1999). Error Thresholds and their Relation to Optimal
Mutation Rates.Proceedings of the 5th European Conference on Advances in Artificial Life,
LNAI 1674, pp. 54–63.

Ochoa, G., Harvey, I., Buxton, H. (2000). Optimal Mutation Rates and Selection Pressure
in Genetic Algorithms.Proceedings of the Genetic and Evolutionary Computation Confer-
ence, pp. 315–322.

Ochoa, G. (2000). Consensus Sequence Plots and Error Thresholds: Tools for Visualising
the Structure of Fitness Landscapes.Parallel Problem Solving from Nature VI, pp. 129–138.



Chapter 2

Genetic Algorithms: Algorithm Design and

Parameter Setting

Evolutionary Computationembraces computer-based search methods inspired by the mechanisms

of natural evolution. Several approaches to evolutionary computation have been proposed, which

are generally referred to as evolutionary algorithms (EAs). Among these approaches, genetic

algorithms (GAs) are probably the most widely known. The first part of this chapter introduces

GAs and describes in detail their major components (Section2.2). It also discusses the informal,

but widely used, notion ofselection pressureof an evolutionary algorithm (Section 2.3).

Given the diversity and possible parameterisations of the various GA components, the designer

faces a large number of choices about how to proceed when applying a GA to a given problem.

The second part of this chapter discusses such choices, withan emphasis on how to set the various

evolutionary parameters (Section 2.5). A classification ofapproaches to GA parameter setting

is proposed (Section 2.5.1). Then, a critical review on optimal settings for the mutation rate is

presented, following the proposed classification (Section2.6).

2.1 Evolutionary Computation

Evolutionary Computation(EC) models natural evolution in the design and implementation of

computer-based problem solving tools (Spears et al., 1993). Over the last few decades, several

EC models have been proposed and studied, they are collectively referred to asEvolutionary Al-

gorithms(EAs) and share the conceptual framework of simulating natural evolution. The theory

of evolution was proposed in the 19th-century by Charles Darwin who provided a scientific ex-

planation, essentially correct but incomplete, of how evolution occurs. Natural selection was the

fundamental concept in his explanation. Later, work ongenetics, a science born in the 20th cen-

tury, revealed in detail how natural selection works and ledto the development of the modern

theory of evolution, also calledneo-Darwinian theory. This modern theory can be summarised in

the following six propositions (Patterson, 1999):

1. Reproduction: ‘Like begets like’, reproduction in a population of organisms produces de-
scendent populations of similar organisms.
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2. Excess: The reproductive potential of the parent population always greatly exceeds the
actual number of its descendants.

3. Variation : Members of a population always vary. Much of this variationis transmitted to
the descendants (heritable), and novelties (mutations) may appear.

4. Environmental Selection: The space and resources of the environment are limited, so that
there is a competition within and between populations. Individuals possessing favourable
characteristics, of whatever sort, will tend to compete successfully and leave more descen-
dants than other, less lucky individuals.

5. Divergence: The environment varies with time and from place to place. Heritable variations
that suit a particular environment will be selected there, and so populations will diverge and
differentiate as each becomes adapted to its own conditions.

6. Common Ancestry: The principle of divergence has no limit, and the diversityof life on
Earth can be explained by divergent descendent lineages from more or less remote common
ancestors.

Evolutionary Algorithms mimic natural evolution. Specifically, they model the first four

propositions discussed above using algorithmic analogiesand the following elements:� A representation of candidate solutions to the problem at hand� A population of these candidate solutions� Mechanisms for generating new solutions from members of thecurrent population (opera-
tors such mutation and recombination)� An evaluation or fitness function to assess the quality (fitness) of a given solution� A selection method which gives better chances of survival togood solutions

Figure 2.1 outlines a typical evolutionary algorithm. A population of M individuals is ini-

tialised and then evolved from generationt to generationt+1 by successive applications of fitness

evaluation, selection, recombination and mutation.

Historically, there have been three well-defined approaches to evolutionarycomputation: “evo-

lutionary programming” (Fogel et al., 1966), “evolution strategies” (Rechenberg, 1973), and “ge-

netic algorithms” (Holland, 1975). Although similar at thehighest level, these approaches differ

in the way they implement an EA. The differences touch all theaspects of EAs, including the

choices of representation for the individual structures, types of selection mechanisms, forms of

variation operations, and measures of performance. The major differences are, however, in the

choice of representations, and emphasis and use of variation operators. Evolutionary program-

ming (EP) uses representations that are tailored to the problem domain. Similarly, evolutionary

strategies (ES), due to initial interest in hydrodynamic optimisation problems, use real-valued vec-

tor representations. On the other hand, genetic algorithmshave traditionally used a more domain

independent representation, namely, binary strings. Regarding variation operations, both EP and

ES use mutation as the main operator, and propose a form of self-adaptive mutation; whereas GAs

emphasise recombination as the main search operator, and use mutation as a secondary operator

applied with a small constant probability.



Chapter 2. Genetic Algorithms: Algorithm Design and Parameter Setting 8Procedure EA {t = 0; /* Initial Generation */initialise population(t);evaluate(t);until (done) {t = t+1;parent_selection(t);recombine(t);mutate(t);evaluate(t);select_survivors(t);}}
Figure 2.1:The outline of an evolutionary algorithm.

Although it is not possible to present here a thorough overview of all variants of evolutionary

algorithms; it is worth mentioning:order-based genetic algorithms(Goldberg, 1989),classifier

systems(Holland, 1986; Goldberg, 1989), andgenetic programming(Koza, 1992; Kinnear, Jr.,

1997), as branches of genetic algorithms that have developed into their own directions of research

and application. Order-based GAs are used in combinatorialoptimisation problems where the

search space is the space of permutations (e.g. the travelling salesman problem); they work directly

on the permutation, applying specialised genetic operators (e.g. inversion and reordering) that

preserve permutations. Classifier systems use an evolutionary algorithm to search the space of

production rules of a learning system that can induce and generalise. Genetic programming applies

evolutionary search to the space of computer programs in a language suitable for modification by

mutation and recombination. The dominant approach uses theLISP programming language, but

other languages including machine code have also been used (Kinnear, Jr., 1997).

In the last few years, there has been widespread interactionamong researchers studying var-

ious evolutionary computation methods, and the boundariesbetween GAs, EP, ES, and other ap-

proaches have disappeared to some extent. Nowadays the term“genetic algorithm” is often used

to describe a method far from its original definition, which may use other representations than bit

strings. This thesis, however, adheres to the traditional binary string representation, and concen-

trates on the GA approach to evolutionary computation.

2.2 Genetic Algorithms

GAs were developed by John Holland, who summarised his work on adaptive plans in a book

entitled “Adaptation in Natural and Artificial Systems” (Holland, 1975). Holland was interested

in a general theory of adaptive systems rather than practical applications; his book, however,

constituted the starting point of all known GA applications. The major classic applications of GAs

are search, optimisation, and machine learning (Goldberg,1989). There is, however, an increasing
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recognition that GAs provide a tool in areas where standard approaches fail. The current range

of successful applications is broad and touches fields as diverse as engineering, natural sciences,

medicine, economics, and business.

The following subsections describe the basic GA componentsand variants.

2.2.1 Representation or Coding

It is assumed that a potential solution to a problem may be represented as a set of parameters

(known asgenes). These parameters are joined together to form a string of values (referred to as

a chromosomeor genotype). Traditionally chromosomes in a GA population take the form of bit

strings. However, several other genetic representations have been implemented with success.

2.2.2 Fitness Function

A fitness function must be devised for each problem to be solved. The purpose of the fitness

function is to provide a measure of the quality of a candidatesolution or chromosome. For many

problems (e.g. function and combinatorial optimisation),devising a suitable fitness function is

straightforward, but this is not always the case for real-world applications.

2.2.3 Genetic Operators

Genetic operators introduce diversity in the population; they create new individuals from structures

in the current population. In GAs, there are two main types ofgenetic operators: mutation and

recombination, which roughly resemble mechanisms in natural asexual and sexual reproduction

respectively. Each operator has an associated parameter that controls the probability of its appli-

cation. How to set these operator parameters is still a matter of discussion in the field. Section 2.5

summarises research work on GA parameter settings.

Mutation

Mutation of a bit involves flipping it: changing a 0 to 1 or viceversa. The probability that a bit

will be flipped is given by a parameter (the mutation rate). The bits of a string are independently

mutated — that is, the mutation of a bit does not affect the probability of mutation of other bits.

Traditionally, mutation in GAs is considered to be a secondary operator whose role is to restore lost

genetic material. Some researchers claim, however, that a mutation-selection method constitutes

a powerful search algorithm, and that the importance of mutation in GAs has been underestimated

while the role of recombination has been overestimated (Schaffer & Eshelman, 1991; Fogel, 1995;

Bäck, 1996).

Recombination

Recombination or crossover is considered the main search operator in GAs. This operator pro-

duces offspring by merging portions of two selected parents. The idea behind recombination is

that segments from different parents should be combined in order to produce new individuals

that benefit from advantageous bit combinations of both parents. The application of recombina-

tion is controlled by a parameter (the recombination rate).Several recombination operators have

been proposed. The most widely known are one-point, multi-point, and uniform crossover. In

one-point recombination, a single cut-point is randomly selected within the two parents; then the
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segments before the cut-points are swapped over. Multi-point recombination is a generalisation

of this idea, introducing a higher number of cut-points. Information is then swapped between

pairs of cut-points. In uniform crossover (Syswerda, 1989), exchanged segments reduce to single

bits, cut-points are not used, instead a global parameter indicates the probability of exchanging

each bit between the two parents. Considerable work has beendone in comparing recombination

operators, but there is no conclusive agreement on what is best. It is likely that the right choice

would be problem-dependent. A consensus seems to be, however, that two-point and uniform

recombination are generally preferable to one-point recombination.

2.2.4 Selection

Selection allocates reproductive opportunities for each organism in the population. The fitter the

organism, the more times it is likely to be selected for reproduction. Selection has to be balanced

with variation from mutation and recombination — theexploitation-explorationbalance. Any

efficient optimisation algorithm must balance these two contradictory forces:explorationto in-

vestigate new areas in the search space, andexploitationto make use of information gained so far

to find better solutions. Selection in GAs is the component mainly determining the character of

the search process; too-strong selection means that suboptimal highly fit individuals will take over

the population, reducing the diversity required for further change and progress, whereas too-weak

selection will result in very slow evolution.

Numerous selection schemes have been proposed in the literature. However, there are no

conclusive guidelines as to which method should be preferred; this is still an open question for

GAs. The following subsections describe the most commonly used selection methods.

Proportional Selection

Fitness proportional selection is the classic GA selectionmechanism. In this mechanism the re-

productive opportunitiesof an individual is given by its fitness divided by the average fitness of the

population. The most common method for implementing proportional selection is the so-called

roulette wheel– a stochastic method for producing the expected number of offspring for each in-

dividual in the population. However, with the population sizes typically used in GAs, the actual

number of offspring allocated using the roulette wheel method is often far from its expected value.

To minimise these sampling errors, Baker (1987) proposed a new method calledstochastic uni-

versal sampling(SUS). SUS is also more computationally efficient and is chosen in most modern

implementations. Thus, it is used in the experiments of thisthesis.

Scaling Methods

Scaling the objective function values is a widely accepted practice in GAs. This is done for two

reasons. First, to map objective function values to positive numbers, since the standard GA selec-

tion mechanism (fitness proportional selection) requires positive fitness values and a maximisation

problem. Second, to keep appropriate levels of competitionamong the individuals throughout a

GA run.

Several scaling methods have been proposed, ranging from simple linear transformation to

methods that consider some population measures (e.g. fitness standard deviation) for perform-

ing an appropriate mapping (see (Goldberg, 1989; Mitchell,1996) for an overview on scaling

mechanisms). But again, there are no rigorous guidelines asto which method should be preferred.
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Rank Selection

In rank selection, individuals in the population are rankedaccording to fitness. The expected

number of offspring of each individual depends on its rank rather than on its absolute fitness.

There is no need for scaling in this case, since absolute fitness values are not considered. The

linear rankingmethod proposed by Baker (1985) works as follows: individuals in the population

are ranked in increasing order of fitness, from 1 toM (the population size). The user chooses the

expected number of offspring (or expected value)Max (Max� 1) of the individual with rankM.

The expected value of each individuali in the population at timet is given by:

ExpVal(i; t) = Min+(Max�Min) rank(i; t)�1
M�1

(2.1)

whereMin is the expected value of the individual with rank 1. Given theconstraintsMax� 1 and

∑i ExpVal(i; t)= M (since population size is constant from generation to generation), it is required

that 1� Max� 2 andMin = 2�Max. At each generation, individuals in the population are

ranked and expected values are assigned according to Equation 2.1. Baker (1985) recommended

Max= 1:1 and showed that this scheme compared favourably to proportional selection on some

selected test problems.

Tournament Selection

In tournament selection,n individuals are chosen at random from the population. The fittest of

these individuals is selected for reproduction. Then, all are returned to the original population and

can be selected again. This process is repeated as often as necessary to fill the new population. A

common tournament size isn= 2 (binary tournaments). Tournament selection is similar torank

selection in terms ofselection pressure(see Section 2.3), but is computationally more efficient and

more amenable to parallel implementation.(µ+λ)� and (µ;λ)�Selection

The (µ+ λ)� and(µ;λ)�selection mechanisms come from the evolution strategies community,

but they have been tested in the context of GAs (Bäck, 1991, 1992, 1996). These two methods

differ from the standard GA selection mechanisms in that:� Offspring and parent populations may have different sizes (µ = number of parents,λ =
number of offspring).� Both methods are completely deterministic, there are no selection probabilities.� Both methods definitely exclude the worst individuals in thepopulation rather than sampling
them with small probability (Bäck, 1996).

In (µ;λ)-selection, theµ best individuals out of theλ offspring are selected to become parents

of the next generation, while in(µ+ λ)-selection theµ best individuals are selected from the

set ofµ parentsand λ offspring. Thus, the(µ+ λ) scheme is elitist (see Section 2.2.6) since it

will only accept improvements; it may seem more effective atfirst glance because it guarantees

the survival of the fittest individuals, but it has several disadvantages when compared to(µ;λ)-
selection. Particularly, it is not well suited for optimising multimodal functions and for achieving

self-adaptationof the mutation rates. Thus,(µ;λ)-selection is generally recommended (Bäck,

1996).
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2.2.5 Population Replacement

Two basic models of population replacement may be distinguishedin GAs: thegenerationalmodel

where the whole population is replaced in each generation, and thesteady-statemodel where only

a few individuals (typically one or two) are replaced in eachgeneration. In between these two

extremes ageneration gap(DeJong, 1975) may be defined as the proportion of individuals which

are replaced in each generation. Most GA implementations have used a generational model; this

approach is supported by the work of Grefenstette (1986). A more recent trend, however, has

favoured steady-state replacement (Whitley, 1989; Davis,1991). In the steady-state approach, two

choices have to be considered. First, how to select two individuals to be parents; and second, how

to select one or two unlucky individuals from the populationto be killed off. This can be done in

several ways, including:

1. Selection of parents according to fitness, and selection of replacements at random

2. Selection of parents at random, and selection of replacement by inverse fitness

3. Selection of both parents and replacements according to fitness/inverse fitness

For example, Whitley’s GENITOR algorithm, select parents according to their ranked fitness val-

ues, and the offspring replace the two worst members of the population (Whitley, 1989).

The main difference between a generational GA and a steady-state GA is that, in the latter, pop-

ulation statistics (such as average fitness) are computed after each mating, and the new offspring

are immediately available for reproduction. Such a GA therefore has the opportunity to exploit

a promising individual as soon as it is created. However, Goldberg and Deb (1991) found that

the advantages claimed for steady-state replacement are related to an initial growth rate in perfor-

mance. According to them, the same effect could be obtained by increasing the selection pressure

(e.g. using exponential fitness ranking, or large tournament sizes in tournament selection). They

found no evidence that steady-state replacement is fundamentally better than generational.

This thesis uses a generational GA as the default approach, but steady-state GAs are also tested

to explore the effect of population replacement on both error threshold and optimal mutation rates.

2.2.6 Elitism

The termelitism, first introduced by DeJong (1975), describes the idea of retaining the best or some

of the best individuals at each generation. In generationalGAs, elitism is explicitly implemented

by copying the best individual from generation to generation. In steady-state GAs an implicit

elitism is achieved if only the least fit individuals are selected for replacement.

Elitism is widely used in practice, and it may seem more effective at first glance because it

guarantees the survival of the fittest individuals, however, a non-elitist strategy that allows tempo-

rary deterioration to be accepted may help to leave the region of attraction of a local optimum and

reach a better optimum.

The experiments in this dissertation use non-elitist GAs asa default, but the effect of elitism

on both error thresholds and optimal mutation rates is also explored.
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2.2.7 Termination Criteria

Traditionally, a GA run finishes after a fixed number of generations. Often, a fixed number of

function evaluations is considered instead of a fixed numberof generations. This is a sensible

choice because function evaluation is generally the most computationally expensive task of a GA.

Moreover, this approach allows fair comparisons between generational and steady-state GAs, and

between GAs in general and other search methods, to be performed. Sometimes, termination is

controlled by a genotype diversity measure which gauges theaverage convergence of individuals

in the population. Other termination criteria commonly used are: (i) simply that the optimum is

reached (this is case with abstract test functions used in empirical studies), (ii) fixed computational

time and, (iii) after a number of generations without an improvement.

2.2.8 Performance Measures

Given that GAs are stochastic methods, conclusions can never be drawn from a single run. Instead,

statistics (e.g. average, median) from a sufficiently largenumber of independent runs should be

considered. Thus, the standard performance measures for GAs are the average and best fitness

values averaged over several runs. Within a given run, the best fitness could be either the current

best in the population, or the best fitness attained so far. These measures are considered after a

fixed termination criterion, or over fixed intervals throughout the GA run.

DeJong (1975) devised two measures to quantify the effectiveness of different GAs, one to

gauge ongoing performance, and the other to gauge convergence to an optimal solution. He called

these measures on-line (ongoing) and off-line (convergence) performance respectively. The on-

line performance at timet is the average fitness of all function evaluations up to and including

time t. The off-line performance at timet, is the average, overt steps, of the best fitness value at

each step.

Another GA performance measure is the number of generationsor function evaluations re-

quired before the GA finds an acceptable solution (or the global optimum if it is known before-

hand). The goal is to minimise the number of generations or function evaluations required for

finding the solution. The number of evaluations is often preferred as a measure (over the number

of generations), because in almost all GA applications the function evaluations dominate execution

time.

Finally, in his dissertation, Spears (1998) comments that,although it is a common practice to

run GAs to some termination criteria and then report resultsonly after termination, this approach

ignores the dynamic aspects of GAs and can lead to overly general conclusions. Conclusions can

be surprisingly dependent on the termination criteria, often reversing if a different cut-off is used.

Thus, it is a good practice to always show results over the whole run time of a GA.

2.3 Selection Pressure

Selection or selective pressure is an informal term widely used in the GA community to indi-

cate the strength of a selection mechanism. Loosely, the selection pressure indicates the ratio of

maximum to average fitness (or expected selection values) inthe population. In an attempt to for-

malise the notion of selection pressure, Goldberg and Deb (1991) introduced the idea oftakeover

time. This approach reflects the effect of selection in the absence of any genetic operator (such
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as mutation or recombination). The idea is to count the number of generations needed to produce

a population consisting completely of the best individual in the initial population. The intuition

behind this is that small takeover times characterise strong selective pressure, which corresponds

to exploitative search, whereas large takeover times characterise weak selective pressure, corre-

sponding to explorative search.

Bäck (1996) analysed four selection mechanisms (proportional selection, rank selection, tour-

nament selection and(µ;λ)-selection) considering takeover times. He ordered these selection

mechanisms according to increasing selection pressure, inparticular when “standard” values of

control parameters were assumed1. The ordering is as follows:

1. Proportional selection

2. Linear ranking

3. Tournament selection

4. (µ;λ)-selection

Selection mechanisms 2, 3 and 4, are based on rank rather thanon raw fitness values. Ac-

cording to Bäck’s analysis, there is a strong difference between proportional selection, having

a takeover time of orderO (M lnM) (whereM is the population size), and rank-based methods

with a general takeover time of orderO (lnM), that is, a factor ofM faster. Moreover, rank-based

mechanisms allow explicit control over the selection pressure. Each of them has a single control

parameter that can be tuned for varying the strength of selection. For example, in tournament

selection, a common tournament size is 2, but selective pressure increases steadily for growing

tournament sizes.

2.4 GA Design

In view of the various GA selection mechanisms, population replacement approaches, possible

choice of operators, and ranges for evolutionary parameters; the GA is not a single algorithm but

rather a class of related algorithms. Moreover, there are actually as many different GAs as there

are GA projects. To complicate matters further, there is little (if any) theoretical guidance, and few

rules of thumb to assist the user in the design of an evolutionary approach to a given problem.

When applying an evolutionary algorithm to a given problem,two major steps are needed:

(i) selecting an adequate representation, and (ii) designing and implementing a fitness function.

These two elements form the bridge between the problem context and the algorithm framework.

If the selected algorithm is the GA, these further decisionshave to be made:

1. Selection method: how to perform selection

2. Choice of operators: what genetic operators to use

3. Parameter settings: how to set the values for the various parameters

The issues addressed in this dissertation are mainly related to the third choice, namely, how to

set the values for the various evolutionary parameters. Therefore, the next section discusses this

in more detail.
1The standard control parameters of selection mechanisms are: for rank selection (Max= 1:1), for tournament

selection (tournament size = 2), and for(µ;λ)-selection (µ=λ� 7).
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2.5 GA Parameter Setting

The values of the evolutionary parameters strongly determine the performance of the algorithm.

Specifically, they determine whether the algorithm will finda near-optimal solution and whether

it will find such a solution efficiently. But finding a good combination of parameters is not an

easy task. The evolutionary parameters interact with one another non-linearly, thus they cannot

be optimised one at time. Moreover, the ‘optimal’ parametersetting is likely to depend on the

problem at hand.

During the 70’s and 80’s, a standard GA using bit strings, one-point recombination, bit-flip

mutation, and roulette wheel selection (with or without elitism) was widely used. Algorithm

design was thus limited to choosing the so-called control parameters, such as population size,

mutation rate (per bit), and recombination rate. Most researchers based their choices on “tuning”

the parameters by trial and error, that is, experimenting with different values and selecting those

producing the best results.

At that time, three major empirical studies attempted to provide a good combination of pa-

rameter values. The first study (DeJong, 1975), proposed a test suite of five functions and studied

the on-line and off-line performance (defined in Section 2.2.8) on them. His results suggested the

following parameter values:� population size: 50 - 100� crossover rate: 0.6� mutation rate (per bit): 0.001

These settings (along with De Jong’s test suite) became widely used in the GA community,

even though it was not clear how well they would perform on problems outside De Jong’s test

suite.

Ten years later, Grefenstette (1986) suggested a differentapproach, he used a “meta-GA” to

evolve parameter combinations for the problems in De Jong’stest suite. This method produced

an interesting parameter combination which significantly increased the on-line performance, but

was unable to outperform De Jong’s values for off-line performance. Grefenstette recommended

values were (values to optimise the off-line performance are given in parentheses):� population size: 30 (80)� crossover rate: 0.95 (0.45)� mutation rate (per bit): 0.01 (0.01)

Notice that Grefenstette’s results suggest a smaller population size and higher operator prob-

abilities than De Jong’s. This was an interesting experiment, but again, in view of the specialised

test suite, it is not clear how generally these recommendations hold.

Later on, Schaffer et al. (1989) carried out extensive studies with high CPU time, to explore a

wide range of parameter combinations. They used the on-linemeasure to gauge GA performance,

expanded De Jong’s suite with new five functions, and employed Gray code2 to represent variables.

Schaffer et al. found that the best settings for population size, crossover rate, and mutation rate

2A Gray code represents each number in the sequence of integers f0:::2L�1g as a binary string of lengthL in an
order such that adjacent integers have Gray code representations that differ in only one bit position.
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were independent of the problem in their test suite. These settings were similar to those found by

Grefenstette:� population size: 20 - 30� crossover rate: 0.75 - 0.95� mutation rate (per bit): 0.005 - 0.01

Notice that the purpose of the three approaches described above was to find an effective and

general combination of parameters. In other words, the underlying assumption was that the rec-

ommended values can be applied to a wide range of optimisation problems. Formerly, GAs were

seen as robust problem solvers that exhibit approximately the same behaviour over a wide range

of problems. However, the contemporary view on evolutionary computation holds that specific

problems (problem types) require specific algorithm setupsfor satisfactory performance (Eiben

et al., 1999).

To summarise, it seems very difficult to formulatea priori general principles about parameter

settings, in view of the variety of problem types, encodings, and performance criteria that are

possible in different applications. Moreover, it has been suggested that the optimal population

size, recombination rate, and mutation rate are likely to change over the course of a single run

(Mitchell, 1996). Many researchers in the evolutionary computation community consider that the

most promising approach is toadaptthe parameter values in real time through the ongoing search.

This has long been the approach in the evolution strategies community. There have also been

several approaches to adaptation of evolutionary parameters in GAs. Before discussing them, let

us first present a global taxonomy of parameter settings in EAs inspired by the classification of

Eiben et al. (1999).

2.5.1 Classification of Approaches to Parameter Setting

Eiben et al. (1999) distinguish two major forms of setting evolutionary parameters: parameter

tuning and parametercontrol. By parameter tuning the authors mean the common practice of

somehow finding good parameter values before the run, and then running the algorithm using

these values, which remain fixed during the run. By parametercontrol, they refer to the alternative

of starting a run with initial parameter values which are changed during the run.

Eiben et al. (1999) further categorise the approaches to parameter control according to two

aspects, namely, the type of update mechanism, and the EA component subject to changes. They

distinguish three types of update mechanisms:deterministic, adaptive, andself-adaptive; and

the following EA components: representation, fitness function, operators and their probabilities,

selection method, population replacement, and populationsize. The following describes the three

types of approach for changing the value of a parameter (or update mechanism):� Deterministic: When the value of a parameter is altered by some deterministic rule. This
rule modifies the parameter without using any feedback from the search. Usually, a time-
varying schedule is used, i.e. the rule is applied after a predefined number of generations
since the last rule activation.� Adaptive: When some feedback from the search is used to determine the direction and/or
magnitude of the parameter change.
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dergo evolution through mutation and recombination. The idea is that better values of the
encoded parameters lead to better individuals, which in turn are more likely to survive and
reproduce and hence, propagate these better parameter values.

I follow here the classification discussed above but with some modifications and extensions.

The terms parametertuningandcontrol are substituted bystaticanddynamicparameter setting

respectively. These latter terms, in my opinion, better capture the essential difference between the

two approaches. Moreover, I suggest that static parameter setting should be divided into two cate-

gories, namely, parametertuningand parameterheuristics. By parameter tuning, I understand the

common practice of finding good parameter values for a given problem by trial and error, whereas

parameter heuristics refer to rules of thumb that have widerapplicability. Static parameter heuris-

tics and dynamic deterministic setting, may also be furtherdivided into empirical and theoretical

approaches. Figure 2.2 shows both the global taxonomy of parameter setting as suggested by

Eiben et al. (1999) (left), and the modified version proposedin this section (right).

Parameter Setting

Deterministic      Adaptive      Self-Adaptive

(before the run) (during the run)

Parameter Tuning                     Parameter Control                            

Empirical    Theoretical        Empirical    Theoretical 

Static Setting                                               Dynamic Setting

Tuning         Heuristics                  Deterministic    Adaptive     Self-Adaptive

(before the run) (during the run)

Parameter Setting

Figure 2.2: Global taxonomy of parameter setting in EAs. Left, classification suggested by Eiben et

al.(1999). Right, modified version proposed in this section.

2.6 Optimal Mutation Rates

It has been suggested that the most sensitive of GA parameters is the mutation rate (Schaffer et al.,

1989; Bäck, 1996). Moreover, mutation rates are the main subject of this dissertation. Therefore,

this section presents a critical review of approaches for ‘optimal’ setting of the mutation rate

according to the classification proposed above (Figure 2.2,right).

2.6.1 Static Setting

Tuning

By tuning I refer to the common practice of finding the evolutionary parameters ‘by hand’, that is,

by experimenting with different values and selecting the ones producing best results. When using

this approach, researchers report the parameter values used together with their results, without

much justification of the choices made.

Heuristics

Several authors have tried to find useful heuristics for setting ‘optimal’ mutation rates. These

attempts may be divided into empirical and theoretical.� Empirical Approaches: Recapitulating from the empirical approaches described in Section
2.5, the values proposed for the mutation rate (per bit) were: pm = 0:001 (DeJong, 1975),
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pm = 0:01 (Grefenstette, 1986), andpm 2 [0:005;0:01] (Schaffer et al., 1989). Schaffer
et al. (1989) also arrived at an empirical expression by curve fitting of their data (M is the
population size andL the chromosome length):

pm� 1:75

M
p

L
; (2.2)

The limitationof these early approaches lies in the specialised test suites used (from standard
function optimisation problems). It is not clear how the GA will perform with these settings
outside the particular test suites used. Others have found fitness functions for which these
mutation rate values are not optimal (e.g. Smith and Fogarty(1996)).� Theoretical Approaches: Mühlenbein (1992), following earlier work by Bremerman et al.
(1966), theoretically analysed optimal mutation rates fora simple asexual GA with popu-
lation size 1 on the simpleOnemaxfunction3. Using an approximation of the probability
for improving the fitness function by mutation, the author arrived at an optimal mutation
rate (per bit)pm = 1=L, whereL is the string length. Given the extremely simplified algo-
rithm and fitness function, the practical relevance of this result is questionable. However,
the heuristic ofpm = 1=L has produced surprisingly good results in practice, and will be
discussed later on (Section 2.6.3).

2.6.2 Dynamic Setting

Deterministic

These approaches alter the value of a parameter by some deterministic rule. Deterministic dynamic

approaches may also be categorised into empirical and theoretical.� Empirical Approaches: Fogarty (1989) empirically examined the effect of varyingthe
mutation rate over time and across the bit representation ofindividuals. He found that
varying the mutation rate in either or both of these ways significantly improved the GA
performance in the problem studied (an industrial application) but only when starting from
a conservative initial population of all zeros (whereas thestandard practice in GAs is to
start from a randomly initialised population). This study,however, makes an important
contribution, since it was the first time that the mutation rate was changed during the run of
a GA.� Theoretical Approaches: Hesser and Männer (1991) theoretically analysed the dependence
of the mutation rate upon both the populationsize and the chromosome length. They used ar-
guments from the theory of GAs, stochastic processes, and theoretical biology. The authors
introduced a time-dependency into the mutation rate, confirming the findings of Fogarty
described above. They proposed an expression for optimal setting of the mutation rate (per
bit) for a special GA-variant on the Onemax problem:

pm(t) =rα
β
� exp(�γ t

2)
M
p

L
(2.3)

whereα;β;γ are constants tied to the particular fitness function, andM andL are the pop-
ulation size and the string length. Notice that this expression is similar to that proposed by
Schaffer et al. (Equation 2.2), in that the optimal mutationrate is inversely proportional to
both the square root of the string length and the population size. The practical relevance
of this study is questionable given that a special GA and a very simple function were used.
However, the idea of a using a time-varying mutation rate wasagain proved useful.

3The Onemax or counting-ones function gives the number of 1s in a bit string. Thus, the fittest string is the string
of all ones.
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Bäck (1992) presented an analysis of optimal mutation rates for a simplified GA (no re-
combination and population size of 1) on the Onemax function. He found that the optimal
mutation rate strongly depends on the current Hamming distance to the optimal solution.
In other words, the mutation rate should not be constant but should decrease over time dur-
ing the search. The author presented an approximated schedule for optimal setting of the
mutation rate (per bit), in terms of the current fitness valuefa:

pm( fa)� 1
2( fa+1)�L

(2.4)

The usefulness of this expression is questionable since thedistance to the optimum is not
known in real applications. Moreover, this analysis only applies for a simplified GA on the
very simple Onemax function.

In a later paper, Bäck and Schütz (1996) proposed a deterministic mutation rate schedule
analogous to the expression derived for the Onemax function(Equation 2.4). They used a
time-dependent per bit mutation ratepm(t) wheret 2 0;1; :::;T�1 denotes the generation
counter, andT is a given maximum number of generations. From the conditions pm(0) =
1=2 andpm(T�1) = 1=L, their formulation produced:

pm(t)� 1(2+ L�2
T�1 � t) (2.5)

The authors commented that it is not clear whether this substitution of the distance to the
optimum by the generation number is useful. But, in their study, they found that the schedule
represented by Equation 2.5 outperformed two other approaches for optimal setting of the
mutation rate (a self-adaptive approach, and the static heuristic pm = 1=L per bit) on a test
suite of 3 combinatorial optimisation problems (Bäck & Schütz, 1996).

Adaptive

These approaches use some feedback from the search to determine the direction and/or magnitude

of the parameter change. The idea of an adaptive control of the mutation rate comes from the

evolution strategies community (Rechenberg, 1973). In GAs, similar approaches have been used

to adjust both mutation and recombination rates; the idea isto use the quality of the offspring

generated by an operator as a measure to adapt the probability of its application. This measure is

also calledoperator productivity. The earliest of these techniques was devised by Davis (1989).

His method keeps records, for each member of the population,about which operators were used

to produce them and their ancestors, and any improvement that the operators were able to attain.

Davis showed that this method improved the performance of a GA on some problems. Some years

later, Julstrom (1995) proposed a similar technique that requires less bookkeeping. Each member

of the population has a tree attached to it depicting the operators used to create it. When a child

of improved fitness is produced, this tree is used to assign credit to each operator. Both Davis and

Julstrom methods periodically process this information toadjust the operator settings; and both

have been observed to effectively adapt the operator settings.

Tuson (1995), Tuson and Ross (1998) object that the above methods require much additional

bookkeeping. According to them, it is entirely possible that a simpler approach would work

just as well. Hence, they investigated a simpler approach: COBRA (Cost Operator Based Rate

Adaptation) (Corne et al., 1994), originally devised for adapting operator settings in time-tabling
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problems. Initial operator settings are provided and the GAperiodically swaps them between op-

erators, giving the highest probability to the operator that has been producing the most gains in

fitness. Although COBRA was shown to exhibit improved performance in time-tabling problems,

when compared to a similar GA with fixed operator settings (Corne et al., 1994), no improvement

in performance was found on the test problems studied by Tuson and Ross (1998). According to

the authors, however, the GA was often less sensitive to the initial operator settings when COBRA

was used, which in some applications may be useful.

Adaptive approaches are based on the principle that dynamically changing fitnesses of opera-

tors should keep up with their actual usefulness at different stages of the search, causing the GA to

use them at appropriate rates at different times. Accordingto Mitchell (1996), this ability for the

operator fitness to keep up with the actual usefulness of the operators has not been tested in any

way. She comments further that a big question for adaptive approaches to setting parameters is:

How well does the rate of adaptation of parameter settings match the rate of adap-
tation in the GA population? The feedback for setting parameters comes from the
population’s success or failure on the fitness function, butit might be difficult for this
information to travel fast enough for the parameter settings to stay up to date with the
population’s current state [(Mitchell, 1996), p. 177].

Self-Adaptive

Here the parameters to be adapted are encoded into the genotypes and undergo evolution through

mutation and recombination. Self-adaptive control of mutation step-sizes is traditional in evolution

strategies (Bäck, 1996). Several attempts have been made to bring this idea to GAs. The work of

Bäck (1991) includes mutation rates a as part of the geneticrepresentation of individuals (encoded

as bit-strings). Hence, mutation rates are subject to adaptation as well as the objective variables.

Bäck experimented with two types of selection mechanisms:extinctive selectionandpreservative

selection4. As test functions, he selected 3 functions from the classicoptimisation test suites. His

results suggest that self-adaptation of mutation rates is advantageous and possible for GAs, but

only when extinctive selection is used (that is for a very high selection pressure). In this study,

however, the author compared the self-adaptive approacheswith a standard GA with a per bit

mutation rate ofpm = 0:001. This value was selected without any particular justification (besides

being a common figure in standard GAs). One objection to this empirical comparison is then, that

a mutation rate ofpm = 0:001 is probably very far from optimal (indeed too low) as a static value

for the test suite selected.

Later on, Bäck and Schütz (1996) compared three differentapproaches for optimal mutation

rate setting:� A constant setting —pm = 1=L per bit� A deterministic time-varying mutation rate schedule� A self-adaptation mechanism

4An extinctive selection mechanism definitely excludes someindividuals from being selected, whereas preservative
mechanisms always assign selection probabilities greaterthan zero to all individuals. According to Bäck’s analysis,
extinctive selection imposes a much higher selection pressure.
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As test functions, they selected 3 combinatorial optimisation problems. The deterministic mu-

tation rate schedule used was the one described above (Section 2.6.2, Equation 2.5). Regarding

the self-adaptation mechanism, the authors proposed a refinement over the approach presented in

(Bäck, 1991). They acknowledged that the previous approach was of limited success and postu-

lated that the binary representation of mutation rates usedthere hampered the efficient fine-tuning

by self-adaptation. Thus, they proposed a self-adaptationmechanism where mutation values were

encoded as real numbers, and were subject to evolution by mutation only (no recombination). The

authors presented a comparison among the three proposed mutation regimes (listed above) on the

combinatorial test problems. When comparing the self-adaptive regime with the static regime,

results suggest that the self-adaptive mutation rate has better performance on average, but not with

respect to the number of times that optimal solution was found. The deterministic control regime

was the best of the three, regarding both average final fitnessand the number of runs that yield the

optimum. It should be noticed, however, that this study usedGAs without recombination, and the

differences in performance were, in my opinion, not dramatic.

The work of Smith and Fogarty (1996) investigated the use of genetically encoded mutation

rates within a steady-state GA. They tested several selection and deletion policies, and included

a form of local search in their self-adaptive mechanism. As test problems they used theNK

model (described in Chapter 3) with several values ofK which covered a range of landscape struc-

tures from smooth to very rugged. A comparison between the best self-adaptive GA found, and

a GA with standard fixed mutation rates was presented. Four fixed values for the per bit muta-

tion rate were selected for comparison :pm = 0.001 (DeJong, 1975),pm = 0:01 (Grefenstette,

1986),pm = 1=L (whereL is the string length), andpm = 1:75=M
p

L (whereM is the population

size) (Schaffer et al., 1989). Two studies were carried out.The first compared the self-adaptive

GA (with local search), against the standard steady-state GA (without local search) with the four

selected static mutation values. Results indicated that the self-adaptive GA significantly outper-

formed the standard steady-state GA for all the fixed mutation values, withpm = 1=L giving the

best results among the static settings. A second (more fair)comparison also included local search

on the standard steady-state GA. Again,pm = 1=L per bit produced the best performance among

the static mutation values. In this case, results withpm = 1=L were similar to the self-adaptive GA

on the simplest landscapes, and significantly better for theself-adaptive GA on the more complex

landscapes.

A study of self-adaptive parameter settings was also carried out by Tuson and Ross (1998).

They used real numbers to encode both mutation and recombination parameters in each individual.

Two types ofmeta-operators(i.e. the operators applied to the encoded operator settings) were

tested. First,strongly disruptiveoperators, which tend to produce children quite different from

their parents; and second,weakly disruptiveoperators, which produce children that are similar to

their parents. They found that the choice of these meta-operators had a dramatic effect: disruptive

operators were found to remove the ability to adapt as they destroy any information gained by

selection. The use of low disruptive operators improved matters somewhat, but the occurrence of

adaptation was unreliable and depended on the problem. Not surprisingly, when no adaptation took

place, the effect upon performance was often detrimental. Moreover, performance also declined

even when adaptationdid take place. The authors argued that it takes time for operator parameters
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to evolve to the right values, by which time much of the usefulsearch has already been performed,

and, hence, the impact of the evolved settings is much reduced. Thus, setting appropriate operator

values at the start of the GA run appears to be important. Tuson and Ross concluded by saying

that: “Operator adaptation was not found to be as universally useful as earlier studies on this

subject have implied, in that it will not necessarily produce results that are superior to modest

hand-tuning . . . ”.

2.6.3 Discussion

All the approaches described above for effectively settingthe mutation rate have intrinsic lim-

itations. Hand tuning is time-consuming and often not viable. Theoretical approaches are, in

general, of questionable practical relevance since they are based on very simplified algorithms and

fitness functions. Early empirical approaches using standard function optimisation test suites, are

of restricted generality.

Both adaptation and self-adaptation of operator parameters have a computation overhead.

Moreover, the application of these techniques for setting the mutation rate in GAs has shown,

in my opinion, only limited success. Since adaptation and self-adaptation are successful within

the evolution strategies community, this issue deserves further investigation in the context of GAs.

In my opinion, the most useful guideline so far for an effective and general setting of the

mutation rate in GAs is the heuristic suggestingpm = 1=L (per bit). This figure has appeared

several times in the evolutionary computation literature.The earliest appearance I can trace back

was due to Bremerman et al. (1966) as quoted by Bäck (1996). Also, DeJong (1975) suggested

this value as quoted by Hesser and Männer (1991). The work ofMühlenbein (1992) states that

pm = 1=L is optimal for general unimodal functions. This setting hasalso produced good results

for several NP-hard combinatorial optimisation problems such as the multiple knapsack problem

(Khuri, Bäck, & Heitkötter, 1994), the minimum vertex cover problem (Khuri & Bäck, 1994), the

maximum independent set problem (Bäck & Khuri, 1994), and others (Bäck & Khuri, 1994). The

work of Smith and Fogarty (1996) found 1=L as the best fixed setting for the mutation rate, giving

results comparable to their best self-adaptive method. Other authors have found a dependence

of effective mutation rates upon the string lengthL, although they had not explicitly suggested

pm = 1=L (Schaffer et al., 1989; Hesser & Männer, 1991; Bäck, 1992,1993).

Thus, there may well be some true principle underlying this heuristic. It is argued, in this

thesis, that this principle is related to the notion of errorthreshold from molecular evolution. The

error threshold is the minimal replication accuracy that still maintains genetic information in the

population. Chapter 4 discusses this notion in more detail;and Chapter 6 studies its relationship

with the more familiar notion of an optimal mutation rate in GAs. Let us, however, anticipate

here that the theoretical expression of the error thresholdon a simplified landscape (a single peak

landscape) ispm = ln(σ)=L (per bit) (Eigen & Schuster, 1979), whereL is the genotype length

andσ is thesuperiorityparameter of the master sequence. The master sequence is thecurrent

fittest sequence in the population, andσ is the factor by which selection of this master sequence

exceeds the average selection of the rest of the population;in other words,σ is a measure of the

selection pressure. A resemblance between the expression for error thresholds and the heuristics

of pm = 1=L (per bit) is observed if one assumes that the ratio of maximumto average fitness in

the population (the selection pressure) is� 2, which is the case for linear ranking (withMax= 2,



Chapter 2. Genetic Algorithms: Algorithm Design and Parameter Setting 23

see Equation 2.1), and tournament selection with tournament size of 2.

The idea of optimal mutation rates being related to error thresholds is implicitly suggested

by Harvey (1992, 1997), who presents a GA framework (SAGA) specially designed for evolving

genetically converged populations of variable length genotypes. In this framework, mutation is

considered as the primary search operator. The mutation rate is selected following the expression

of error thresholds on a single peak landscapepm = ln(σ)=L (whenever the value ofσ may be

estimated or approximated). A further adjustment of this guideline is suggested in the presence

of redundancy or junk in the genotype. If the target mutationrate is, for example, 1 mutation per

genotype on the assumption of no redundancy, in the presenceof junk this should be increased so

as to give an expected 1 mutation pernon-redundantpart of the genotype (again, whenever the

proportion of redundancy may be estimated). This adjustment was empirically validated in the

context of evolvable hardware experiments (Harvey & Thompson, 1996).

2.7 Summary

This chapter introduced the general field of evolutionary computation and described in more detail

the most widely known of its approaches: genetic algorithms(GAs). The different components

and variants of GAs were described, revealing that the GA is afamily of algorithms rather than a

single algorithm. Indeed, there are as many different GAs asthere are GA projects. To complicate

matters further, there is little (if any) theoretical guidance, and few rules of thumb to assist the

designer when applying a GA to a given problem. Thus, the second part of the chapter discussed

the many decisions involved when designing a GA. One of such set of decisions, the parameter

settings, was discussed in more detail, and a classificationof approaches to parameter setting was

proposed. The main concern of this thesis is the mutation rate, so a review of approaches so far

for effective setting of the mutation rate was presented. This review was structured according to

the suggested classification of approaches.

All the approaches discussed in this chapter for a near-optimal setting of the mutation rate

have intrinsic limitations. A promising guideline is, however, the heuristic suggestingpm = 1=L

whereL is the string length. This heuristic has appeared several times in the GA literature, has

produced good results in practice, and seems to be supportedby the notion of error threshold

(discussed in detail in Chapters 4 and 5). Bearing in mind thepostulated underlying relationship

between error thresholds and optimal mutation rates, Chapter 6 of this thesis attempts to assess

the generality of thepm = 1=L heuristic, find further adjustments, and detect the limits of its

applicability. First, however, Chapter 3, describes the fitness landscapes used as test problems

throughout this dissertation.



Chapter 3

Fitness Landscapes and Test Problems

The notion of fitness landscapes was introduced to describe the dynamics of adaptation in nature

(Wright, 1932). Since then, it has become a powerful metaphor in evolutionary theory. Fitness

landscapes are also well suited to describe the dynamics of artificial evolution. Hence, evolution

(natural or artificial) can be seen as an adaptive-walk over afitness landscape. Identifying the

structure of fitness landscapes may be helpful in both predicting the performance and improving

the design of evolutionary algorithms.

This chapter is structured in two main sections. Section 3.1introduces the notion of fitness

landscapes and presents some properties of landscapes thatare known to have an influence on

evolutionary search. It also discusses briefly some approaches proposed so far for analysing the

structure of fitness landscapes. Section 3.2 describes the families of abstract landscapes and real

world-domains that will be used as test problems throughoutthis dissertation. It also justifies

this particular choice of test problems. Two real-world domains were selected for study (Section

3.2.2), namely, a combinatorial optimisation problem — theMultiple Knapsack problem, and an

engineering problem — the design of an optimal aircraft Wing-Box.

3.1 Fitness Landscapes

The biologist Sewall Wright (1932) envisioned the consequences of natural selection as an adap-

tive walk over a fitness landscape. Natural organisms can be viewed by theirgenotype, which is

the genetic ‘encoding’ of the organism, or theirphenotype, which is the actual form and behaviour

of the organism. An abstract notion offitnesscan be assigned to each phenotype that measures

its ability survive and reproduce. Evolution is then viewedas a process that searches, by means

of genetic operators like mutation and recombination, a fitness landscape of possible genotypes,

looking for genotypes that encode highly fit phenotypes. Depending on the distribution of phe-

notypes, the fitness landscape can be more or less hilly. It may have many peaks of high fitness

flanked by ridges and cliffs falling to profound valleys of low fitness. Or it may be smooth, with

low hills and gentle valleys.

In this framework, adaptive evolution is a hill-climbing process. The population is a tight or

loose cluster of individuals located in the landscape. Mutation and recombination move individ-
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uals (or their offspring) to neighbouring points in the space. Over time, the cluster of individuals

will flow over the fitness landscape. In the simplest cases, the population will climb to and clus-

ter about one of the possible multiple peaks. In more complexcases, the population cluster may

spread widely across the landscape, passing through a web ofridges somewhat below the fitness

peaks (Kauffman, 1993).

3.1.1 Fitness Landscapes in Sequence Space

Although the notion of fitness landscapes was first introduced in the context of evolution at the

level of organisms, it has recently gained relevance in the context of evolution at the molecular

level. In molecular evolution the space of all possible configurations can be captured by the notion

of protein space, or more generallysequence space(Maynard Smith, 1970). Molecules (such as

proteins and nucleic acids) consist of specific sequences (or strings) drawn from finite alphabets.

Consider sequences of letters drawn from an alphabet ofA characters. If the sequence is of length

L, then there areAL possible sequences of that length. For example there are 20L possible proteins

of L amino acids and 4L possible poly-nucleotides ofL nucleotides. This means that even for

moderate sequence lengths a “hyper-astronomically” largenumber of different variants can be

formed. Let us imagine all possible sequences to be arrangedin a sequence space such that two

sequences are neighbours if one can be converted into another by a single point mutation. Thus

the sequence space is formed by a set of sequences (of uniformlengthL) together with a definition

of distance between sequences. An appropriate definition isgiven by the Hamming distance1.

For a binary alphabet, sequence space can be visualised as anL-dimensional hypercube (Figure

3.1). Once we have defined the sequence space, the missing component of a fitness landscape

is a mapping from sequences to real numbers. These numbers measure the sequences ability to

perform a given function.
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01 000 001

011010

101100

111110

0000
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Figure 3.1:Visualising sequence space. Hypercubes for sequence lengths L = 1 throughL = 4. Edges

connect sequences of Hamming distance one.

3.1.2 Fitness Landscapes in Evolutionary Computation

The fitness landscape metaphor can be used for search in general. Given an optimisation problem,

the set of possible solutions can be coded using strings of (generally) fixed length from some finite

1The Hamming distance counts the number of positions where two sequences differ.
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alphabet. This encoding generates arepresentation space, which is a high dimensional space of all

possible strings of a given length. There is also aneighbourhood relationthat defines which points

in the representation space are connected. This relation depends on the specific search operator

(e.g. mutation) or combination of operators (e.g. mutationand recombination), used to search the

space. Finally, there is a fitness function that assigns a fitness value to each possible string or point

in the space (Hordijk, 1997). To summarise, a fitness landscape is defined by:

1. A representation space (all possible strings in the encoding)

2. A neighbourhood relation denoting which points in the representation space are neighbours

3. A fitness function that assigns a fitness value to each pointin the space

3.1.3 Properties of Fitness Landscapes

In the context of evolutionary computation, it is importantto identify the features of landscapes

that influence the effectiveness of evolutionary search. Such knowledge may be helpful for both

predicting the performance and improving the design of EAs.The following properties are known

to have a strong influence on evolutionary search (Merz & Freisleben, 1999).� the fitness differences between neighbouring points in the landscape (ruggedness),� the number of local optima or peaks in the landscape,� the distribution of the local optima in the search space, and� the topology of the basins of attraction of the local optima.

An important characteristic of a landscape is itsruggedness, which is related to the difficulty

of an optimisation problem for evolutionary algorithms. A landscape where nearby points tend

to have similar fitness values, is calledsmooth. On such a landscape it will be easy to find good

optima: there will be few peaks, and local information aboutthe landscape can be used effectively

to direct the search. On the other hand, a landscape where nearby points tend to have dissimilar

fitness values, is calledrugged. On such a landscape it will be difficult to find a good solution:

there will be many peaks, and local information becomes lessvaluable. Hence, the global structure

of a landscape can range from very smooth to very rugged.

Selective Neutrality

The view of adaptive evolution as a hill-climbing process has dominated evolutionary biology

since the introduction of the fitness landscape metaphor (Wright, 1932). The importance ofse-

lective neutrality2 as a factor in evolution has, however, been stressed more recently. In partic-

ular from the study of quasispecies (Eigen, 1971; Eigen & Schuster, 1979), and the analysis of

RNA evolution (Fontana & Schuster, 1987; Huynen, 1995). Research on the evolution of RNA

molecules, both in vitro and through simulation, suggests that the evolutionary process is shaped

by a high degree of redundancy in sequence-structure3 mappings; there are many more sequences

2The Neutral theory of evolution suggests that evolution at the molecular level is dominated by non-adaptive neutral
changes (Kimura, 1982).

3The function of proteins and nucleic acids is determined by their 3D structure. The so calledtertiary structure
refers to the looping and folding of the molecule chain back upon itself.
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than structures, and sequences folding into the same structure are (almost) randomly distributed in

sequence space. Two consequences of this redundancy are important for evolution. First, the space

of possible structures is covered by small connected regions in sequence space. Second, the exis-

tence of extendedneutral networks(i.e. sets of equal-fitness sequences that can reach each other

via elementary genetic variation steps such as point mutation). These two consequences explain

how evolution in nature can effectively find solutions to complex problems on very large search

spaces. In the presence of neutral networks, populations avoid being caught in evolutionary traps

and eventually reach the global optimum through a compositedynamics of adaptive walks and

random drift (Schuster, 1994). The whole picture can be captured in the term “smoothness within

ruggedness”, on average the landscape may be very rugged, but there exist paths that percolate

through genotype space on which the structure remains unaltered (Huynen, 1995).

To summarise, this subsection concerning the properties oflandscapes, distinguishes two im-

portant landscapes features, namely, (i) ruggedness, and (ii) neutrality. These features will be

considered when selecting the fitness landscapes used as test problems throughout this disserta-

tion (Section 3.2).

3.1.4 Landscape Analysis Techniques

This section briefly describes various techniques for studying the structure of landscapes. The

global structure of landscapes can be mathematically expressed by the landscapecorrelation struc-

ture, which is determined by the fitness differences between neighbouring points. Small differ-

ences give a highly correlated landscape, while large differences give an uncorrelated landscape.

In between, there is a whole range of more or less correlated landscapes. From this correlation

structure, acorrelation lengthcan be derived. The correlation length measures the largest“dis-

tance” between two points at which the fitness of one point still provides information about the

expected fitness of the other point. Several methods for measuring the correlation structure and

correlation length of a fitness landscape have been proposedin the literature (Weinberger, 1990;

Lipsitch, 1991; Manderick et al., 1991; Hordijk, 1997).

Measuring the correlation characteristics of a fitness landscape is an easy and reliable way to

assess its ruggedness. However, the correlation measures provide generalised and often insuffi-

cient information about the landscape structure. Vassilev, Fogarty, and Miller (2000) proposed a

new information analysisof fitness landscapes. They defined and studied three basic information

characteristics of landscapes: information content, partial information content, and information

stability. This information analysis is different from other statistical approaches, and gives us a

notion of the interplay between the smooth, rugged, and flat (neutral) landscape areas.

The following section will describe the landscapes used as test problems in the empirical

chapters of this dissertation. A justification of the particular choices of test problems will also be

provided.

3.2 Test Problems

This section describes the test problems used in this dissertation. First, a group of abstract fit-

ness landscapes were selected: Royal Staircase functions,NK landscapes, andNK landscapes

with neutrality (NKF). This selection is consistent with the belief, held in thisdissertation, that
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ruggedness and neutrality are two important landscape features found in real-world applications.

The Royal Staircase family of functions is a very simple class of functions that allows neutrality

to be modelled and tuned. TheNK family of landscapes is a problem-independent model for con-

structing landscapes that can gradually be tuned from smooth to rugged. Finally, theNKF family

of landscapes allows both ruggedness and neutrality to be gradually tuned. By using these three

abstract models, a wide range of landscape structures can beexplored, some of which might share

features with landscapes from practical applications.

Second, in order to study whether the issues explored in thisdissertation carried over from

abstract landscapes to real-world applications, two real-world domains were selected: a combina-

torial optimisation problem — the Multiple Knapsack problem, and an engineering problem —

the design of an optimal aircraft Wing-Box. This selection was somewhat arbitrary, but again is

consistent with the following criteria. First, both are complex problems: the Wing-Box is an engi-

neering design problem based on real data and constraints, and the Multiple Knapsack is a highly

constrained combinatorial optimisation problem known to be NP-hard. Second, both problems

were available and relatively easy to implement, and third,both have a natural bit string encoding

which was a requirement for the study of error thresholds. Additionally, the Wing-Box problem,

as originally designed, has a redundant encoding which allowed the study of neutrality in a real-

world domain. A non-redundant encoding of this problem was also proposed and tested with the

purpose of comparing results with both type of encodings.

It is worth observing, however, that other real-world problems may have very different char-

acteristics from these two problems selected here.

3.2.1 Abstract Fitness Landscapes

Royal Staircase Functions

TheRoyal Staircase4 class of functions was proposed by van Nimwegen and Crutchfield (1998)

for analysing epochal evolutionary search. They justify their particular choice of fitness function

both in terms of biological motivations and artificial evolution issues. Although simple, Royal

Staircase functions capture some essential elements foundon complex problems, namely, highly

degenerate genotype-to-phenotype maps, and the existenceof extended neutral networks (defined

in Section 3.1.3). The working hypothesis is that many real search problems have genotype search

spaces which decompose into a number of such neutral networks. This idea is supported by obser-

vations in problem domains as diverse as molecular folding (Schuster, 1994), evolvable hardware

(Harvey & Thompson, 1996; Vassilev, Miller, & Fogarty, 1999), and evolutionary robotics (Har-

vey et al., 1997). One symptom of evolutionary search in the presence of neutral networks is the

existence of long periods of fitness stasis (search along a neutral network) punctuated by occa-

sional fitness leaps (transitions to a higher neutral network). The Royal Staircase class of fitness

functions capture these essential elements in a simplified form (van Nimwegen & Crutchfield,

1998). A formal definition of the Royal Staircase class of functions is given below.

1. Genotypes are specified by binary stringss= s1s2 : : :sL, si 2 f0;1g, of lengthL=NK, where
N is the number of blocks andK the number of bits per block.

2. Starting from the first position, the numberI(s) of consecutive 1s in a string is counted.

4These functions are related to the more familiarRoyal Roadfunctions (Mitchell et al., 1992).
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3. The fitnessf (s) of string s with I(s) consecutive ones, followed by a zero, isf (s) = 1+bI(s)=Kc. The fitness is thus an integer between 1 andN+1, corresponding to 1 plus the
number of consecutive fully-set blocks starting from the left.

4. The single global optimum iss= 1L; namely, the string of all 1s.

Fixing N andK determines a particular problem or fitness landscape. As an example, Table

3.1 provides an exhaustive listing of a simple Royal Staircase function withN = 2, K = 2.

String Fitness

11 11 3

11 00 2

11 01 2

11 10 2

01 00 1

01 01 1

01 10 1

01 11 1

10 00 1

10 01 1

10 10 1

10 11 1

00 00 1

00 01 1

00 10 1

00 11 1

Table 3.1:Exhaustive listing of a simple Royal Staircase function with number of blocksN = 2, and block

sizeK = 2. The single optimum is the string of all 1s.

NK Landscapes

The NK family of landscapes was introduced by Kauffman (1989) in order to have a problem-

independent model for constructing fitness landscapes thatcan gradually be tuned from smooth

to rugged. In theNK model,N refers to the number of genes in the genotype (i.e. the string

length) andK, to the number of genes that influence a particular gene5. In other words, the fitness

contribution of each gene is determined by the gene itself plus K other genes in the genotype.

According to Kauffman, most properties of this model are independent of the alphabet sizeA,

hence the simplest case ofA= 2 (i.e. bit strings) is here considered.

The fitness of a bit strings of lengthN is determined as follows. Every biti contributes to

the total fitness of the string. The fitness contribution (fi) of each bit depends on its value (0

or 1), and on the value ofK other bits in the string (0� K � N� 1). These dependencies are

calledepistatic interactions. Hence, the fitness contribution of one bit depends on the value of

K +1 bits, giving rise to 2K+1 possibilities, called neighbourhood configurations. Eachof these

5Notice that the meaning of parametersN andK differs from their meaning on the Royal Staircase class of functions.
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configurations is assigned a random number uniformly distributed over[0:0;1:0]. Therefore, the

fitness contributionfi of each biti (0 � i � N) is specified by a lookup table of 2K+1 random

numbers between 0.0 and 1.0. To compute the fitness of the entire strings, the fitness contribution

from each bit is averaged as follows:

f (s) = 1
N

N

∑
i=1

fi (3.1)

For a given biti, the set ofK epistatic interactions may be either randomly selected or consist

of the immediately adjacent bits. Here, the second model of interactions (nearest neighbour) is

considered.

Figure 3.2 and Table 3.2 give an example of aNK landscape instance withN = 5 andK = 2.

Bit interactions follow the nearest neighbour model, wherethe genotype forms a torus. Therefore,

the first bit is linked to the last and second bits; the second bit is linked to the first and third;

and so on (Figure 3.2). Table 3.2 (the lookup table) shows thefitness contribution of each bit as

determined by its value and the value of the two bits to which it has interactions.

Neighbourhood Bit1 Bit2 Bit3 Bit4 Bit5

000 0.968 0.067 0.345 0.653 0.854

001 0.267 0.576 0.021 0.275 0.073

010 0.288 0.174 0.511 0.793 0.139

011 0.915 0.986 0.912 0.287 0.913

100 0.302 0.457 0.521 0.245 0.456

101 0.128 0.233 0.604 0.754 0.543

110 0.698 0.645 0.400 0.237 0.141

111 0.936 0.112 0.313 0.432 0.834

Table 3.2:Lookup table ofNK landscape instance (N = 5;K = 2).

Bit1             Bit 2 Bit 3 Bit 4 Bit 5

Figure 3.2:Nearest neighbour epistatic interactions.NK landscape (N= 5;K = 2).

As an example of how to compute the fitness of a genotype using lookup Table 3.2, let us

consider the string ‘00010’. Table 3.3 shows both the neighbourhood configuration and fitness

contribution of each bit in ‘00010’ (following lookup Table3.2). The fitness of the entire string is

then computed using Equation 3.1 producing 0.461.

By increasing the value ofK from 0 to N�1, NK landscapes can be tuned from smooth to

rugged. WhenK is small, neighbouring strings will have small differencesin fitness, because

the bits that are different in the two strings will influence the contribution of only few bits in
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Bit Position Value Neighbourhood Contribution

1 0 000 0.968

2 0 000 0.067

3 0 001 0.021

4 1 010 0.793

5 0 100 0.456

Table 3.3:Calculating the fitness of ‘00010’. Neighbourhood configuration and fitness contribution of

each bit according to lookup Table 3.2.

each string. The extreme case ofK = 0 yields a single-peaked and smooth ‘Fujiyama’ landscape.

WhenK is large, on the other hand, neighbouring strings will have large differences in fitness,

because the differing bits of the two strings will influence the fitness of a large number of bits

in each string. WhenK assumes its largest possible value (K = N� 1), the fitness landscape

will be completely random or “uncorrelated”, because changing the value of only one bit changes

the fitness contribution of all bits in the string, so the overall fitness of neighbouring strings will

be totally different. TheNK landscape, however, was invented not to explore the two extreme

landscapes, but to have a model which allows the construction of an ordered family of tunable

correlated landscapes.

NK Landscapes with Neutrality (NKF Landscapes)

Newman and Engelhardt (1997) introduced a family of landscapes with a tunable degree of neu-

trality (let us call it theNKF model). A similar tunable model with neutrality (NKp model) was

also proposed by Barnett (1997). TheNKF model is a generalisation of Kauffman’sNK landscape

described above. Every biti makes a contributionfi to the fitness of the strings. The magnitude of

this contribution depends on its value and the value ofK neighbouring bits. For a binary alphabet,

there are 2K+1 possible neighbourhood configurations, and hence 2K+1 possible values offi. As

in Kauffman’sNK model, these values are selected at random. However, in theNK model, the

values are random real numbers in the interval 0:0� fi < 1:0, whereas in theNKF model the

values areintegersin the range 0< fi < F . For example, ifF = 2, each contributionfi is either

zero or one. To compute the fitness of the entire strings, the fitness contribution from each bit is

averaged as follows:

f (s) = 1
N(F�1) N

∑
i=1

fi (3.2)

The fitness of all strings thus falls in the interval [0,1], and there areNF�N+ 1 possible

values in this range. In the limit whereF ! ∞, the probability that two sequences have the same

fitness becomes vanishing small, so the model has no neutrality and is equivalent to theNK model.

However, whenF is finite, the probabilityof two sequences having the same fitness is finite. So the

model has neutrality, and the degree of neutrality increases asF decreases. Neutrality is greatest

whenF takes the smallest possible value of 2.
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3.2.2 Real-World Domains

Two real-world domains were selected as test problems. Theyare described below.

Multiple Knapsack Problem

The combinatorial optimisationproblem described here, called the 1/0 multiple knapsack problem,

follows the specifications given by Khuri et al. (1994). Thisproblem is a generalisation of the 0/1

simple Knapsack problem where a single knapsack of capacityC, andn objects are given. Each

object has a weightwi and a profitpi . The objective is to fill the knapsack with objects producing

the maximum profitP. In other words, to find a vectorx= (x1;x2; : : :;xn) wherexi 2 f0;1g, such

that∑n
i=1wixi �C and for whichP(x) = ∑n

i=1 pixi is maximised.

The multiple version consists ofm knapsacks of capacitiesc1;c2; : : : ;cm andn objects with

profits p1; p2; : : : ; pn. Each object hasm possible weights: objecti weighswi j when considered

for inclusion in knapsackj (1� j �m). Again, the objective is to find a vectorx= (x1;x2; : : : ;xn)
that guarantees that no knapsack is overfilled:∑n

i=1wi j xi � cj for j = 1;2; : : :;m; and that yields

maximum profitP(x) = ∑n
i=1 pixi . A formal definition of the 1/0 multiple knapsack problem is

given below:

Problem instance:

Knapsacks: 1;2; : : :;m
Capacities:c1;c2; : : : ;cm

Objects: 1;2; : : :;n
Profits:p1; p2; : : : ; pn

Weights:w1 j ;w2 j ; : : : ;wn j(1� j �m)
Capacities and profits are positive numbers while weights are nonnegative.

Feasible solution:A vectorx= (x1;x2; : : :;xn) wherexi 2 f0;1g such that:

∑n
i=1wi j xi � cj for j = 1;2; : : :;m

Objective function: A function P(x) = ∑n
i=1 pixi , wherex = (x1;x2; : : :;xn) is a feasible

vector.

Optimal Solution: A feasible vector that gives the maximal profit; i.e. that maximises the
objective function.

This problem leads naturally to a binary encoding. Each stringx1x2 : : :xn represents a potential

solution. If theith position has the value 1 (i.e.xi = 1) then theith object is in all knapsacks; other-

wise, it is not. Notice that a string may represent an infeasible solution. A vectorx= (x1;x2; : : : ;xn)
that overfills at least one of the knapsacks; i.e., for which∑n

i=1wi j xi > cj for some 1� j � m, is

an infeasible string. Rather than discarding infeasible strings and thus ignore infeasible regions

of the search space, the approach suggested by Khuri et al. (1994) is to allow infeasible strings

to join the population. A penalty term reduces the fitness of infeasible strings. The farther away

from feasibility, the higher the penalty term of a string. Thus, the following fitness function was

defined (s is the number of overfilled knapsacks):
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f (x) = n

∑
i=1

pixi�s�max(pi ) (3.3)

Hence, the fitness function uses a graded penalty termmax(pi). The number of times this term

is subtracted from the fitness of a infeasible solution is equal to the number of overfilled knapsacks

that solution produces.

Wing-Box Problem

The Wing-Box problem was formulated as part of the Genetic Algorithms in Manufacturing

Engineering (GAME) project at COGS, University of Sussex6. An industrial partner, British

Aerospace, provided data from a real Airbus wing-box. A common problem faced in the de-

sign of aircraft structures is to define structures of minimum weight that can withstand a given

load. Figure 3.3 sketches the elements of a wing relevant to this problem. The wing is supported

at regular intervals by slid ribs, which run parallel to the aircraft’s fuselage. On the upper part

of the wing, thin metal panels cover the gap separating adjacent ribs. The objective is to find the

number of panels and the thickness of each of these panels while minimising the mass of the wing

and ensuring that none of the panels buckle under maximum operational stresses. More details,

and the equations for calculating the fitness function, can be found in McIlhagga et al. (1996).

Fuselage

Top panel

Cavity

Ribs

Rib pitch

Figure 3.3:Relevant elements of a wing for the Wing-Box problem. Wing dimensions are fixed. The

variable elements are the number of ribs and the thickness oftop panels.

A full description of a potential solution to the Wing-Box problem requires the definition of the

number of panelsN and the thickness of each panel. A constraint of the problem is that adjacent

panels should not differ in thickness by more than 0.25 mm. The simplest way to accomplish this

is to encode the differences in thickness between adjacent panels rather than the absolute thickness

of the panels. This design decision, and the Delta encoding described bellow, were proposed by

McIlhagga et al. (1996) in the original definition of the problem. Figure 3.4 illustrates the problem

representation. Delta ofith Panel denotes the amount by which the thickness of theith panel is

bigger or smaller than the(i�1)th panel.

6http://www.cogs.susx.ac.uk/projects/game/
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Delta of

2nd Panel

Delta of

3rd Panel

Delta of

Nth Panel
        . . .    Thickness of

1st Panel

Figure 3.4:Delta encoding. Genetic representation of the wing parameters. For the first panel, the absolute

thickness is encoded, whereas for the other panels the differences in thickness between adjacent panels

(Deltas) are encoded.

According to the problem specifications, the thickness of the first panel can vary between 8

and 15 mm by steps of 10�3 mm. This requires 7�103 = 7;000 values which can be represented

with a minimum of 13 bits. But 13 bits can encode 8,192 possible values, so some thickness

are represented by more than one binary sequence. This introduces an amount of redundancy in

the genotype to phenotype mapping. For all subsequentN�1 panels, the difference in thickness

relative to the previous panel is encoded. According to manufacturing tolerance considerations,

only five values are allowed for these differences in thickness :f�0:25;�0:125;0:0;0:125;0:25g
(measured in mm). Three bits are needed to encode these five values with the following mapping:

Bit String Delta (in mm)

000 0.25

001 0.125

010 0.0

011 -0.125

100 -0.25

101 0.25

110 0.125

111 0.0

Table 3.4: Redundant mapping of differences in thickness among consecutive panels in the Wing-Box

problem.

Notice that this mapping is redundant since two different triplets represent values 0.25, 0.125,

and 0.0. An alternative non-redundant mapping is also proposed here with the purpose of compar-

ing results with both type of encodings. The number of possible differences in fitness is increased

from five to eight. The values -0.25 and 0.25 are maintained asthe lower and upper bounds, so

the same space of solutions is explored, but the positive half of the range is split equally between

three values while the negative is split between four (Table3.5).

For both encodings, the total number of bits needed to represent an individual is 13+3�N�1,

that is, 13 for the first panel, and 3 for each of the other N-1 panels.

3.3 Summary

This chapter introduced the notion of fitness landscapes, which was originally proposed in the

context of organic evolution, but later gained relevance inboth molecular evolution and evolution-

ary computation. Hence, evolution (natural or artificial) can be seen as an adaptive-walk over a
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Bit String Delta (in mm)

000 0.25

001 0.166

010 0.0833

011 0.0

100 -0.0625

101 -0.125

110 -0.1875

111 -0.25

Table 3.5:Non-Redundant mapping of differences in thickness among consecutive panels in the Wing-Box

problem.

fitness landscape. Landscapes may differ in their structure, hence, Section 3.1.3 discussed some

landscape features that are known to have an influence on evolutionary search. Among such fea-

turesruggednessandneutrality were distinguished. Thereafter, some techniques for analysing

the structure of fitness landscapes were briefly discussed (Section 3.1.4).

The second part of the chapter (Section 3.2) discussed the test problems used throughout this

dissertation. Two types of test problems were selected; first, a group of abstract fitness landscapes:

Royal Staircase functions,NK landscapes, andNK landscapes with neutrality (Section 3.2.1).

These families of tunable landscapes allows the exploration of a wide range of landscape struc-

tures with several degrees of ruggedness and neutrality. Second, in order to explore the practical

relevance of the ideas in this thesis, two real-world applications were selected (Section 3.2.2),

namely, a combinatorial optimisation problem — the Multiple Knapsack problem, and an engi-

neering application — the design of an optimal aircraft Wing-Box. It is worth noticing, however,

that other real-world problems might have very different characteristics from these two problems

selected here.



Chapter 4

Error Thresholds in Genetic Algorithms:

Simple Landscapes

This chapter explores the notions of quasispecies and errorthresholds from molecular evolution

(Section 4.1.1). The Quasispecies model is based on differential equations and describes the dy-

namics of replicating nucleic acid molecules under the influence of mutation and selection (Eigen,

1971; Eigen & Schuster, 1979). As noted in the introduction,theerror thresholdof replication

is an important notion in this model. The error threshold is acritical mutation rate (error rate)

beyond which structures obtained by an evolutionary process are destroyed more frequently than

selection can reproduce them. With mutation rates above this critical value, an optimal sequence

would not be stable in the population.

The quasispecies model, as stated originally, considered infinite asexual populations. More

recently, Boerlijst et al. (1996) extended the quasispecies model by including recombination. Sec-

tion 4.1.3 describes this work in detail. However, results obtained using infinite populationmodels,

cannot be expected to automatically apply to the more realistic case of finite populations. Thus,

Section 4.2 reproduces the experiments by Boerlijst et al. (1996) but using a GA — and hence

finite populations — instead of the quasispecies model as theunderlying model of evolution. An

additional group of experiments (not presented in Boerlijst et al. (1996)) are reported in Section

4.3.4. These experiments incorporate mate selection and highlight an advantage of the GA-based

simulation model over the analytical model, where eliminating the random-mating assumption

would be very difficult (if possible at all).

To summarise, studies on error thresholds from the literature in molecular evolution, are based

on the quasispecies analytical model. Hence, the main purpose of the experiments in this chapter

is to explore whether a phenomenon similar to that of error thresholds is observed on evolving

populations of bit strings using a GA (instead of the quasispecies model) as the underlying model

of evolution. This exploration starts by considering two simple abstract landscapes. It is argued

in this thesis that the notion of error thresholds is of significance for GAs because it determines a

critical upper bound for the balance between exploration and exploitation in genetic search.
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4.1 Framework

4.1.1 Quasispecies and Error Thresholds

Thequasispeciesmodel was introduced by Eigen (1971), Eigen and Schuster (1979) in the con-

text of their work on the origin of life. This analytical model, based on a set of differential

equations, describes the cluster of closely related molecular ‘species’ produced by errors in the

self-replication of macromolecules (nucleic acids).

Given an infinite population on a sequence space (described in Chapter 3), and a specified

mutation rate governing errors in asexual replication, onecan determine the stationary distribution

of sequences reached after any transients from some original distribution have died away (Eigen

et al., 1988). Unless the mutation rate is too large or differences in fitnesses too small, the popula-

tion will typically cluster around the fittest sequence(s),forming a concentrated cloud; the average

Hamming distance between two members of such a distributiondrawn at random will be relatively

small. This clustered distribution is called aquasispecies.

An important concept in quasispecies theory is the notion oferror thresholdof replication.

If replication were error free (i.e. mutation free), no mutants would arise and evolution would

stop. On the other hand, evolution would also be impossible if the error rate of replication were

too high (only few mutations may produce an improvement, butmost will lead to deterioration).

The notion of error threshold allows us to quantify the resulting minimal replication accuracy (i.e.

maximal mutation rate) that still maintains adaptation (Nowak & Schuster, 1992).

Let us consider an extreme fitness landscape of sequence length L, which contains a single

peak of fitnessσ > 1, all other sequences having a fitness of 1. With an infinite population, there

is a phase transition at a particular error ratep (the error threshold). This critical error rate was

analytically determined by Eigen and Schuster (1979) and itis defined as the rate above which

the proportion of the infinite population on the peak drops tochance levels. Following Eigen and

Schuster, letq = 1� p be the per-locus replication accuracy. Then, at the phase transition, the

probability of accurate replication of the “master sequence” on the peak needs to be balanced by

its superior replication rate, so as to equate with the replication of all the other sequences (back-

mutations from these to the master sequence are ignored). Thus,

σqL = σ
h(1� p) 1

p

iLp = 1 (4.1)

and if p is very small, we can approximate the contents of the square brackets bye�1, which leads

to

p= ln(σ)
L

(4.2)

For mutation rates lower than this critical value (the errorthreshold) the proportion of master

sequences in the population will build up, giving the quasispecies centred on the peak.

4.1.2 Error Thresholds in Finite Asexual Populations

The quasispecies model, as stated originally, considered infinite asexual populations. Later on,

Nowak and Schuster (1989) extended the calculations of the error threshold on a single peak
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landscape tofinitepopulations. Finite populations lose grip on the solitary spike of superior fitness

easily because of the added hazard of natural fluctuations inthis case. In Ochoa and Harvey (1998),

we derived a reformulation of the Nowak and Schuster analytical expression. This reformulation,

reproduced below, explicitly approximates the extent of the reduction in the error threshold as we

move from infinite to finite populations.

Nowak and Schuster (1989) extended the calculations of error thresholds frominfinite to

finiteasexually replicating populations. Their main result is presented as follows:

The error threshold can be expanded in a power series of the reciprocal square
root of the population size, and this increases with 1=pN in sufficiently large
populations.

More precisely, the reciprocal square root factor applies to thedifferencebetween the crit-

ical replication accuracyper-locus in an infinite populationqmin(∞), and the equivalentqN

in a population sizeN. The reference is to the second term in the following expansion, on

the assumption that the third and subsequent terms are relatively insignificant and can be

ignored (Nowak & Schuster, 1989).

qN = q∞

 
1+ 2

p
σ�1

L
p

N
+ 2(σ�1)

LN
+ (σ�1)3=2

LN3=2
+ : : :! (4.3)

In many practical circumstances the selection strengthσ may lie between 1 and 5; this

implies, for values ofN � 100 and ofL � 10, thatqN should differ fromq∞ by only of

the order of 4% or less. However, error thresholds are usually reckoned in terms of critical

error ratesp = 1� q per-locus; and it turns out that the proportional changes incritical

values ofp are much more significant in finite populations than the proportional changes in

q. Nowak and Schuster (1989) introduced equation 4.3. Here, we derive a reformulation of

this equation, which makes explicit the reduction in the critical mutation rate as we move

from an infinite to a finite population of sizeN. In other words, instead of calculating the

critical replication accuracy(qN), we calculate the criticalerror rate (pN):

p∞� pN

p∞
= 2

p
σ�1(1� p∞)
L
p

Np∞
(4.4)

ignoring further terms in the expansion. Using Equation 4.2to substitute forp∞, we have

the proportional reduction in the error threshold:

p∞� pN

p∞
= 2

p
σ�1p
N

�
1

ln(σ) � 1
L

�
(4.5)

For large values ofL the second term in the bracket is relatively insignificant and can be

eliminated producing:
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p∞� pN

p∞
' 2

p
σ�1

ln(σ)pN
(4.6)

Alternatively, equation (4.5), can be presented as:

pN = ln(σ)
L

� 2
p

σ�1

L
p

N
+ 2ln(σ)pσ�1

L2
p

N
(4.7)

Thus, the error threshold for finite populations decreases with the size of the population, given

that the second term is subtracting and is the greatest of theseries (except the first term).

4.1.3 Viral Quasispecies and Recombination

Most mathematical models describing quasispecies focus onpoint mutations as the principal

source of variation. However, Boerlijst et al. (1996) proposed a mathematical model of qua-

sispecies which incorporates both mutation and recombination. In particular, they study virus

populations, which can be modelled as quasispecies. Viruses are infectious agents found in all

life forms (plants, animals, fungi and bacteria). A virus particle consist of a core of nucleic acid,

which may be DNA or RNA, surrounded by a protein coat. Certainviruses named “retro-viruses”

(e.g. HIV) can recombine their genetic material. They carrytwo copies of their genome in every

virus particle, thus, recombination may occur when two distinct strains of the same virus simul-

taneously infect a single cell. The model of Boerlijst et al.specifically deals with retrovirus

recombination. They first considered viral quasispecies without recombination. In their model,

distinct viral strains were represented by bit strings of lengthL. A set of differential equations (see

box below) described the change in uninfected cellsx, infected cellsyi and free virusesvi .

dx
dt

= λ�δx�x∑
i

βivi (4.1)

dyi

dt
= x∑

j
Qi j β jvj �aiyi (4.2)

dvi

dt
= kiyi�uivi (4.3)

In this modelλ is the influx rate of uninfected cells;δ, ai andui are the death rates of,

respectively, uninfected cells, infected cells, and free virus; βi is the infection rate;ki the

production rate of new free virus; andQi j is the probability of strainj mutating to straini.

The mutation matrix is given by:

Qi j = pHi j (1� p)L�Hi j (4.4)

Herep is the mutation rate per bit,L is the bit string length, andHi j is the Hamming distance

between stringsi and j . Error free replication is given byQi j = (1� p)L.
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The next paragraph describes the results obtained with thismodel without recombination.

Following the notationof Boerlijst et al.,p stands for the mutation rate per bit, whereaspc indicates

the critical mutation rate (or error threshold).

Without mutation (p = 0), the strain (or sequence) with the largestreproductive ratio(or fit-

ness)Ri will out-compete all other sequences. However, with mutation (p > 0) there is a critical

error rate,pc, beyond which the sequence with the highestRi is no longer preferentially selected.

A single peak fitness landscape is considered where a sequence,F , has the highest fitnessRF , and

all other sequences have the same, but lower, fitnessR. If p< pc, the quasispecies will be centred

around the fittest sequence,F , which will be the most abundant. However, ifp > pc, the fittest

sequence,F , will not be preferentially selected and each virus sequence will have essentially the

same relative abundance. This phenomenon is known as the error threshold (Section 4.1.1).

A Basic Principle of Recombination

Before including recombination in the model, Boerlijst et al. discussed a relation which holds for

any type of recombination, and turns out to be an important element for understanding the effect

of recombination on error thresholds.

Consider two sequencesi and j with a genetic distancedi j (for a bit string modeldi j

is the Hamming distance). Assume that these sequences recombine to produce an
offspringk. If recombination is the only source of variation, we have

dik +d jk = di j .

The genetic difference between the parents equals the sum ofthe genetic difference
between offspring and each of the parents. This relation is important for our under-
standing of recombination. It shows that in sequence space recombination is always
inwards pointing [(Boerlijst et al., 1996), p. 1578].

To illustrate this principle, consider the following example:

i: 1001011101,j : 0000000000,di j = 6

k: 0001001101, is one possible product of uniform recombination betweeni and j .

dik = 2,d jk = 4,dik +d jk = 4 + 2 = 6 =di j

Bit string recombination model

Boerlijst et al. (1996) extended the mathematical model by including recombination. They intro-

duced variables for double infected cells and for viruses produced by these cells. Double infected

cellsyi j are those infected by two strainsi and j . vi j represents the free virus produced by these

double infected cells, of which 25% will be homozygous typei, 25% will be homozygous typej ,

and 50% will be heterozygous (i.e. will have onei and onej strain). Due to this characteristic of

the model, the recombination rater has a maximum atr = 0:5, because only heterozygous virus

particles can (effectively) recombine. To model recombination ‘uniform crossover’ (Syswerda,

1989) was used. The new set of equations is shown in the box that follows.
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dx
dt

= λ�δx�xV (4.5)

dyi

dt
= xVi�aiyi�syiV (4.6)

dyi j

dt
= syiVj �ai j yi j (4.7)

dvi

dt
= kiyi �uivi (4.8)

dvi j

dt
= ki j yi j �ui j vi j (4.9)

Heres is the rate of double-infection,V = ∑i βivi +∑i j βi j vi j is the sum of all infectious

virus andVi = ∑ j Qi j β jvj +∑ j Qi j ∑kl M jkl βklvkl is the sum of infectious virus of typei, after

mutation and recombination, withM jkl being the probability of straink andl recombining

to strain j . All other variables and parameters are as described in equations (4.1)–(4.3).

The authors studied the steady state structure of the population using the new model including

recombination. The following simulation parameters were used: string length of 15 and recom-

bination rate ofr = 0:5. Two abstract fitness landscapes, (a) Single peak and (b) Plateau, were

considered.

(a) Single peak landscapeFirst, the case where only one sequenceF has an increased fitness,
was studied. This single bit string has fitnessRF = 5, whereas all other sequences have
fitnessRi = 3:5. The steady state distribution of sequences for this landscape shows that,
for an error rate ofp = 0:007, the population with recombination (compared against the
population without recombination) is more compact in that there are less distant sequences;
but there is also less of sequenceF . This effect of recombination can be understood as
follows. Most of the population is of sequenceF . If sequenceF recombines with e.g. a
sequence in Hamming distance class 8, then the offspring lies anywhere betweenF and
H8 (according to the basic principle of recombination discussed above). However, for a
slightly increased error rate ofp= 0:008, recombination drives the population beyond the
error threshold, resulting in an almost uniform distribution of sequences. This behaviour
is qualitatively similar to that obtained empirically using a GA for finite populations (Sec-
tion 4.2), thus Figure 4.1 illustrates similar distributions, although for different mutation
values. Thus, where recombination acts as a converging operator whenF is involved, it
acts as a diverging operator in other cases. If, for instance, two sequence inH4 recombine,
the product lies anywhere betweenF andH8. Recombination introduces instability to the
population composition; it shifts the error threshold, butat low mutation rates, it can make
the population more compact.

(b) Plateau landscapeIn the single peak landscape, recombination is disadvantageous for the
virus, because it decreases the abundance ofF and introduces instability to the population
(shifts the error threshold towards lower mutation rate). Recombination, however, can be
advantageous in the case of correlated landscape. Considera situation, where the fitness of
sequences close by the fittest stringF is increased toRH1 = 4:8, andRH2 = 4:6 . WhereH1

is the set of all sequences with a Hamming distance of 1 from the fittest stringF , andH2

the set of all sequences with a Hamming distance of 2 fromF . In this case, the steady state
distribution of sequences shows that, before the error threshold atp= 0:011, the population
with recombination is again more compact, and it has more of its ‘mass’ in the middle of the
fitness plateau. However, if the error rate is increased, at acertain point (aroundp= 0:015),
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and fairly suddenly, recombination can no longer keep the population in the middle of the
fitness plateau (Figure 4.2 mirrors these results, althoughfor different mutation values).
Notice that, in this scenario, recombination increases theabundance of the fittest sequence
F (Figure 4.2 (a)). Thus, recombination may be advantageous to the virus but only for small
mutation rates (below the error threshold).

Boerlijst et al. main conclusions may be summarised as follows:� For small mutation rates (i.e. below the error threshold), recombination can focus the qua-
sispecies around a fitness optimum.� Recombination shifts the error threshold to lower mutationrates, and makes the transition
sharper.� Recombination is advantageous (in the sense that it increases both the proportion of the
fittest string in the population, and the average fitness of whole population) if fitness is more
correlated (as in the plateau landscape) and if the mutationrate is sufficiently small.

Finally, the authors report (although not showing the results) that they have extensively tested

the bit string model for other fitness distributions such as ‘smooth’ fitness peaks, multiple peaks

and random distributions; looked into alternatives to uniform crossover, such as one-point and

multi-point crossover; and that in all these cases, the mainconclusion holds — recombination

shifts the error threshold towards lower mutation rates andmakes the transition sharper.

4.2 Experiments

The previous section described results obtained with the analytical quasispecies model, including

both mutation and recombination for infinite populations. In contrast, the experiments described

in this section use a GA and hence finite populations, as the underlying model of evolution. These

experiments reproduce the study described above, now in thescenario of discrete finite popula-

tions.

All the experiments used a generational GA with fitness proportional selection. The genetic

operations were uniform crossover and the standard bit mutation. The GA was run in two modes

Asexual: using mutation only; andSexual: using both mutation and recombination. The land-

scapes explored were those described in the previous section (the single peak and plateau land-

scapes). For the purposes of the simulation, the fittest string, F, was always the string of all 0s

(000000000000000) with no loss of generality. Any other bitstring is referred to as a ‘mutant’,

and belongs to one of the Hamming distance classesHi, wherei is the Hamming distance1 to F. In

the simulations, the initial population was generated differently for each landscape. For the single

peak landscape, around 50% of the population was set on the peak and the rest was randomly

generated. For the plateau landscape, 25% was set on the peak, 25% on theH1 compartment, 25%

on theH2 compartment, and the rest was randomly generated. Two population sizes were tested

(100 and 1000), with the aim of studying the effect of population size on the magnitude of error

thresholds. The per bit mutation ratep was varied fromp= 0:005 top= 0:04, with a step size

of 0:005. The number of generations per GA run was 500. This value was empirically selected;

1Given that theF is the string of all 0s, the Hamming distance from a given string toF is the number of ones in that
bit string.
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the distribution of sequences was fairly stable by this point in all cases. Each experiment was

run 50 times and the results were averaged. Table 4.1 summarises the GA parameters used in the

simulations.

Chromosome length 15

Population size 100, 1000

Recombination rate 0.0 (Asexual), 0.5 (Sexual)

Mutation rate (per bit) 0.005 to 0.04, Step = 0.005

Generations 500

Trials per GA run 50

Table 4.1:GA parameters used in the simulations.

4.3 Results

The empirical results using the GA model (for finite populations) mirrored qualitatively those

produced by Boerlijst et al. for infinite populations (described in Section 4.1.3). However, error

thresholds for finite populations were, in all scenarios, lower than for the infinite case. The fol-

lowing subsections discuss the results obtained with the GAsimulation model on both the single

peak and plateau landscapes.

4.3.1 Single Peak Landscape

Figure 4.1 show the distribution of sequences, above and below the error threshold of the sexual

population, on the single peak landscape for a population size of 1000. These plots, using logarith-

mic scale for the vertical axis, are almost mirror images of those shown in (Boerlijst et al. (1996),

p. 1579) for infinite populations. Figure 4.1(a) shows the distributionof sequences for an error rate

of p = 0:01, with and without recombination. As for the infinite population (Section 4.1.3), the

sexual population is, in some sense, more compact (less diverse); there are fewer distant mutants,

but there is also fewer of sequenceF . On the other hand, Figure 4.1(b) shows that for a slightly

increased error rate (p = 0:015) recombination drives the population beyond the error threshold,

resulting in an almost uniform distribution of sequences. Although the majority of the sexual

population lies in theH7 andH8 compartments, it is because these contain the most sequences;

each distinct single sequence has approximately the same proportion in the population. In other

words, although the distribution of sequences for the sexual population has a curved shape, it is

really representing a uniform distribution of sequences. The explanation suggested by Boerlijst

and co-workers for this effect of recombination has alreadybeen discussed in Section 4.1.3.

4.3.2 Plateau Landscape

Figure 4.2(a) shows the distribution of sequences in the plateau landscape for an error ratep =
0:02, using a linear scale. Notice that, for both sexual and asexual reproduction, the majority of the

population now lies in theH2 compartment. Recombination between twoH2 sequences generates

offspring anywhere betweenF andH4. Recombination thus shifts part of the population back to

the middle of the fitness plateau. However, for a slightly increased error rate,p= 0:025 (Figure

4.2(b)), recombination drives the population beyond the error threshold.
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Figure 4.1: Effect of recombination on the error threshold (single peaklandscape). Population size =

1000, recombination rate = 0.5. A logarithmic scale is used for the vertical axis. (a) Below the error

threshold (p= 0:01) the sexual population is more compact. (b) For a slightlyincreased per bit mutation

ratep= 0:015, recombination can push the population over the error threshold.Hi denotes the sum of all

mutants with a Hamming distancei to F (the fittest string).

4.3.3 Population Size and the Magnitude of the Error Threshold

In contrast to infinite populations, when studying error thresholds for finite populations, it is im-

portant to explore the effect of the population size on the magnitude of error thresholds. Thus,

experiments in this section explore error thresholds for population sizes of 100 and 1000. Fig-

ures 4.3 and 4.4 show error thresholds on both the single peakand plateau landscapes for the two

population sizes studied (100 and 1000), respectively.

For infinite populations on a single peak landscape, the definition of the error threshold is

straight forward (there is a clear phase transition). However, this is not the case for finite popula-

tions where the transition is less sharp. Moreover, if fitness is more correlated, as in the plateau

landscape, the transition is even less noticeable. Nevertheless, an error threshold can be identified

visually for finite populations, with some degree of uncertainty, as the mutation rate just before

the error classes become equally distributed (i.e. the lines become parallel) (Figures 4.3 and 4.4).
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Figure 4.2:Effect of recombination on the error threshold (plateau landscape). Population size = 1000,

recombination rate = 0.5. A linear scale is used for the vertical axis. (a) Below the error threshold (p= 0:02)

the sexual population is again more compact, and it has more of its mass in the middle of the fitness plateau.

(b) For a slightly increased mutation ratep= 0:025, recombination can no longer keep the population in

the middle of the fitness plateau.

Single Peak Plateau

100 1000 ∞ 100 1000 ∞
Asexual 0.015 (0.0153) 0.020 (0.0211) (0.0238) 0.030 0.035 0.05

Sexual 0.010 0.010 0.0075 0.020 0.020 0.011

Table 4.2:Error thresholds for finite populations (sizes 100 and 1000)and infinite populations on both

the single peak and plateau landscapes. Values were obtained from three sources: (1) empirically using the

GA model (shown in normal font), (2) using analytical Equations (shown in brackets), and (3) using the

quasispecies analytical model (shown in bold font).

Table 4.2 reports error threshold values for finite populations (sizes 100 and 1000) and infinite

populations on both the single peak and plateau landscapes.Values in the table were obtained

from three different sources:
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Figure 4.3:Distributionof sequences for a population of size 100. For both asexual and sexual populations

in the two abstract landscapes studied. The per bit mutationrate varies from 0.005 to 0.04 with a step of

0.005. An error threshold can be identified visually as the mutation rate just before the error classes become

equally distributed (the lines become parallel). Verticalaxis shows population fractions, horizontal axis

shows per bit mutation rates. The fittest stringF and error classesH1 andH2 are indicated in the plots.

1. For finite populations, error thresholds were empirically estimated to the nearest step size of
0.005. These values were identified visually from Figures 4.3 and 4.4 as described above.

2. For an infinite asexual population on the single peak landscape, the error threshold was
calculated analytically using Equation 4.2. Similarly, for asexual populations of size 100
and 1000 on the single peak landscape, error thresholds werecalculated using Equation 4.7.
These values are shown in brackets.

3. For infinite sexual populations on both landscapes studied, and infinite asexual populations
on the plateau landscape, error threshold values were takenfrom Boerlijst et al. (1996). The
authors obtained these values by running their analytical quasispecies model (described in
Section 4.1.3). These values are shown in bold font.

Notice that empirical error thresholds for finite asexual populations (sizes 100 and 1000) on

the single peak landscape, have a very good agreement with theoretical values for this landscape

calculated using Equation 4.7 (shown in brackets), which validates the empirical approach.

The major trends in Figures 4.3 and 4.4; and Table 4.2, can be summarised as follows:� Error thresholds for sexual populations are, in all scenarios, lower than for asexual popula-
tions.
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(c) Asexual. Plateau
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Figure 4.4:Distribution of sequences for a population of size 1000. Forboth asexual and sexual popula-

tions in the two abstract landscapes studied. The per bit mutation rate varies from 0.005 to 0.04 with a step

of 0.005. Vertical axis shows population fractions, horizontal axis shows per bit mutation rates.� For asexual populations, the larger the population the higher the error threshold.� Error thresholds, in all scenarios, are higher on the more correlated fitness landscape studied
(the plateau landscape).� The transition in the distributionof sequences around the error threshold is sharper for sexual
populations as compared to asexual populations.

4.3.4 Mate Selection and the Magnitude of the Error Threshold

In nature, mating is rarely random. Instead, organisms often select their mates following certain

criteria. When choice of mates is based on phenotype, matingis calledassortative(Hart & Clark,

1997). In positive assortative mating (often called simplyassortative mating), individuals tend

to choose mates that are phenotypically like themselves. Innegative assortative mating (also

calleddissortativemating), individuals tend to choose mates that that are phenotypically unlike

themselves. Of course, even with random mating, some matingpairs are phenotypically similar

or dissimilar, so assortative mating refers only to those situations in which mating partners are

phenotypically more similar or dissimilar than would be expected by chance in random mating

populations.

The experiments presented in this section, incorporate mate selection into the GA simulation

model. Specifically, they include assortative and dissortative mating. These experiments highlight

an advantage of the GA model over analytical models, where eliminating the random-mating as-
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sumption is normally very difficult. In GAs the phenotype of an organism is summarised by its

fitness value. However, the fitness landscapes explored in this chapter are far too simple, having

very few different fitness values (two for the single peak landscape, and four for the plateau land-

scape). Preliminary experiments using assortative matingbased on similarity in fitness showed no

noticeable differences. However, a second implementationbased on Hamming distance between

parents, produced notable differences in the error threshold magnitudes among sexual populations

with random, assortative and dissortative mating. The experiment parameter settings were similar

to those described in Section 4.2, with the difference that the per bit mutation rate covered a wider

range (from 0.005 to 0.05 with a step of 0.005). For assortative mating two extra low mutation

values (0.0 and 0.001) were also tested. Mate selection was implemented as follows. Survival

was still based on fitness, but when choosing a partner for a given individual, two potential mates

were selected, and from this pair the closest, according to the mate selection criterion, was taken.

Figures 4.5 and 4.6 show the steady state distribution of sequences for a population of size 100

using 4 different reproductive strategies: (a) asexual, (b) sexual with random mating, (c) sexual

with assortative mating and (d) sexual with dissortative mating; on the single peak and plateau

landscapes respectively.
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(c) Sexual Assortative. Single Peak
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(d) Sexual Dissortative. Single Peak
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Figure 4.5:Distribution of sequences on the single peak landscape for 4different reproductive strategies:

(a) Asexual, (b) Sexual with random mating, (c) Sexual with assortative mating, and (d) Sexual with dissor-

tative mating. The recombination rate used was r = 0.5. The mutation rate per bit varies from 0.005 to 0.05

with a step of 0.005. For dissortative mating two extra low mutation values (0.0 and 0.001) were tested.

Vertical axis shows population fractions, horizontal axisshows mutation rates (per bit).
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(a) Asexual. Plateau
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(b) Sexual Random. Plateau
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(c) Sexual Assortative. Plateau
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(d) Sexual Dissortative. Plateau
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Figure 4.6:Distribution of sequences on the plateau landscape for 4 different reproductive strategies: (a)

Asexual, (b) Sexual with random mating, (c) Sexual with assortative mating, and (d) Sexual with dissortative

mating. The recombination rate used was r = 0.5. The per bit mutation rate varies from 0.005 to 0.05 with

a step of 0.005. For dissortative mating two extra low mutation values (0.0 and 0.001) were tested. Vertical

axis shows population fractions, horizontal axis shows mutation rates (per bit).

Single Peak Plateau

Asexual 0.015 0.030

Sexual Random 0.010 0.020

Sexual Assortative 0.030 0.045

Sexual Dissortative 0.0 0.0

Table 4.3:Error thresholds for a population of size 100 on both the single peak and plateau landscapes, for

4 different reproductive strategies.

Table 4.3 summarises the error thresholds values as identified visually from Figures 4.5 and

4.6, for the 4 reproductive strategies studied. Results suggest that assortative mating, on both

fitness landscapes, increases considerably the error threshold on sexual populations as compared

to random mating. Error thresholds with assortative matingin sexual populations are even larger

than for asexual populations. Moreover, assortative mating seems to be advantageous for the virus

population, because it increases the abundance ofF (see Figures 4.5 and 4.6), and makes the

population more stable as the error threshold moves to higher values.

A possible explanation for this effect of assortative mating is as follows. Recombination acts
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as a converging operator whenF is involved, it acts as a diverging operator in other cases. The

converging effect of recombination is increased when mating is assortative, because parents tend

to be close to each other in Hamming distance, so, whenF is involved, offspring will be eitherF

or close toF. This, therefore, increases further the abundance ofF and causes an effect such that,

in more recombination eventsF will be involved (even for high mutation rates). Thus, the overall

effect of assortative mating is to make the population more compact and to increase the abundance

of F , even for mutation rates higher than the error thresholds for a sexual population with random

mating.

In contrast, populations with dissortative mating don’t show a clear error threshold transition.

Even for very low mutation rates, all sequences are equally distributed at the steady-state equilib-

rium of the population. Dissortative mating seems to be disadvantageous for the virus population,

because it decreases the abundance ofF even for very low mutation rates; it also introduces insta-

bility to the population. A possible explanation for this effect is as follows. Dissortative mating

has a diverging effect, because parents tend to be further away from each other. Even whenF is

involved in a recombination event, the most suited partner,according to the dissortative criterion,

will be the farthest away in Hamming distance. If, for instance, a sequence inH8 is selected as the

second parent, the offspring will lie anywhere betweenF andH8. Thus, the overall effect of dis-

sortative mating is to decrease the abundance ofF and to drive easily (even for very low mutation

rates) the recombinant population beyond the error threshold.

4.4 Discussion

For finite populations, and in both abstract fitness landscapes studied, the stable distribution of se-

quences was qualitatively similar to that for infinite populations. However, error thresholds were

smaller in most scenarios for finite populations as comparedto infinite populations. Moreover, for

asexually replicating populations, the smaller the population, the lower the error threshold. Nev-

ertheless, the several implications of recombination found by Boerlijst and co-workers for viral

quasispecies, hold for GAs and finite populations. These implications can be summarised as fol-

lows. First, for small mutation rates (i.e. below the error threshold), recombination can focus the

population around a fitness optimum. In this sense, recombination acts as an error repair mech-

anism, but it also means that the population is less flexible to environmental changes. Second,

recombination shifts the error threshold to lower mutationrates. Near the error threshold, with-

out recombination, the fittest sequence only makes up a smallpercentage of the total population

(Eigen et al., 1988). Under such conditions, recombinationacts as a diverging operator, driving

the population beyond the error threshold. Recombination can be advantageous for the population

if fitness is correlated and if the mutation rate is sufficiently small.

The relevance of these results to the theory of GAs is twofold. First, in the study of optimal

mutation rates, given the relationship between error thresholds and optimal mutation rates postu-

lated in this thesis. Second, in understanding both the roleof recombination, and the interaction

between recombination and mutation in the behaviour of GAs.

Notice that the study of error thresholds presented in this chapter considered only non-elitist

GAs. Elitism will have a critical effect on the error threshold phenomenon. The next chapter will

study the effect of elitism on error thresholds for complex landscapes.
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Although this chapter studied simple fitness landscapes, the single peak landscape is an ex-

treme case in the continuum of less rugged (or more correlated) landscapes. The plateau land-

scape is a less extreme case, which also showed distinct behaviours below and above a critical

mutation rate. The relationship between error thresholds and optimal mutation rates, postulated in

this thesis, will be empirically assessed in Chapter 6. If this relationship turns out to exist, higher

values for mutation rates should generally be used in GAs forpractical applications. Moreover,

the following general suggestions, could be made:� Given that error thresholds are inversely proportional to genotype length; ‘optimal’ per bit
mutation rates should also hold this relationship to genotype length. This finding has been
independently reported several times in the evolutionary computation literature (see Chapter
2).� Given that error thresholds were shown to be lower for small-sized populations, the per bit
mutation rate should be lower the smaller the population size.� Given that recombination shifts the error threshold to lower mutation rates, the mutation rate
per bit should be smaller when recombination is used.� Given that recombination was shown to increase the population average fitness in more
correlated landscapes, the more correlated a fitness landscape is, the more the advantage of
using recombination.

These suggestion will be tested in Chapter 6 using more realistic fitness functions. However,

the simple abstract landscapes used in this chapter, were useful as a starting point for exploring

evolutionary dynamics, and testing hypotheses regarding the roles of genetic operators in GAs.

Finally, a computational ‘micro-analytical’ (or ‘agent-based’) simulation model — in this case

the GA — can offer some advantages over an analytical model for evolutionary biology studies. In

particular, there is the possibility of modifying the general assumption of random mating, allow-

ing instead more biologically inspired patterns of sexual selection. Experiments including mate

selection (reported in Section 4.3.4) showed that assortative mating can considerably increase the

critical error rate.

4.5 Summary

This chapter introduced the notions of quasispecies and error thresholds from molecular evolution.

It also discussed two major extensions of the original quasispecies model within the molecular

evolution literature, namely, the analysis of finite asexual populations on a single peak landscape

(Nowak & Schuster, 1989) (discussed in Section 4.1.2); and the viral quasispecies model includ-

ing both mutation and recombination (Boerlijst et al., 1996) (discussed in Section 4.1.3). This

latest work explored the effect of recombination on error thresholds for infinite populations on

two simple fitness landscapes. The experiments described inSection 4.2, reproduced these results

but using a GA (and thus finite populations) instead of the viral quasispecies model (for infinite

populations) as the underlying model of evolution. For finite populations and in both abstract fit-

ness landscapes studied, the stable distribution of sequences was qualitatively similar to that for

infinite populations. Thus, error thresholds were shown to exist in finite populations of bit strings

evolving using a GA. Moreover, the main conclusions of Boerlijst and co-workers, summarised in
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Section 4.1.3, hold in this case. However, error thresholdswere smaller, in most scenarios, for fi-

nite populations. Also, for asexually replicating populations, the smaller the population, the lower

the error threshold. On the single peak landscape, the empirical results for asexually replicat-

ing populations were accurately predicted by the analytic expression presented in Section 4.1.2.

Additional experiments including mate selection were presented in Section 4.3.4. It was found

that assortative mating, i.e. preference for similar organisms, increased the magnitude of error

thresholds as compared to both asexual replication and sexual replication with random mating.

Assortative mating seems to be advantageous for the population as it increases the abundance of

the fittest string.

This chapter studied very simple fitness landscapes. However, these landscapes were useful

as a starting point to demonstrate the existence of error thresholds in GAs. The next chapter will

study the existence of error thresholds in GAs running on more complex and correlated landscapes.

It will also explore the effect of both changing various evolutionary parameters and modifying the

structure of the fitness landscape, on the magnitude of errorthresholds.

It is argued in this thesis that the notion of error thresholds is relevant to GAs applied to

complex problems: first, in the study of optimal mutation rates, as error thresholds measure an

optimal balance between exploration and exploitation in evolutionary algorithms; second, because

knowledge about error thresholds suggests how different evolutionary parameters interact with

one another in evolutionary dynamics. This knowledge may have practical implications in sug-

gesting heuristics for effective setting of GA parameters.These issues will be explored further in

Chapter 6.



Chapter 5

Error Thresholds in Genetic Algorithms:

Complex Landscapes

In the previous chapter the existence of error thresholds was demonstrated on two simple land-

scapes (isolated peak, and plateau) using a standard GA; it was also shown that recombination, in

those landscapes, shifts error thresholds toward lower values. This chapter extends those findings

by studying more complex landscapes, including real-worlddomains. The division between sim-

ple and complex is somewhat arbitrary. The isolated peak landscape is an extreme uncorrelated

landscape, the plateau is less extreme but still highly uncorrelated. This chapter, on the other hand,

explores correlated landscapes.

The chapter is organised in four main sections. The method section (Section 5.1) describes the

consensus sequenceplots. These plots, borrowed and adapted from theoretical biology, constitute

an empirical approach for locating error thresholds on general landscapes. Section 5.2 uses con-

sensus sequence plots, on two fixed abstract problems, to explore the effect of changing various

evolutionary parameters on the magnitude of error thresholds. Thereafter, Section 5.3 uses a fixed

GA (fixed evolutionary parameters) and explores the effect of modifying the landscape structure

on the magnitude and characteristics of error thresholds. This exploration uses the families of

tunable abstract landscapes described in Chapter 3 (Section 3.2). The closing empirical section of

the Chapter (Section 5.4), explores whether error thresholds may be identified on real-world ap-

plications. It uses the two real-world domains discussed inChapter 3 (Section 3.3), and explores

error thresholds with and without recombination.

5.1 Method

5.1.1 Consensus Sequence Plots

The work of Bonhoeffer and Stadler (1993) studied the evolution of quasispecies on two correlated

fitness landscapes, the Sherrington Kirkpatrick spin glassand the Graph Bipartitioning landscape.

The authors described an empirical approach for locating thresholds on complex landscapes. In

this section, this approach is borrowed and adapted. Instead of the quasispecies model, a GA is

used as the underlying model of evolution. The resulting method can be applied for identifying
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error thresholds in GAs running on general complex landscapes. The approach is to calculate and

plot the consensus sequence at equilibrium for a range of mutation rates. The consensus sequence

in a population is defined as the sequence of predominant symbols (bits) in each position; it is

plotted as follows: if the majority of individuals has a ‘1’ or ‘0’ in a positioni the field is plotted

white or black, respectively. The field is plotted grey if theposition is undecided. Figure 5.1,

shows an hypothetical population and calculates its consensus sequence. The plot shown in Figure

5.1 will correspond to a single line in a full consensus sequence plot where the per bit mutation

rate is varied (see Figure 5.4 for an example of a full plot). The equilibrium stateis reached

when the proportion of different sequences in the population is stationary. This happens when

evolution is simulated for a large enough number of generations. In practice, it is considered

that the equilibrium is reached when several parameters of the population (e.g. the maximal and

average fitness) reach equilibrium. According to Bonhoeffer and Stadler (1993) the error threshold

may be approached frombelowor above, with both methods producing similar results.

Population:
1:   0 0 1 0 1 1 0 1 1 1 
2:   1 1 0 1 0 0 1 1 0 0 
3:   1 0 0 0 1 1 0 1 1 0
4:   0 1 0 1 0 0 1 1 1 0
5:   1 1 0 1 0 1 0 0 1 0  
6:   0 0 0 1 1 1 1 1 0 1
7:   0 1 1 1 1 1 0 0 1 0
8:   1 1 1 1 0 0 0 0 1 0
9:   0 0 0 1 1 0 1 0 1 1
10: 1 1 1 0 0 1 0 1 0 1  
--------------------------------
      5 6 4 7 5 6 4 6 7 4 No.of 1s:

Consensus Sequence:  2 1 0 1 2 1 0 1 1 0,

Where           2:  No. 1s = No. 0s
                      1:  No. 1s > No. 0s
                      0:  N0. 1s < No. 0s

Plot: 

Figure 5.1:Calculating and plotting the consensus sequence of a population.

Approaching the error threshold from below

To approach the error threshold from below, the simulation starts with a homogeneous population

at the global optimum. This approach requires knowing the optimal string beforehand. Then,

the population is allowed to reach equilibrium at a constantmutation rate of 0.0. Afterwards,

the mutation rate is increased by a fixed, small step and the computation is continued with the

current population. This process is repeated until a predefined maximum for the mutation rate is

reached. Figure 5.2 outlines this algorithm. Notice that the plot summarises a single run, there is

no averaging of multiple runs.

Approaching the error threshold from above

To approach the error threshold from above, the simulation starts with a random population. Then

the population is allowed to reach equilibrium at a constantpredefined maximum for the mutation

rate1. Afterwards, the mutation rate is decreased by a fixed small step and the computation con-

tinues with the current population. This process is repeated until the mutation rate is 0.0. Figure

5.3 outlines this algorithm. Notice that, in this case, it isnot necessary to know the optimal string.

Hence, in principle, this approach can be used for locating the error threshold on any complex

landscape. Again the plot summarises a single run, there is no averaging of multiple runs.

1This value has to be high enough to be above the error threshold for the landscape under study.



Chapter 5. Error Thresholds in Genetic Algorithms: ComplexLandscapes 55Procedure Consensus_Plot_Below {p = 0.0; /* Initial mutation rate of 0.0 */Initialise the population (at optimum);Run_GA; /* large number of generations */Calculate and plot the consensus sequence;/* Stop when a predefined (high) mutation rate is reached */Until (p = p_max) {p = p + p_step;Run_GA; /* large number of generations */Calculate and plot the consensus sequence;}}
Figure 5.2:Algorithm for producing a consensus sequence plot (from below).Procedure Consensus_Plot_Above {p = p_max; /* Initial (high) mutation rate */Initialise the population (randomly);Run_GA; /* large number of generations */Calculate and plot the consensus sequence;Until (p = 0.0) {p = p - p_step;Run_GA; /* large number of generations */Calculate and plot the consensus sequence;}}
Figure 5.3:Algorithm for producing a consensus sequence plot (from above).

For both approaches, the consensus sequence in the population is calculated and plotted at the

end of each simulation cycle for each mutation step. The error threshold is characterised by the

loss of the consensus sequence, i.e. the genetic information of the population. Beyond the error

threshold the consensus sequence is no longer constant in time (see Figure 5.4).

5.2 Error Thresholds and Evolutionary Parameters

This section uses consensus sequence plots to explore the effect of modifying the values of various

evolutionary parameters on the magnitude of error thresholds. Unless otherwise stated, experi-

ments use a generational GA with fitness proportional selection, a population of 100 members,

and no recombination, i.e., asexual reproduction. Table 5.1 summarises these default settings.

Two instances of landscapes were selected as default test problems: a Royal Staircase function
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with number of blocksN = 3, and block sizeK = 10; and aNK landscape2 with string lengthN =

24, and degree of epistatic interactionK = 10. Table 5.2 summarises the default test problems used

in most experiments. Further details on the experiments anddepartures from the default setting

are given in the respective subsections.

Population replacement Generational

Selection Scheme Proportional

Population size 100

Recombination rate 0.0 (Asexual)

Generations (per mutation rate) 10,000

Table 5.1:GA default parameters used in the experiments.

Landscape Setting String length

NK N= 24,K = 10 24

Royal Staircase N = 3, K = 10 30

Table 5.2:Default test problems used in the experiments.

5.2.1 Preliminary Study

Before exploring the effect of the various evolutionary parameters on the magnitude of error

thresholds, three preliminary studies were carried out.

Error thresholds from below and above

The first preliminary study was designed to confirm the assertion by Bonhoeffer and Stadler (1993)

that error thresholds do not depend on whether they are approached from below or from above.

Figure 5.4 shows the consensus sequence plots on the two default test problems (see Table 5.2).

In both cases, the error threshold was approached from belowand above (see Section 5.1.1). The

Royal Staircase function has a single optimum (the string ofall ones). On the other hand, theNK

landscape has multiple optima, and they are not known. So, for theNK landscape the procedure

was to first approach the error threshold from above startingfrom a random population, then store

the consensus sequence thus obtained. Afterwards, the error threshold was approached from below

starting from a population where all individuals were copies of the stored consensus sequence.

In all plots, the vertical axis shows the explored range of mutation values. Mutation rates are

expressed as mutations per bit (m=b). Mutation step-sizes were 0.005 for the Royal Staircase and

0.001 for theNK landscape.

On both test problems, the plots illustrate the existence ofa stable consensus sequence for

mutation rates below the error threshold. The consensus sequence is the string of all 1’s for the

Royal Staircase, and one particular local optima for theNK Landscape. Results confirm that error

thresholds do not depend on whether they are approached frombelow or from above. On theNK

2TheNK model implementation used throughout this thesis is due to Mitchell Potter, who provides freeware routines
in C for generating randomNK landscapes (http://www.cs.gmu.edu/ mpotter/nk-generator/).
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Figure 5.4:Consensus sequence plots on a Royal Staircase function (N = 3, K = 10) and aNK landscape

(N = 24, K = 10). The error threshold is approached from below and above. The horizontal axis shows

the consensus bit for each positioni, the vertical axis shows per bit mutation rates (m=b). Mutation step-

sizes were 0:005 (Royal Staircase), and 0.001 (NK). The error threshold is characterised by the loss of

the consensus sequence (the string of all 1’s for the Royal Staircase; and one local optima for theNK

Landscape). For the Royal Staircase, the intermediate error thresholds for each step or fitness level can also

be observed.

landscape the transition occurs close to 0.02 mutations perbit. For the Royal Staircase the critical

per bit mutation rate is close to 0.05; in this case, different error thresholds for each fitness level

or step can also be observed.

Error thresholds and the initial population

The next set of experiments explores whether error thresholds approached from above (i.e. from

a random population) are independent of the initial population. For this purpose, consensus se-

quence plots are produced for four initial populations (four random seeds) on a fixedNK landscape

instance (Figure 5.5). Results suggest that the error threshold is independent of the initial popula-

tion. Although the consensus sequence achieved in each caseis different, the transition occurs at

approximately 0.02 mutations per bit in all cases (with a discrepancy of' 0:002)
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Figure 5.5:Consensus sequence plots on a fixedNK landscape (N= 24,K= 10) for four initial population

(different random seeds). The horizontal axis shows the consensus bit for each positioni, the vertical

axis shows the mutation rate per bit (m=b). The error threshold was approached from above, that is from

a random population. Error thresholds are characterised bythe loss of a consensus sequence, which is

different in each case.

Error thresholds and landscape instance

The last set of preliminary runs explores whether the error threshold is similar for different in-

stances of anNK landscape with fixedN andK. For each run, a new landscape was generated

(using a different random seed for producing the landscape). The initial population was the same
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in all runs. Error thresholds were approached from above. Results (Figure 5.6) suggest that error

thresholds are similar on the fourNK landscape instances. The transition occurs at approximately

0.02 mutations per bit in all plots.
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Figure 5.6:Consensus sequence plots on fourNK landscape instances (different random seeds), all with

N= 24 andK = 10. The initial population was the same in all runs. The vertical axis shows per bit mutation

rates (m=b).

5.2.2 Genotype Length

After the preliminary experiments presented above, and forthe abstract landscapes and default GA

explored, we know that: (i) error thresholds approached from below and above produce similar

results, (ii) the error threshold magnitude is independentof the particular initial population. Hence,

from now on, experiments will be run approaching the error threshold from above, that is from a

random population. Also, a fixed random seed will be used for generating the initial population in

all cases. Note as before that approaching error thresholdsfrom above is a more general method,

given that it does not require knowing the optimal string beforehand.

The analytical expression of the error threshold on a singlepeak landscape:

p= ln(σ)
L

; (5.1)

suggests that it decreases in proportion to the string length (L). The following experiments explore

whether this is also the case on correlated landscapes. Figure 5.7 compares error thresholds on

Royal Staircase functions of increasing length. The numberof blocksN = 3 is kept constant,

while the block size is increased from 10 to 12 and 14. Resultson the Royal Staircase function

suggest that error thresholds (for all fitness levels or steps) decrease as a function of the genotype

length. In other words, the longer the genotype the lower theerror threshold. This effect is more

noticeable for the first and second step transitions.

Figure 5.8 compares consensus sequence plots onNK landscapes of increasing genotype

length. The parameterK = 10 (degree of epistatic interactions) is kept constant, while the string

length is varied from 24 to 20 and 28. Results on theNK landscape confirm that even small

increases in genotype length, decrease the magnitude of theerror threshold. The effect is more

noticeable when increasing the genotype length from 20 to 24than from 24 to 28. It should be

noticed that the error threshold, if expressed as mutationsper string, slightly decreases with each

increase in string length, being 0.6 for L = 20, 0.5 for L = 24, and 0.4 for L = 28. These differences

may be due to differences in the overall landscape ruggedness. In other words, althoughK is the
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Figure 5.7:Error thresholds and genotype length. Consensus sequence plots on Royal Staircase functions

with N = 3 andK = 10, 12, and 14 (i.e. string lengths of 30, 36 and 42). The vertical axis shows per bit

mutation rates (m=b).

same for all landscapes, the string length (N) varies, which in turns modifies the overallNK land-

scape structure. This is just a suggested explanation, these results deserve further investigation.
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Figure 5.8:Error threshold and genotype length. Consensus sequence plots onNK landscapes withK = 10

andN= L = 20, 24, and 28. The vertical axis shows per bit mutation rates (m=b).

From now on, given that error thresholds were shown to dependon the length of genotypes,

mutation rates will be expressed as mutations per genotype (m=L whereL is the string length)

instead of as mutations per bit. Expressing mutation rates per genotype will be more informa-

tive when looking for general principles about parameter interactions, since heuristic such as a

mutation rate of 1=L can be identified.

5.2.3 Selection Pressure

The analytical expression of the error threshold on a singlepeak landscape (Equation 5.1), suggests

that it increases in direct proportion to the strength of selection. The following set of experiments

explores whether this is also the case on correlated landscapes. These experiments use tournament

selection because this selection scheme allows explicit control over the selection pressure. A

common tournament size is 2, but selection pressure increases steadily for growing tournament

sizes. Figure 5.9 shows the effect of increasing tournamentsizes on the error threshold on both

the Royal Staircase andNK landscapes. For both landscapes, the plot using fitness proportional

selection is also included for the sake of comparison.
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Figure 5.9:Error thresholds and selection pressure. Consensus sequence plots on the selected test problems

for tournament sizes of 2, 4, and 6. The plots using proportional selection are also included for the sake of

comparison. The vertical axis shows mutation rates per genotype (m=L).

Results on both landscapes show that the strength of selection has a pronounced effect on

the error threshold. For increasing tournament sizes (increasing selection pressures) there is a

noticeable increase in the magnitude of the error threshold. On the Royal Staircase, the effect is

more noticeable for the first and second step transitions. Notice that on theNK landscape (Figure

5.9, bottom), the error threshold for proportional selection is much lower than for tournament

selection.

5.2.4 Population Size

This section explores the effect of modifying the population size on the magnitude of error thresh-

olds. The work by Nowak and Schuster (1989), discussed in Chapter 4, extended the calculations

of the error threshold on a single peak landscape from infinite to finite populations. Chapter 4

(Section 4.1.2) also shows a reformulation of Nowak and Schuster’s analytical expression, which

explicitly approximates the extent of the reduction in the error threshold as we move from infinite

to finite populations. The expression is an infinite series inwhich successive terms get smaller;

here, only the first few are shown (pM is the critical rate for a population of sizeM):

pM = ln(σ)
L

� 2
p

σ�1

L
p

M
+ 2ln(σ)pσ�1

L2
p

M
(5.2)

Thus, according to the expression, the error threshold increases with the size of the population

given that the second term (the 2nd. greatest of the series) is subtracting and the population size

appears in the denominator.

Preliminary Study

As a preliminary study, we compared theoretical error thresholds on a single peak landscape (cal-

culated using Equation 5.2), with empirical error thresholds estimated using consensus sequence
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plots, on the same landscape for various population sizes. Figure 5.10 shows results of this com-

parison. The empirical error thresholds were estimated using consensus sequence plots starting

from below on a single run. The GA was allowed to run 10,000 generations for each mutation rate

(that is, each line of the plot). An acceptable agreement between theory and practice was found. It

can be noticed, however, that the difference increases withthe size of the population. This may be

due to difficulties in reaching the steady-state distribution of the population for higher population

sizes. In other words, reaching the steady-state for large populations may require an impractically

large number of generations. Differences may also be due to distinct models of evolution. That is,

Equation 5.2 was derived using the quasispecies model, whereas empirical error thresholds were

estimated using a GA as the underlying model of evolution.
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Figure 5.10:Comparing empirical vs. theoretical error thresholds on a single peak landscape for various

population sizes.

Main Study

The preliminary study discussed above suggests that the error threshold increases with increasing

population size on a single peak landscape. The next step would be, then, to explore whether the

same effect is observed on correlated landscapes. Figure 5.11 shows the consensus sequence plots

for population sizes of 10, 20, 50, and 100; on the two defaulttest problems.

Results on the Royal Staircase function show that error thresholds (for all fitness levels or

steps) increase with increasing population size. The effect is more marked on small populations

(sizes 10 and 20), and on error thresholds for the first and second step. Results on theNK landscape

confirm the increase on error thresholds with increasing population size. Again differences are

more noticeable for small populations, and tend to stabilise for larger populations (sizes 50 and

100).

5.2.5 Elitism

The following group of experiments explores the effect of including elitism. Figure 5.12 compares

consensus sequence plots with and without elitism on both the Royal Staircase andNK landscapes.

Two ranges of mutation rates were considered for the elitistversion in both cases. Results on the

Royal Staircase (Figure 5.12, top) suggest that elitism hasa pronounced effect. When elitism
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Figure 5.11:Error thresholds and population size. Consensus sequence plots on the selected test problems

for population sizes of 10, 20, 50, and 100. The vertical axisshows mutation rates per genotype (m=L).

is used, there is no error threshold transition in the original range of per string mutation rates

explored [0.0, 5.0]. If the maximum mutation rate is increased from 5.0 to 20.0 (right plot), a kind

of transition is observed around 10.0 mutations per genotype (the pattern of bits becomes more

randomised). However, there are no clear transitions for the different fitness levels or steps.
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Figure 5.12:Error thresholds and elitism. Consensus sequence plots on the two selected test problems with

and without elitism. In both landscapes, the right plot explores a wider range of mutations. The vertical

axis shows mutation rates per genotype (m=L).

Results on theNK landscape (Figure 5.12 bottom) confirm the pronounced effect of elitism.
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In the first range of mutations explored [0.0,1.2] there is noerror threshold transition with elitism.

When the maximum mutation is increased to 12.0 (right plot),there is still no clear transition

although noise is observed for rates higher than 2.0 mutations per genotype.

5.2.6 Steady State Population Replacement

This set of experiments compares error thresholds using generational and steady-state population

replacement. In both cases tournament selection (with tournament size of 2) was used. Three

types of steady-state GAs were implemented (see Chapter 2):

1. Using tournament selection for parents, and random selection for individuals that are to be
replaced

2. Using random selection for parents, and inverse tournament selection for individuals that
are to be replaced

3. Using tournament selection for parents, and inverse tournament selection for individuals
that are to be replaced

Figure 5.13 shows the consensus sequence plots for generational replacement and the three

types of steady-state replacement discussed above, on the two default test problems. Results on

both test problems suggest that error thresholds depend upon the type of steady-state GA used. For

type 1, the error threshold is similar to that of generational replacement, although slightly lower.

On the other hand, for the other two types of replacement, which include inverse tournament selec-

tion for individuals that are to be replaced, the error threshold is noticeably higher (being highest

for type 3). This last result is to be expected given that thismethod imposes the highest selection

pressure of the three, since there is selection on parents and individuals that are to be replaced

(recall from Section 5.2.3 that error thresholds are higherfor higher selection pressures). Follow-

ing this line of reasoning, results suggest that inverse tournament selection on individuals that are

to be replaced, imposes a higher selection pressure than tournament selection on parents. This

suggestion is supported by results in evolutionary strategies (Bäck, 1996), which points out that

extinctiveselection (i.e. a selection scheme that definitely excludessome individuals from being

selected) imposes a much higher selection pressure as compared topreservativeselection (i.e. a

selection scheme that always assign selection probabilities greater than zero to all individuals).

The presence of implicit elitism on steady-state replacement of types 2 and 3, may also accounts

for the observed differences on the error thresholds.

5.2.7 Recombination

The work of Boerlijst et al. (1996), and results from Chapter4 , suggest that recombination shifts

the error threshold toward lower values on the single peak and plateau landscapes. The following

set of experiments explores whether this is also the case on correlated landscapes. Two types of

recombination were considered: 2-point and uniform, both with a rate of 1.0. Figure 5.14 shows

the effect of recombination on the Royal Staircase (top) andNK landscape (bottom) using 2-point

and uniform crossover. For both landscapes the consensus sequence plot without recombination

(i.e. crossover rate = 0.0) is included for the sake of comparison.
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Figure 5.13:Error thresholds and population replacement. Consensus sequence plots on the selected test

problems for generational and steady-state population replacement. Three types of steady-state replacement

were tested: (1) applying tournament selection on parents and selecting individuals that are to be replaced

at random, (2) selecting parents at random and applying inverse tournament selection on individuals that

are to be replaced, (3) applying tournament selection on both parents and individuals that are to be replaced.

The vertical axis shows mutation rates per genotype (m=L).
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Figure 5.14:Error thresholds and recombination. Consensus sequence plots on the selected test problems

with and without recombination. Both two-pointand uniformrecombination (with a rate of 1.0) were tested.

The vertical axis shows mutation rates per genotype (m=L).
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On the Royal Staircase function (Figure 5.14, top) error thresholds for all the steps are lower

when recombination is used. The plots with no recombinationand 2-point recombination are

qualitatively similar, whereas the plot using uniform recombination is different in that the tran-

sitions for the three steps are closer to one another. On theNK landscape withK = 10 (Figure

5.14, bottom), there is no noticeable difference in the magnitude of the error threshold with and

without recombination. Results from Chapter 4 suggest thatthe effect of recombination on the

error threshold is related to the ruggedness of the landscape. Hence, an extra set of experiments

explores the effect of recombination on aNK landscape with increased ruggedness (N = 24 andK

= 12). On this newNK landscape (Figure 5.15) the error threshold is lower when recombination

is used. Results are similar for 2-point and uniform recombination.
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Figure 5.15:Error thresholds and recombination. Consensus sequence plots on aNK landscape with

increased ruggedness (K = 12). Both two-point and uniform recombination (with a rateof 1.0) are tested.

The vertical axis shows mutation rates per genotype (m=L).

5.2.8 Assortative Mating

Section 4.3.4 from Chapter 4, explored the effect of assortative mating on the magnitude of error

thresholds on the single peak and plateau landscapes. It wasfound that positive assortative mat-

ing, that is when individuals tend to choose mates that are similar to themselves, has the effect of

increasing the magnitude of the error threshold. The purpose of this section is, then, to explore

whether a similar effect is observed on more complex landscapes. Assortative mating was imple-

mented as in Chapter 4, that is, survival is still based on fitness, but when choosing a partner for

a given individual, two potential mates are selected. From this pair, the closest (in Hamming dis-

tance) to the first parent, is taken. The recombination operator used was two-point recombination

with a rate of 1.0.

Figure 5.16 shows the consensus sequence plots without recombination, recombination with

random mating, and recombination with assortative mating,on the two default test problems. Re-

sults on both problems confirm that error thresholds are higher when mating is assortative, as

compared to both random mating and no recombination. Noticethat the increase on the error

threshold is similar for both landscapes. Although the range of mutations explored for each land-

scape is different, the increase on the error threshold magnitude with assortative mating is, in both

landscapes, of approximately 0.5 mutations per genotype ascompared to no recombination, and

about 1.0 mutation per genotype as compared to random mating.
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Figure 5.16:Error thresholds and assortative mating. Consensus sequence plots on the selected test prob-

lems: without recombination, recombination with random mating, and recombination with assortative mat-

ing. Two-point recombination with a rate of 1.0 was used. Thevertical axis shows mutation rates per

genotype (m=L).

5.2.9 Discussion

This section explored the effect of changing the values of various evolutionary parameters on the

magnitude of error thresholds. A few instances of Royal Staircase andNK landscapes were used

as test problems. The effect of these various evolutionary parameters are summarised below:� Genotype length:Results suggest that error thresholds decrease as a function of the geno-
type length. In other words, the longer the genotype the lower the error threshold.� Selection Pressure:Results suggest that the strength of selection has a pronounced effect
on the error threshold. For increasing selection pressuresthere is a noticeable increase in the
magnitude of error thresholds. Depending on the fitness function, the use of proportional
selection may produce much smaller error thresholds as compared to tournament selection.� Population Size: Results show that error thresholds increase with increasing population
size. This effect is more marked on small populations (smaller than 50). Differences on the
error thresholds stabilise for larger populations; error thresholds for population sizes of 50,
100 and larger are quite similar.� Elitism: Results suggest that elitism has a pronounced effect. When elitism is used, there
is no observable error threshold transition. Even if the range of mutations explored is in-
creased, there is no clear transition although some noise isobserved.� Steady State Population Replacement:Results suggest that error thresholds depend upon
the type of steady-state GA used. When using tournament selection for parents and random
selection for individuals that are to be replaced, the errorthreshold is similar to that of
generational replacement. On the other hand, when the steady-state GA includes inverse
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tournament selection for individuals that are to be replaced (which is known to impose a
higher selection pressure), the error threshold is noticeably higher. These results suggest
that the magnitude of the error thresholds depend more on theselection pressure than on
the type of replacement. That is, inverse tournament selection on individuals that are to
be replaced, imposes a higher selection pressure, which in turn explains the higher error
threshold. Also the implicit elitism on some types of steady-state GA accounts for the
differences observed on the error threshold magnitudes.� Recombination: For discontinuous functions (Royal Staircase), and very rugged land-
scapes (NK landscapes withK > 10) error thresholds are slightly lower when recombination
is used, of the order of 0.2 mutations per genotype. Similar results were obtained for uni-
form and two-point recombination. However, this effect of recombination was not observed
on less rugged landscapes and real-world domains (see Sections 5.3 and 5.4).� Assortative Mating: Results confirm the findings of Chapter 4, that error thresholds are
higher when mating is assortative, as compared to both random mating and no recombi-
nation. The increase in the error threshold magnitude with assortative mating was of ap-
proximately 0.5 mutations per genotype as compared to no recombination, and about 1.0
mutation per genotype as compared to random mating.

5.3 Error Thresholds and Fitness Landscape Structure

This section explores the effect of modifying the landscapestructure on the magnitude and char-

acteristics of error thresholds. Hence, we depart from the fixed landscapes used as test problems

in the previous section. Instead, various values for the parametersN andK are explored in both

the Royal Staircase andNK landscapes. Also, a set of experiments using theNKF family of tun-

able landscapes (described in Chapter 3, Section 3.2), is presented. All the experiments used a

generational GA with tournament selection (tournament size of 2), and a population of size 100.

The recombination operator used was two-point recombination with a rate of 1.0 (i.e. a sexual

GA). A wide range of mutation rates were explored, mutation rates are expressed as mutations

per genotype. Table 5.3 summarises the GA parameter settings used on this set of experiments.

Error thresholds were approached from above, that is, starting from a random population and a

high mutation rate.

Population replacement Generational

Selection scheme Tournament Selection (Tournament Size = 2)

Population size 100

Recombination rate 1.0 (Sexual)

Recombination operator Two-point

Generations (per mutation rate)10,000

Table 5.3:GA parameter settings used in the experiments.

5.3.1 Royal Staircase Functions

Royal Staircase functions are always unimodal, but we can increase the function ruggedness by

decreasing the number of blocksN. Modifying the number of blocks also alters the overall shape
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of the landscape. The set of experiments in this subsection maintains a fixed string length of 32,

and simultaneously variesN andK. Table 5.4 summarises the Royal Staircase functions explored.

N K

16 2

8 4

4 8

2 16

Table 5.4:Royal Staircase functions explored.

Figure 5.17 shows the consensus sequence plots on the Royal Staircase functions summarised

in Table 5.4. In all functions, the consensus sequence is thesingle optimum in the landscape (the

string of all 1s). In addition, error thresholds for each fitness level or step can be clearly observed.

Notice the decreasing number of levels (steps) in the plots as the parameterN decreases. For the

final step, the error threshold is at approximately 1.5 mutations per genotype for the functions with

N = 16, 8, and 4, whereas forN = 2, the error threshold is at about 1 mutation per genotype. This

last observation suggests that error thresholds are lower on very rugged landscapes.
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Figure 5.17:Error thresholds on Royal Staircase functions of fixed length and increasing ruggedness. The

vertical axis shows mutation rates per genotype (m=L).

5.3.2 NK Landscapes

IncreasingK in theNK model increases the landscape ruggedness and number of local optima.

Experiments in this subsection useNK landscapes with a fixedN of 16, and eight values ofK =f0, 2, 4, 6, 8, 10, 12, 15g. This produces a range of landscapes from a single-peaked and smooth

‘Fujiyama’ landscape (K = 0) to a completely uncorrelated landscape (K = 15). Figure 5.18 shows

the consensus sequence plots on these landscapes of increasing ruggedness.

The landscapes with low values ofK (K = 0, 2 and 4 in Figure 5.18) show no clear error

threshold transition. In fact, the plots show a wide error transition band, and it is in this sense

that the error threshold could not be located. On the other hand, the landscapes with medium

and high values ofK (K = 6 and greater, in Figure 5.18) show a clear error threshold;there is a

distinguishable transition between an “ordered” (selection-dominated) regime, and a “disordered”

(mutation-dominated) one. The transition is less clear andsharp on the landscapes with medium

ruggedness (K = 6 and 8). The higher the value ofK the sharper the transition and the more
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Figure 5.18:Consensus sequence plots onNK landscapes of increasing ruggedness.N = 16, andK = f0,

2, 4, 6, 8, 10, 12, 15g. The vertical axis shows mutation rates per genotype (m=L).

“disordered” the pattern of bits beyond the error threshold. Notice also, that the magnitude of the

error threshold decreases with increasingK. For K = 6 the transition occurs at about 2 mutations

per genotype, forK = 8 and 10 at about 1.5 mutations per genotype, whereas forK = 12 and

15 at about 1.0 mutations per genotype. These results are interesting because they suggest that

consensus sequence plots, and the magnitude of error thresholds, say something about the degree

of ruggedness of a landscape.

5.3.3 NKF Landscapes

TheNKF model, a generalisation of Kauffman’sNK landscape (Section 3.2.1), represents a family

of landscapes with a tunable degree of neutrality. The parameterF controls the degree of neutrality,

which is greatest whenF takes the smallest possible value of 2. Experiments in this subsection

usedNKF landscapes with fixedN andK (N = 24,K = 10), and four values ofF = f1000, 100, 10,

2g. This produces a range of landscapes of increasing neutrality. Figure 5.19 shows the consensus

sequence plots for these landscapes. Results suggest that error thresholds remain constant for

landscapes of increasing neutrality. It should be noticed,however, that changingF at constantK

may alter the overall landscape ruggedness. In all the plots, the transition occurs at approximately

1.5 mutations per genotype.

5.3.4 Discussion

This section explored the effect of modifying the landscapestructure on the magnitude and char-

acteristics of error thresholds. For these experiments, GAparameters remained fixed, while land-

scape parameters were varied. The existence of error thresholds was shown to depend upon the

ruggedness of the fitness landscapes. For smooth landscapes, there is no clear error threshold

transition. For rugged landscapes, on the other hand, thereis a clear transition between an “or-

dered” (selection-dominated) regime and a “disordered” (mutation-dominated) one. It was found
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Figure 5.19:Error threshold onNKF landscapes of increasing neutrality. Consensus sequence plots on

NKF landscapes of fixedN andK, and varyingF = f1000, 100, 10, 2g. The vertical axis shows mutation

rates per genotype (m=L).

that the magnitude of error thresholds decreases with increasing landscape ruggedness. In the

range of rugged landscapes studied, the error threshold waslocated between 1.0 – 2.0 mutations

per genotype, being lower for the more rugged landscapes. These results are interesting because

they suggest that consensus sequence plots, and the magnitude of error thresholds, say something

about the landscape degree of ruggedness. Features such as the presence of steps in Royal Stair-

case functions were clearly revealed by the consensus sequence plots. Finally, error thresholds

were shown to remain unchanged onNKF landscapes of increasing degree of neutrality.

5.4 Error Thresholds in Real-World Domains

The closing empirical section of this chapter explores whether error thresholds can be observed

in real-world applications. Two applications were selected: the Wing-Box design optimisation

problem, and the Multiple Knapsack problem. For a detailed description of these problems, the

reader is referred to Chapter 3, Section 3.2.2.

All the experiments used a generational GA with tournament selection (tournament size of 2),

and a population of size 100. The GA was run in two modes: (i) using mutation only (Asexual),

and (ii) using both mutation and recombination (Sexual). The recombination operator used was

two-point recombination with a rate of 1.0. The mutation rate range explored was from 0.0 to 5.0

mutations per genotype with a step of 0.1. Each simulation cycle lasted 15,000 generations. Error

thresholds were approached from above, that is, starting from a random population and a high

mutation rate.

5.4.1 Wing-Box Problem

Two groups of Wing-Box experiments were run. First, using the redundant encoding described in

Chapter 3 (see Table 3.4). Second, using the non-redundant mapping also described in Chapter 3

(see Table 3.5). For all the experiments the number of panelswas set to 50. Recall from Chapter 3

that the encoding of the Wing-box problem requires 13 bits for coding the absolute thickness of the

first panel, and 3 bits for encoding the relative increment/decrement in thickness of the remaining

panels. So, the number of bits needed for encoding an individual is 13 for the first panel, and 3 for

each of the others 49 panels, that is 13+3�49= 160.

Figure 5.20 shows results on the Wing-Box problem for asexual and sexual GAs, using both
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Figure 5.20:Error thresholds on two encodings of the Wing-Box problem for both asexual and sexual

GAs. The vertical axis shows mutation rates per genotype (m=L).

the redundant and non-redundant encodings. The plots show the existence of a stable consensus

sequence for mutation rates below the error threshold. The error threshold is visualised as the

transition from a stable consensus sequence to a random sequence of bits. Notice that, for the

redundant mapping (left plots), the error threshold transition is not clear. For most of the bits the

transition occurs somewhere between 1.0 and 2.0 mutations per genotype, but from approximately

bit 75 to bit 125 the error threshold looks higher. On the other hand, the non-redundant encoding

(right plots) shows a clearer transition, which for most of the bits occurs around 1.5 mutations

per genotype. An exception is the portion of bits from 11 to 16, which are randomised even for

low mutation rates. These bits correspond to the less significant digits of the thickness of the first

panel, and the relative thickness of the second panel. Giventhe characteristics of the problem,

these bits are neutral in that changes to them are not reflected in the overall fitness of the wing-

structure. Also, on the non-redundant mapping, there is still a region from bit 75 to bit 125 where

the consensus sequence seems more stable for higher mutation rates.

Notice that the consensus sequence plots are giving us some information about the solutions

found. For the redundant coding, ‘100’ encodes the relativethickness increment of -0.25, whereas

the non-redundant code represents this value with ‘111’ (see Tables 3.4 and 3.5 from Chapter 3).

In all plots, and below the error threshold, this value (-0.25) is fixed from bit 75 onwards, that is

from panel 21 onwards.

Finally, for both encodings, there are no clear differencesbetween the asexual and sexual GA

regarding the magnitude of error thresholds.

5.4.2 Multiple Knapsack Problem

Four multiple-knapsack instances, taken from the literature, were selected as test problems. Prob-

lem sizes ranged from 50 to 105 objects and from 2 to 30 knapsacks. Table 5.5 summarises the

problem instances tested. These (and several other) problems are available online from the OR-

library by Beasley (1990).

Figure 5.21 shows the consensus sequence plots on the four Knapsack instances selected,

asexual (top) and sexual (bottom). Results on the four instances confirm the existence of error

thresholds on this real-world application. The error threshold is again visualised as the transition

from a stable consensus sequence to a more randomised sequence of bits. The transition in all the

instances occurs at approximately 1.0 – 1.2 mutations per genotype. Notice that in all instances

there are some regions of the genotype where the consensus sequence is more stable for mutation
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Instance Ob jects Sacks

Weish 12 50 5

Sento 1 60 30

Weing 7 105 2

Weish 30 90 5

Table 5.5:Multiple Knapsack problem instances tested.

rates beyond the error threshold. There are no clear differences between the GA with and without

recombination regarding the magnitude of error thresholds. However, the transitions looks sharper,

and thus the consensus sequences less stable, for the GA without recombination (asexual). This

may be due to the use of two-point recombination. It is known that two-point recombination is a

less disruptive operator than mutation alone or uniform recombination.
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Figure 5.21:Error thresholds on four instances of the Multiple Knapsackproblem. Results for asexual

(top) and sexual (bottom) GAs are presented. The vertical axis shows mutation rates per genotype (m=L).

5.4.3 Discussion

This closing empirical section explored error thresholds on real-world domains. Results show

that error thresholds can also be found on these two complex real-world applications. It should

be noticed, however, that other real-world applications might have very different characteristics.

No major differences were noticed in the magnitude of error thresholds on GAs with and without

recombination. In all scenarios, for the particular GA selected: tournament selection (tournament

size of 2), population size of 100, and generational replacement, the error threshold was located at

approximately 1.0 – 1.5 mutations per genotype.
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5.5 Conclusions

This chapter verifies the occurrence of error thresholds in evolving populations of bit strings using

a GA (with and without recombination). Error thresholds were observed on several landscapes,

including real-world domains. In this way, the notion of error threshold, (already introduced for

very simple landscapes in Chapter 4) is brought to evolutionary computation.

This chapter also introduced theconsensus sequence plots. These plots, borrowed and adapted

from theoretical biology (Bonhoeffer & Stadler, 1993), arenew to the evolutionary computation

community. They represent a novel way to visualise the structure of fitness landscapes, since

features such as the presence of steps or discontinuities can be noticed. Moreover, the degree of

ruggedness in a landscape was revealed by these plots. Consensus sequence plots may also serve

as a tool to differentiate critical (and less critical) areas in the genotype, which may have practi-

cal implications when tackling real-world problems. First, it may be possible to infer important

knowledge about an applied problem. Second, it may be possible to refine the genotype representa-

tions and optimal schedules for mutation rates. This may be possible on some classes of problems,

as for instance the Wing-Box and Knapsack problems, where producing the consensus sequence

plot took few hours (on a standard Sun SPARC Station). However, consensus sequence plots are

computationally expensive and may be infeasible for other present-day challenging problems.

The next chapter will explore the hypothesised relationship between error thresholds and op-

timal mutation rates. It will also explore the effect of modifying both the values of evolutionary

parameters and the fitness landscape structure, on the magnitude of optimal mutation rates. The

major lesson learned from this chapter is that error thresholds depend mainly on the selection pres-

sure and the genotype length, regardless of the landscape under study, as long as the landscape is

rugged. This knowledge may suggest useful heuristics for setting near-optimal mutation rates. In

particular, the suggestion of setting a mutation rate of 1=L (one mutation per genotype), discussed

in Chapter 2, is supported by the experiments in this chapter, but only on rugged landscapes, popu-

lation sizes greater than 50, and selection schemes imposing a selection pressure similar to that of

tournament selection with a tournament size of 2. The 1=L heuristic is most probably applicable

on landscapes with little or no redundancy. As suggested by Harvey and Thompson (1996), in

the presence of redundancy or ‘junk’ this heuristic should be adjusted so as to give an expected 1

mutation pernon-redundantpart of the genotype. These ideas will be further explored inthe next

chapter.



Chapter 6

Optimal Mutation Rates in Genetic Algorithms

The previous chapter demonstrated the occurrence of error thresholds in GAs running on a wide

range of fitness landscape topologies, including real-world domains. It also explored the effects

of modifying both the settings of evolutionary parameters,and the structure of landscapes, on

the magnitude of error thresholds. This chapter continues with a similar study but explores opti-

mal mutation rates instead of error thresholds, and preferentially uses real-world domains as test

problems. It also studies the relationship between error thresholds and optimal mutation rates by

comparing these two measures over various problems.

The chapter is organised as follows. The method section discusses the working definition of an

‘optimal’ mutation rate, and describes the empirical approach used here for estimating it. Section

6.2 studies the relationship between error thresholds and optimal mutation rates, by comparing

these two measures on both abstract problems and real-worlddomains. Thereafter, Section 6.3

uses two instances of a real-world problem (the Multiple Knapsack) to explore the effect of varying

the most relevant evolutionary parameters on the magnitudeof optimal mutation rates. The closing

empirical section of the chapter (Section 6.4) uses a fixed GA(fixed evolutionary parameters)

and various parameter settings of the tunable abstract landscapes described in Chapter 3 (Section

3.2.1), to explore the effect of modifying the landscape structure on the magnitude and range of

optimal mutation rates.

6.1 Method

For estimating optimal mutation rates in GAs we need to definewhat an optimal or near-optimal

mutation rate is. The working definition used here is: an optimal mutation rate is that producing

optimal performance. But then, we need a good way of measuring GA performance. Recall from

Chapter 2 (Section 2.2.8), that given the randomised natureof GAs, conclusions can never be

drawn from a single run. Instead, the common practice is to consider statistics from a sufficiently

large number of independent runs. So, the standard performance measures for GAs are the average

and best fitness values attained after a prefixed terminationcriterion, averaged over several runs.

Within a given run, the best fitness could be either the current best in the population, or the best

fitness attained so far. These measures are considered aftera fixed termination criterion, or over
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fixed intervals throughout the GA run. For the experiments inthis chapter, we will consider the

best fitness attained so far after a fixed termination criterion. This criterion will be carefully

selected in each case to be long enough to stabilise the best and average fitness of the population.

The average of several runs will be considered (typically 50) and the standard deviation will be

shown in most cases.

6.2 Optimal Mutation Rates and Error Thresholds

This section explores the relationship between error thresholds and optimal mutation rates. The

approach followed is to independently assess these two measures and compare them. Error thresh-

olds were estimated already on several landscapes in Chapter 5, so these values will be used when-

ever possible. Unless otherwise stated, the experiments for estimating optimal mutation rates use

a generational GA with tournament selection (tournament size of 2), and a population of size 100.

The GA is run in two modes, using mutation only (Asexual), andusing both mutation and recom-

bination (Sexual). The recombination operator used is two-point recombination with a rate of 1.0.

A wide range of mutation rates are explored, they are expressed as mutations per genotype.

6.2.1 Preliminary Study: Termination Criteria (Generatio ns vs. Evaluations)

As mentioned in the method section, the approach followed here for measuring GA performance

is to calculate the average best-so-far fitness attained after a fixed termination criteria (a fixed

number of generations or function evaluations). The termination criterion is carefully selected

to allow the population to equilibrate its average and best fitness. This section explores whether

the choice of (i) a fixed number of generations, or (ii) a fixed number of evaluations, makes a

difference when estimating optimal mutation rates. When considering the number of evaluations,

a simple optimisation can be performed (at least for deterministic fitness functions), such that only

newly created individuals need to be evaluated. In other words, if an individual passed without

modifications to the following generation, there is no need to re-evaluate it. Instead, its fitness

value is maintained. From now on, when referring to number ofevaluations, it is considered that

evaluations are counted in this manner, that is, only considering newly created individuals.

Experiments in this section explore optimal mutation rateson a Royal Staircase function with

N = 3 andK = 10. Two termination criteria were tested: (i) a fixed numberof generations (1,000)

and (ii) a fixed number of function evaluations (100,000 for the sexual GA, and 40,000 the asexual

GA). Figure 6.1 shows results using tournament selection (tournament size = 2), whereas Figure

6.2 shows results using proportional selection. In the figures, each point is the average of 50 runs,

error bars show� the standard deviation. The Royal Staircase is a maximisation problem, so

optimal mutation rates are those producing the highest average best-so-far fitness.

With tournament selection with and without recombination (Figure 6.1), optimal mutation

rates were similar for both termination criteria. On the other hand, with proportional selection

(Figure 6.2), optimal mutation rates were similar for both termination criteria for the GA with

recombination (sexual). However, with no recombination and considering evaluations, the results

were different than those considering generations. Specifically, optimal mutation rates tended to

be lower and close to zero when considering evaluations (Figure 6.2, bottom right plot). These

anomalous results deserve further investigation.
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Figure 6.1:Optimal mutation rates (per genotype) on a Royal Staircase function (N = 3, K = 10) using

tournament selection (T. size = 2) and considering two termination criteria. Left: a fixed number of gener-

ations (1,000). Right: a fixed number of function evaluations (100,000 for the sexual GA, and 40,000 for

the asexual GA). The curves show the average best-so-far fitness attained after the termination criterion is

reached for various mutation rates.

Notice that, for both selection schemes, while the same number of generations were needed

for the sexual and asexual GA to equilibrate the average best-so-far fitness (1,000 generations),

many more functions evaluations were needed for the sexual GA (100,000) as compared to the

asexual (40,000) to reach this stage. This last observation, together with the anomalous results

with proportional selection and no recombination reportedabove, suggest that, at least for this

kind of very neutral landscape, a mutation-only algorithm with a low mutation rate may produce

better performance than a standard GA. This deserves further investigation but goes beyond the

scope of this dissertation.

Discussion

When estimating optimal mutation rates with tournament selection, it was found that the choice

of termination criteria, (i) a fixed number of generations or(ii) a fixed number of function evalu-

ations, does not noticeably affect the results. Some anomalous results were, however, found with

proportional selection and no recombination when considering function evaluations. This may

lead to potentially interesting research. Following the results from this preliminary study, it was

decided to use tournament selection and a fixed number of generations as the termination criterion

for all the remaining experiments in this chapter.

6.2.2 Royal Staircase Function

Table 6.1 compares error thresholds, as estimated in Chapter 5, and optimal mutation rates as

estimated above on the Royal Staircase function withN = 3 andK = 10 (Figures 6.1 and 6.2).
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Figure 6.2:Optimal mutation rates (per genotype) on a Royal Staircase function (N = 3, K = 10) using

proportional selection and considering two termination criteria. Left: a fixed number of generations (1,000).

Right: a fixed number of function evaluations (100,000 for the sexual GA, and 40,000 for the asexual GA).

The curves show the average best-so-far fitness attained after the termination criterion is reached for various

mutation rates.

Results for both tournament selection (tournament size = 2)and proportional selection are shown.

All these measures are empirical approximations, and are expressed as mutations per genotype.

Optimal mutation rates were found to be a less precise measure as compared to error thresholds,

so a range of optimal mutation values instead of a single value is presented.

Tournament Selection Proportional Selection

Opt. Mut. Rates Error Threshold Opt. Mut. Rates Error Threshold

Sexual GA 0.6 – 1.2 0.9 0.1 – 0.6. 0.6

Asexual GA 0.8 – 1.6 1.0 0.6 – 1.8 1.1

Table 6.1:Comparing optimal mutation rates (per genotype) and error thresholds on a Royal Staircase

function withN = 3, andK = 10, for both tournament and proportional selection.

Notice that (Table 6.1) error thresholds are located withinthe range of optimal mutation rates

in all cases. Moreover, recombination has a similar effect on both error thresholds and optimal

mutation rates, namely, to shift them to lower values as compared to no recombination. This effect

is more noticeable for proportional selection.

6.2.3 Multiple Knapsack Problem

Two Multiple Knapsack instances, taken from the literature, are used as test problems, Table 6.2

summarises them. These (and several other) problems are available online from the OR-library by

Beasley (1990). The instances selected are among the biggest and more complex available in the
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library.

Instance Ob jects Sacks

Sento 1 60 30

Weish 30 90 5

Table 6.2:Multiple Knapsack problem instances tested, with the namesthey’re referred to on the OR-

library.

On the two selected instances (Figure 6.3), the curves show the average best-so-far fitness

attained after 3,000 generations for various mutation rates. In the figures, each point is the average

of 50 runs, error bars show� the standard deviation. In all cases, an optimal mutation rate or range

of optimal mutation rates could be identified. This is a maximisation problem, so optimal mutation

rates are those producing the highest average best-so-far fitness. In all cases, error thresholds

(indicated in the plots) are located within or close to the range of optimal mutation rates.

0 0.5 1 1.5 2 2.5 3 3.5
7500

7550

7600

7650

7700

7750

7800

ET = 1.1

Mutation rate (per genotype)

B
es

t s
o 

fa
r

Knapsack, Sento 1, L = 60, Sexual

0 0.5 1 1.5 2 2.5 3 3.5
7000

7100

7200

7300

7400

7500

7600

7700

7800

ET = 1.2

Mutation rate (per genotype)

B
es

t s
o 

fa
r

Knapsack, Sento 1, L = 60, Asexual

0 0.5 1 1.5 2 2.5 3 3.5
1.16

1.165

1.17

1.175

1.18

1.185
x 10

4

ET = 1.3

Mutation rate (per genotype)

B
es

t s
o 

fa
r

Knapsack, Weish 30, L = 90, Sexual

0 0.5 1 1.5 2 2.5 3 3.5
1.135

1.14

1.145

1.15

1.155

1.16

1.165

1.17

1.175

1.18

1.185
x 10

4

ET = 1.2

Mutation rate (per genotype)

B
es

t s
o 

fa
r

Knapsack, Weish 30, L = 90, Asexual

Figure 6.3:Optimal mutation rates on two instances of the Multiple Knapsack problem. The curves show

the average best-so-far fitness attained after 3,000 generations for various mutation rates. Results with

(right) and without (left) recombination are shown.

Figure 6.4 compares the algorithm performance with and without recombination on the two

selected instances for various mutation rates. Error bars are not shown for the sake of clarity. Re-

sults suggests that using recombination improves the average best-so-far fitness. On the instance

named Sento 1, the improvement is observed over all the mutation rates explored. On Weish 30,

performance was similar for the lowest mutation rates, but better for the sexual GA for muta-

tion rates higher than 1:0=L. Moreover, the highest average best-so-far fitness was attained using

recombination and a mutation rate of 1:5=L.
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Figure 6.4:Comparing performance with (sexual) and without recombination (asexual) on two instances

of the Multiple Knapsack problem. Average best-so-far fitness attained after 3,000 generations for various

mutation rates.

6.2.4 Wing-Box Problem

This subsection explores two encodings of the Wing-Box problem: a non-redundant and a re-

dundant encoding (see Chapter 3, Section 3.2.2). Recall from Chapter 3 that the encoding of the

Wing-Box problem requires 13 bits for coding the absolute thickness of the first panel, and 3 bits

for encoding the relative increment/decrement in thickness of the remaining 49 panels. So, the

number of bits needed for encoding an individual is 13 for thefirst panel, and 3 for each of the

others 49 panels, that is 13+3�49= 160. Figure 6.5 shows results on the Wing-Box problem

with and without recombination, using both the redundant and non-redundant encodings. The

curves show the average best-so-far fitness attained after 3,000 generations for various mutation

rates. Each point in the curves is the average of 50 runs, error bars show� the standard devia-

tion. Since this is a minimisation problem, optimal mutation rates are those producing the minimal

average fitness. Error thresholds are indicated in the plots, notice that they are located near the

estimated optimal mutation rates in all cases. Note also that optimal mutation rates are higher on

the redundant coding (bottom plots), being around 2:0=L.

Figure 6.6 compares the algorithm performance with and without recombination on the two

encodings of the Wing-Box problem for various mutation rates. Error bars are not shown for the

sake of clarity. On the non-redundant encoding, average best-so-far fitness was similar for low

mutation rates (� 1.0/L), but better for the sexual GA for higher mutation rates. On the redundant

encoding, the sexual GA produced better performance than the asexual GA over all the mutation

rates explored.

6.2.5 Discussion

Results on the Royal Staircase functions suggested that there is no single optimum mutation rate,

but instead a range of values producing near-optimal performance. On the other hand, the real-

world domains showed a more definite optimal mutation rate orat least a smaller range of near-

optimal mutation values. This feature of Royal Staircase functions may be due their characteristic

high degree of neutrality. It was found that, on the Royal Staircase function, error thresholds

are located within the range of optimal mutation rates. It was also found that recombination

shifts optimal mutation rates to lower values, which mirrors the effect of recombination on error
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Figure 6.5:Optimal mutation rates on two encodings of the Wing-Box problem. The curves show the

average best-so-far fitness attained after 3,000 generations for various mutation rates. Since this is a min-

imisation problem, optimal mutation rates are those producing the minimal average fitness. Results with

(sexual, left) and without (asexual, right) recombinationare shown.
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Figure 6.6:Comparing performance with and without recombination on two encodings of the Wing-Box

problem. Average best so far fitness attained after 3,000 generations for various mutation rates.

thresholds on this landscape.

On the real-world problems, optimal mutation rates with andwithout recombination are in

the same range. If the optimal mutation rate is selected, theGA with recombination generally

produces highest average best-so-far fitness. In most scenarios, for the particular GA selected:

tournament selection (tournament size of 2), population size of 100, and generational replacement;

optimal mutation rates were around 1.0 – 1.5 mutations per genotype, which corresponds to the

magnitude of error thresholds in these domains as estimatedin Chapter 5. An exception to this

behaviour was observed for a redundant genetic encoding where the optimal mutation rate was

slightly higher: around 2.0 mutations per genotype.
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The empirical evidence in this section suggests a correlation between error thresholds and

optimal mutation rates. Moreover, this relationship carried over from a simple toy-problem such

as the Royal Staircase function to complex real-world applications.

6.3 Optimal Mutation Rates and Evolutionary Parameters

This section explores the effect of modifying the most relevant evolutionary parameters on the

magnitude of optimal mutation rates. Unless otherwise stated, experiments use a generational

GA with tournament selection (tournament size = 2), a population of 100 members, and both

mutation and recombination (two-point with a rate of 1.0), i.e. a sexual GA. Table 6.3 summarises

these default settings. This chapter emphasises the use of real-world domains as test problems,

thus the two Multiple Knapsack problem instances summarised in Table 6.2 (Section 6.2.3) were

used. Further details on the experiments and departures from the default settings are given in

the respective subsections. The approach for estimating optimal mutation rates is to calculate the

average (of 50 runs) best-so-far fitness attained after 3,000 generations for several mutation rates.

Population replacement Generational

Selection scheme Tournament (T. Size = 2)

Population size 100

Recombination rate 1.0 (Sexual)

Recombination operator Two-point

Termination criterion 3,000 Generations

Number of runs 50

Table 6.3:GA default parameters used in the experiments.

6.3.1 Genotype Length

Experiments in this subsection attempt to explore the effect of modifying the genotype length on

the magnitude of optimal mutation rates. The selected Knapsack problem instances, Sento1 and

Weish 30, have string lengths of 60 and 90 respectively. Figure 6.7 shows the average best-so-far

fitness attained after 3,000 generations on these instancesfor various mutation rates, expressed

as mutations per bit. Although these are different problemsand definitive conclusions cannot be

drawn, results suggest that the optimal mutation rate is lower (0.015 mutations per bit) for the

longer genotype.

6.3.2 Selection Pressure

This subsection explores the effect of increasing the selection pressure on the magnitude of op-

timal mutation rates. The experiments use tournament selection because this scheme allows the

selection pressure to be explicitly controlled. A common tournament size is 2, but selection pres-

sure increases steadily for growing tournament sizes. Two tournament sizes, 2 and 4, were tested.

Additionally, in one of the instances: Weish 30, results using proportional selection are also pre-
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Figure 6.7:Comparing (per bit) optimal mutation rates on Multiple Knapsack instances of different string

lengths (L = 60, 90). The curves show the average best-so-farfitness attained after 3,000 generations for

various mutation rates.

sented for the sake of comparison1. Figure 6.8 compares optimal mutation rates (per genotype)

on the two selected problem instances. The strength of selection had a pronounced effect on the

magnitude of optimal mutation rates: for a tournament size of 2, the optimal mutation rate was 1

– 1.5 mutations per genotype, whereas for a tournament size of 4 it was 2.5 – 3.0 mutations per

genotype. Moreover, the curve using proportional selection on Weish 30 (Figure 6.8, right), strik-

ingly shows the difference in magnitude of optimal mutationrates for a weak selection pressure.

In this case, the optimal mutation rate was as low as 0.05 mutations per genotype.
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Figure 6.8: Comparing optimal mutation rates (per genotype) for different selection pressures on two

instances of the Multiple Knapsack problem. Tournament selection with two tournament sizes (2 and 4)

was tested. Additionally, proportional selection was tested on Weish 30. The curves show the average

best-so-far fitness attained after 3,000 generations for various mutation rates.

6.3.3 Population Size

This subsection explores the effect of modifying the population size on the magnitude of optimal

mutation rates. Four populationsizes: 10, 25, 50, and 100, were tested. The number of generations

used as a stop criterion varied according to the population size since the smaller the population, the

more generations were needed for equilibrating the best-so-far fitness. So the termination criteria

1On the other instance (Sento 1) it was not possible to use proportional selection since the fitness function often
produced negative values.
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used were 30,000, 12,000, 6,000, and 3,000 generations for population sizes 10, 25, 50, and 100

respectively. Figure 6.9 shows results on the two selected problem instances. Optimal mutation

rates tended to be smaller, the smaller the population size,this tendency was clearer on Weish

30 (right plot), where optimal mutation rates were 0:5=L for a population size of 10, 1:0=L for a

population size of 20, 1:0=L - 1:5=L for a population size of 50, and 1:5=L for a population of size

100. Notice that for population sizes of 50 and 100, differences in performance for the various

mutation rates tend to stabilise.
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Figure 6.9:Comparing optimal mutation rates for various population sizes (see legends) on two instances

of the Multiple Knapsack problem. The curves show the average best-so-far fitness attained after a fixed

number of generations for various mutation rates. These fixed number of generations varied according

the population size (30,000, 12,000, 6,000 and 3,000 generations for population sizes 10, 25, 50, and 100

respectively).

6.3.4 Elitism

Results on the abstract landscapes explored in Chapter 5 (Section 5.2.5) suggest that elitism has a

pronounced effect. When elitism was used, there was no errorthreshold transition. The following

group of experiments explores the effect of including elitism on the magnitude of optimal mutation

rates. Before presenting results on the Knapsack instances, the following subsection explores

optimal mutation rates with elitism on the same Royal Staircase instance and GA settings for

which error thresholds with elitism were investigated in Chapter 5.

Royal Staircase Function

Royal Staircase functions are unimodal and have few fitness values. The single optimum is known

beforehand (the string of all 1s). So, a natural performancemeasure would be to calculate the

number of evaluations before reaching the optimum string for the first time. This measure was

used by van Nimwegen and Crutchfield (1998) in their study of optimal evolutionary search on

Royal Staircase functions. Hence, the performance measureused here on these functions is the

number of evaluations before finding the peak, averaged over100 runs. The landscape instance

explored is a Royal Staircase function with number of blocksN = 3, and block sizeK = 10. A

generational GA with proportional selection is used. The population size is 100. That is, the same

settings used on the experiments in Chapter 5 (Section 5.2).Figure 6.10 shows results with and

without recombination. Notice that the range of optimal mutation rates is wider for the runs with

elitism, also the number of evaluations for finding the peak increases more steadily. On the other
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hand, the runs without elitism show a sudden increase in the number of evaluations to reach the

peak for mutation rates greater than 0.6 (Sexual) and 1.8 (Asexual). The difference between the

non-elitist and elitist runs was more marked for the Sexual GA (Figure 6.10, left). Error thresholds

without elitism are indicated in the plots. Notice that error thresholds without elitism are located

within the range of optimal mutation rates of both the elitist and non-elitist runs.
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Figure 6.10:Optimal mutation rates and elitism. Number of evaluations for finding the peak on the Royal

Staircase function with and without elitism. Left with recombination (Sexual), right without recombination

(Asexual). Error thresholds for the non-elitist strategies are indicated in the plots.

Multiple Knapsack Instances

Figure 6.11 compares results with and without elitism on thetwo selected Knapsack instances.

Results suggest that optimal mutation rates are the same with and without elitism. Moreover, the

average best-so-far fitness curves are rather similar in both cases. These results differ from those

on the Royal Staircase function, which suggest that the effect of elitism is problem dependent.
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Figure 6.11:Comparing optimal mutation rates for non-elitist and elitist GAs on two instances of the Mul-

tiple Knapsack problem. The curves show the average best-so-far fitness attained after 3,000 generations

for various mutation rates.

6.3.5 Steady State Population Replacement

The experiments in this subsection explore the effect of using steady-state population replacement

instead of generational replacement. Three types of steady-state GA were explored:

1. Using tournament selection for parents, and random selection for individuals that are to be
replaced
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2. Using random selection for parents, and inverse tournament selection for individuals that
are to be replaced

3. Using tournament selection for parents, and inverse tournament selection for individuals
that are to be replaced

Figure 6.12 compares results on the Knapsack instances using the three steady-state GAs de-

scribed above. Since steady-state GAs only replace few individuals (typically one or two) each

generation, the number of generations used as the termination criterion needs to be much longer.

Specifically, 100,000 generations were long enough to equilibrate the average best-so-far fitness

on the Knapsack instances. Results on the two instances are qualitatively very similar. The steady-

state replacement of type 1, namely, using tournament selection for parents, produced lower op-

timal mutation values. On the other hand, the steady-state replacement using inverse tournament

selection for individuals that are to be replaced (types 2 and 3), produced higher optimal mutation

rates, and a wider range of near-optimal mutation values. The range and magnitude of optimal

mutation rates was larger for the steady-state GA of type 3.

The explanation suggested here for this last observation isas follows. The third type of steady-

state replacement imposed the highest selection pressure since there was selection on both parents

and individuals that are to be replaced. Results with varying selection pressures (Figure 6.8)

suggest that optimal mutation rates are higher for higher selection pressures. Thus, steady-state

replacement of type 3 imposed the highest selection pressure, and hence produced the highest

optimal mutation rates. Regarding the wider ranges of mutation rates observed on the steady-state

GAs of types 2 and 3, these results are probably due to their implicit elitism. This is supported by

results with elitism on the Royal Staircase function (Section 6.3.4, Figure 6.10).
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Figure 6.12:Optimal mutation rates and steady-state population replacement. Average best-so-far fitness

on two instances of the Multiple Knapsack problem. Three types of steady-state replacement were tested:

(1) applying tournament selection on parents and selectingindividuals that are to be replaced at random, (2)

selecting parents at random and applying inverse tournament selection on individuals that are to be replaced,

(3) applying tournament selection on both parents and individuals that are to be replaced.

6.3.6 Discussion

This section explored the effect of modifying the values of various evolutionary parameters on the

magnitude of optimal mutation rates. Two instances of the Multiple Knapsack problem were used

as test problems. The effects of these various parameters are summarised below:



Chapter 6. Optimal Mutation Rates in Genetic Algorithms86� Genotype length:Optimal per bit mutation rates seem to depend on the string length; they
were lower in magnitude the longer the genotype. We considerthat expressing mutation
rates as mutations per genotype instead of as mutations per bit, is more useful when devising
heuristics for optimal setting of the mutation rate.� Selection pressure:The strength of selection had a pronounced effect on optimalmutation
rates. The stronger the selection pressure, the higher the magnitude of optimal mutation
rates. The use of proportional selection (where there is no control over the selection pres-
sure) may produce much smaller optimal mutation rates as compared to tournament selec-
tion. An interesting observation is that for tournament selection with tournament size of 2
(and a population of size 100), optimal mutation rates occurred between 1 and 1.5 muta-
tions per genotype, whereas for tournament size of 4 they increased to 2.5 – 3.0 mutations
per genotype (Figure 6.8). This result suggests that selection pressure is the most important
component in determining the magnitude of optimal mutationrates.� Population size: The effect of population size on the magnitude of optimal mutation was
not found to be marked. However, the evidence suggests that optimal mutation rates are
smaller, the smaller the population size. These differences in the magnitude of optimal
mutation rates tend to stabilise for population sizes of 50 and larger.� Elitism: Results from Chapter 5 suggest that elitism has a pronouncedeffect since, when
elitism was used, there was no observable error threshold transition. This observation looks
problematic from the point of view of the hypothesised relationship between error thresholds
and optimal mutation rates. Results on both the Royal Staircase function and Knapsack in-
stances suggest that the relationship between error thresholds (as estimated without elitism)
and optimal mutation rates with elitism, is still present since the error threshold is located
within the range of optimal mutation rates of both the elitist and non-elitist runs. However,
with elitism, the range of optimal mutation rates on the Royal Staircase function was shown
to be much wider.� Steady State Population Replacement:Three types of steady-state population replace-
ment were tested. The magnitude and range of optimal mutation rates varied according to
the type of steady-state GA, being larger for those types imposing a higher selection pres-
sure. Also, the steady-state GAs with an implicit elitism showed a wider range of optimal
mutation rates. However, a mutation rate of 1 – 1.5 mutationsper genotype produced near-
optimal results in all cases.

6.4 Optimal Mutation Rates and Fitness Landscape Structure

This section explores the effect of modifying the landscapestructure on the magnitude and extent

of the range of optimal mutation rates. Various parameterisations of the Royal Staircase function

are explored. Moreover, results on a group ofNK andNKF landscapes are presented. All the

experiments use a generational GA with tournament selection (tournament size of 2), and a pop-

ulation of size 100. Both mutation and recombination are used (Sexual GA). The recombination

operator is two-point recombination with a rate of 1.0, thatis, a similar setting to that summarised

in table 6.3. A wide range of mutation rates were explored, they are expressed as mutations per

genotype.

6.4.1 Royal Staircase Functions

Three Royal Staircase functions of fixed string length 32, and different values ofN andK (see

Table 6.4), were explored. This produces a range of functions of fixed length and increasing
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ruggedness. Figure 6.13 shows the average best-so-far fitness attained after a fixed number of

generations on each function. The number of generations used as the termination criteria was

longer the more rugged the function, as more generations were needed to equilibrate the best-so-

far fitness of the population. This number is indicated on each plot title. Notice that (Figure 6.13),

when the landscape is smoother (i.e. greater number of stepsN and smaller step sizeK), the range

of optimal mutation rates is wider. For the more rugged landscape (N = 2, K = 16; right plot)

only one mutation value (0:8=L) produced optimal performance. There is, however, an overlap

of optimal mutation rates over these landscapes of increasing ruggedness, with a mutation rate of

0:8=L producing optimal performance in all of them.

N K

16 2

4 8

2 16

Table 6.4:Royal Staircase functions explored.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
14

14.5

15

15.5

16

16.5

17

Mutation rate (per genotype)

B
e

st
 s

o
 f

a
r

RS, N = 16, K = 2, Sexual, 100 Generations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Mutation rate (per genotype)

B
es

t s
o 

fa
r

RS, N = 4, K = 8, Sexual, 500 Generations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.6

1.8

2

2.2

2.4

2.6

2.8

3

Mutation rate (per genotype)

B
es

t s
o 

fa
r

RS, N = 2, K = 16, Sexual, 6,000 Generations

Figure 6.13:Optimal mutation rates on Royal Staircase functions of fixedlength and increasing ruggedness

(decreasing number of steps). The curves show the average best-so-far fitness attained after a fixed number

of generations (shown in the plot titles) for various mutation rates.

6.4.2 NK Landscapes

This set of experiments explores optimal mutation rates onNK landscapes of fixed length (N =

16), and four values ofK = f0, 4, 8, 12g. This produces a range of landscapes from a single-peaked

and smooth ‘Fujiyama’ landscape (K = 0), to a very rugged landscape (K = 12). For estimating

optimal mutation rates on these landscapes, a different approach was followed. This approach is

described below.

Method

Results with theNK landscape were found to strongly depend on the termination criterion. Also,

differences in performance for various mutation rates weresmall and tended to converge for large

run times. This is probably due to the random nature and statistical regularity of these landscapes.

So, for comparing results the best approach found was to showresults over the whole run time of

a GA (at fixed intervals), instead of only after a fixed termination criterion. All experiments were
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averaged over 50 runs. Finally, following the methodological suggestions by Spears (1998) (also

used by Smith and Fogarty (1996)) each run uses a different landscape (generated with a different

seed). For equivalence, the same 50 seeds and landscapes were used for each algorithm variant

under comparison.

Results

Figure 6.14 shows the average best-so-far fitness attained at fixed intervals of the whole run, on

the four NK landscapes. TheNK landscape withK = 0 is an unrealistic smooth ‘Fujiyama’

landscape; it is, however, shown here for comparison purposes. In this landscape a high mutation

rate (� 4:0=L) produced poor performance, while the lower mutation ratesexplored (� 3:0=L) all

produced similar good results. However, after a certain number of generations all performance

curves tend to converge. On the landscapes with ‘medium’ ruggedness (K = 4 and 8), results

depend on the stage of the search. However, a rate around 2.0 –3.0 mutations per genotype can be

identified as producing the best performance. On these landscapes the error threshold magnitude,

as estimated in Chapter 5, was 1.5 – 2.0 mutations per genotype. Thus, optimal mutation rates

were slightly higher than the estimated error threshold on these landscapes. On the very rugged

landscape (K = 12) a mutation rate of 2:0=L produced the best performance over the whole run.

This value is again slightly higher than the estimated errorthreshold on this landscape (around

1.0/L). These results differ from those on the other problems explored. This difference is probably

due to the random nature, high multi-modality, and statistical regularity ofNK landscapes. Also,

for extremely rugged landscapes (K ' N), a very high mutation rate (close to random search)

would probably produce optimal results.
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Figure 6.14:Optimal mutation rates onNK landscapes of fixed length (N = 16) and increasing ruggedness

(K = 0, 4, 8, and 12). The curves show the average best-so-far fitness attained at fixed intervals over the

whole run. The legends indicate the mutation rates explored, expressed as mutations per genotype.
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6.4.3 NKF Landscapes

This subsection explores the effect of landscape neutrality on the magnitude of optimal mutation

rates. The empirical approach described above forNK landscapes, was used for estimating optimal

mutation rates. Figure 6.15 compares results on anNKF landscape (Chapter 3, Section 3.2.1) with

the maximum possible degree of neutrality (F = 2), against those on a standardNK landscape of

the same ruggedness and dimension. Results suggest that optimal mutation rates depend on the

stage of the search, but are higher on the landscape with neutrality as compared to the landscape

with no neutrality. Specifically, the optimal mutation ratewas 5:0=L for the neutralNKF landscape

as compared to 3:0=L for the standardNK landscape. These results are consistent with the effect

of redundancy in the encoding of the Wing-Box problem (Section 6.2.4).
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Figure 6.15:Optimal mutation rates on two landscapes of fixed length (N = 16) and ruggedness (K = 4)

and increasing neutrality. TheNKF landscape (right plot) has the maximum amount of neutralitypossible

with this model, whereas theNK landscape (left plot) has no neutrality at all. The legends indicate the

mutation rates explored, expressed as mutations per genotype.

6.4.4 Discussion

This section explored the effect of modifying the landscapestructure on the magnitude and range

of optimal mutation rates. For the experiments in this section, GA parameters remained fixed,

while landscape parameters were varied. On the Royal Staircase function, results suggest that

the smoother the landscape, the larger the range of optimal mutation rates and the higher the

upper limit. Moreover, GA performance on smooth functions was less sensitive to the particular

mutation rate used, in other words, on very rugged landscapes selecting the mutation parameter

is more critical from the point of view of the algorithm performance. A similar tendency was

observed onNK landscapes: smooth landscapes had a wider range of near-optimal mutation rates.

Finally, the degree of neutrality or redundancy on the landscape was found to have an effect on the

magnitude of optimal mutation rates, which were higher, thehigher the degree of neutrality.

6.5 Conclusions

This chapter explored optimal mutation rates over a wide range of both landscape topologies and

GA parameter settings. Also, the relationship between error thresholds and optimal mutation rates

was assessed by comparing these two measures on both abstract landscapes and real-world do-

mains. It was found that error thresholds and optimal mutation rates are generally correlated.
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Moreover, this relationship carried over from simple toy-problems to real-world applications.

Also, effects of changing evolutionary parameters on the magnitude of error thresholds, as seen in

Chapter 5, occurred in the same proportion on optimal mutation rates found in this chapter, which

further confirms the relationship between these two measures.

Optimal mutation rates with and without elitism were found to be similar, although elitism

seems to produce a wider range of optimal mutation values. Also optimal mutation rates were

independent of the use or not of recombination in most cases.The effect of the size of the pop-

ulation was small, optimal mutation rates are similar for moderate and large populations (more

than 50 members). The factors that really determine the magnitude of optimal mutation rates are

the strength of selection and the genotype length. We recommend expressing mutation rates as

mutations per genotype instead of as mutations per bit. As for the selection scheme, the recom-

mendation is to use rank-based selection methods since theyallow the user explicit control of the

selection pressure. Moreover, for an otherwise standard GA, using tournament selection with tour-

nament size of two, a mutation rate of 1 – 1.5 mutations per genotype produced good performance

in most problem instances studied here. In the presence of neutrality or redundant encodings a

slightly higher mutation rate will be optimal. However, since it is difficult to estimate the degree

of redundancy beforehand, using a mutation rate of 1 – 1.5 mutations per genotype will be safe

and still produce good results. Surprisingly, the ruggedness of the landscape was not critical in

determining the magnitude of a near-optimal mutation rate (except perhaps for extremely rugged

landscapes). So, the suggestion above holds over landscapes of increasing ruggedness. On a

smooth landscape, a wider range of mutation values will produce near-optimal results, this range,

however, encompasses the values mentioned above. On the other hand, performance on moderate

to rugged landscapes, is more sensitive to an appropriate setting of the mutation parameter.
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Conclusions

The objective of this investigation was to bring the notion of error thresholds from the field of

molecular evolution to the field of genetic algorithms, and to establish the relevance of this notion

in the context of GAs. More precisely, the aims of this work were the following:� To establish whether the phenomenon of an error threshold can be observed in populations
of bit strings evolving under a GA� To relate error thresholds to the more familiar notion of optimal mutation rates in GAs� To propose general principles for setting near-optimal evolutionary parameters in GAs in
the light of this new knowledge

To achieve these objectives, empirical methods for estimating error thresholds on landscapes

ranging from simple to complex, including real-world domains, were proposed. These approaches

were inspired by research from the field of molecular evolution. Thereafter, optimal mutation rates

were estimated on the same landscapes, and these two measures were compared against each other

to assess their relationship. The effects of modifying boththe values of evolutionary parameters

and the structure of fitness landscapes on the magnitude of error thresholds were also studied.

A similar study was carried out for optimal mutation rates. Finally, some general principles of

interaction between mutation rates and other evolutionaryparameters were suggested.

7.1 Summary

Chapter 2 introduced the field of evolutionary computation and described in detail the most widely

known of its approaches: genetic algorithms (GAs). The different components and variants of

GAs were described, revealing the GA as a family of algorithms rather than a single algorithm.

To complicate matters further, there is little (if any) theoretical guidance, and few rules of thumb

about how to proceed when applying a GA to a given problem. Thus, the chapter also discussed

the many decisions involved when designing a GA. Among such decisions, parameter setting was

discussed in more detail, and a classification of approachesto parameter setting was proposed.

Also, a detailed review of approaches so far for effective setting of the mutation rate was presented.
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Chapter 3 introduced the notion of fitness landscapes, whichwas originally proposed in the

context of organic evolution, but later gained relevance inboth molecular evolution and evolution-

ary computation. Landscapes may differ in their structure,hence, some landscape features that are

known to have an influence on evolutionary search were discussed. Among such featuresrugged-

nessandneutrality were distinguished. Thereafter, some techniques for analysing the structure of

fitness landscapes were briefly discussed. The second part ofthe chapter presented the test prob-

lems used throughout the dissertation. Two types of test problems were selected; first, a group of

abstract fitness landscapes (Royal Staircase functions,NK landscapes, andNK landscapes with

neutrality); and second, two real-world applications (a combinatorial optimisation problem: the

Multiple Knapsack problem, and an engineering application: the design of an optimal aircraft

Wing-Box). The families of abstract tunable landscapes allowed the exploration of a wide range

of landscape topologies with several degrees of ruggednessand neutrality, whereas the real-world

problems allowed us to explore the practical relevance of the ideas in this thesis.

Chapter 4 started the exploration of error thresholds in GAsusing simple abstract landscapes.

It also introduced the notions of quasispecies and error thresholds from molecular evolution, and

discussed the major extensions of the original quasispecies model. Thereafter, it reproduced the

results by Boerlijst et al. (1996), but using a GA (and thus finite populations) instead of the qua-

sispecies model (for infinite populations) as the underlying model of evolution. Results for finite

populations showed that the stable distribution of sequences was qualitatively similar to that for

infinite populations. Thus, error thresholds were shown to exist in finite populations of bit strings

evolving under a GA. Moreover, the main conclusions of Boerlijst and co-workers hold in this

case; in particular, the main conclusion that recombination shifts the error threshold to lower

mutation rates. An additional group of experiments, not included in Boerlijst et al. (1996) were

presented. These experiments explored the effect of including mate selection. It was found that as-

sortative mating (i.e. preference for similar organisms) increased the magnitude of error thresholds

as compared to no recombination and recombination with random mating.

Chapter 5 introduced the so-called consensus sequence plots. These plots, borrowed and

adapted from theoretical biology, represent an empirical approach for locating error thresholds

on general landscapes. They also serve as a tool for visualising some features of the landscape

structure such as ruggedness and presence of discontinuities. The empirical sections of the chapter

used consensus sequence plots for exploring the effect of varying several evolutionary parameters

on the magnitude of error thresholds on both abstract landscapes and real-world problems. It was

found that the magnitude of error thresholds depends mainlyon the strength of selection and the

reciprocal of the genotype length. Error thresholds also increase with increasing population size,

although these differences in magnitude stabilise for population sizes of 50 or larger. Elitism has

a pronounced effect, when elitism was used, no error threshold transition was observed. Error

thresholds depended on the type of steady-state replacement used, this difference, however, was

attributed to both the differences in the strength of selection and the implicit elitism of some types

of steady-state replacement. For discontinuous and very rugged landscapes, error thresholds were

found to be lower when recombination was used. However, thiseffect of recombination was not

observed on less rugged landscapes and real-world domains.With regard to assortative mating,

error thresholds were higher for this mating scheme as compared to both random mating and no
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recombination. Regarding the structure of fitness landscapes, it was found that the existence of

error thresholds depends upon the ruggedness of the landscape. For smooth landscapes, there was

no clear error threshold. For rugged landscapes, on the other hand, there was a clear transition

between an ‘ordered’ (selection-dominated) regime and a ‘disordered’ (mutation-dominated) one.

Finally, empirical evidence suggests that error thresholds also occur in real-world domains.

Chapter 6 explored optimal mutation rates. It discussed a working definition of an ‘optimal’

mutation rate, and described an approach for estimating optimal mutation rates on the various

problems explored. Thereafter, a first group of experimentsassessed the relationship between er-

ror thresholds (as estimated in Chapter 5) and optimal mutation rates (as estimated in Chapter 6)

by comparing these two measures on both abstract landscapesand real-world domains. The em-

pirical evidence gathered suggests a strong correlation between these two measures. However, the

optimal mutation rate is often not a well defined value (taking a range), whereas the error threshold

is a more definite measure. A second group of experiments explored the effect of modifying the

most relevant evolutionary parameters on the magnitude of optimal mutation rates. It was found

the most important factors were the strength of selection and the reciprocal of genotype length.

Optimal mutation rates were similar with and without recombination on the real-world domains.

However, on the abstract problems, they tend to be lower whenrecombination was used. These

results are consistent with the effect of recombination on error thresholds reported in Chapter 5.

The effect of the size of the population was also small, optimal mutation rates were similar for

population sizes of 50 and larger. The range of near-optimalmutation rates seems to be wider for

elitist GAs. The last group of experiments explored the effect of modifying the landscape struc-

ture. The ruggedness of landscapes was not critical either,although smooth landscapes showed a

wider range of mutation values producing near-optimal performance. Finally, on most problems

explored, and for a controlled selection pressure (tournament selection, with tournament size of

2), optimal mutation rates were consistently around 1 – 1.5 mutations per genotype. On redun-

dant encodings, a slightly higher mutation rate would be optimal. However, since the degree of

redundancy is not easy to estimate beforehand, a mutation rate of 1=L – 1:5=L will be safe and

still produce good results.

7.2 Contributions� A classification of approaches to GA parameter setting was proposed. This classification
modifies and extends a previous taxonomy by Eiben et al. (1999).� The notion of error threshold was brought from the field of molecular evolution to the field
of genetic algorithms. The existence of the phenomenon of anerror threshold in populations
of bit strings evolving under a GA was demonstrated over a wide range of landscapes and
problems, including real-world domains.� Consensus sequence plots were also borrowed and adapted from theoretical biology. They
serve as an empirical approach for locating error thresholds on general landscapes. More-
over, they represent a new visualisation tool that reveals several features of the landscape
structure such as ruggedness and presence of discontinuities.� It was found that, when comparing the performance of severalGA variants, the outcome
may depend on the choice of the performance measure. In particular, the choice of the



Chapter 7. Conclusions94

termination criterion, as a fixed number of generations or a fixed number of evaluations (of
newly created individuals), may modify the results.� Most importantly, the hypothesised relationship between the notion of error threshold and
the more familiar notion of an optimal mutation rate in GAs was empirically corroborated.
Moreover, this relationship was shown to carry over from simple abstract landscapes to
real-world domains.� The effect of modifying the most relevant evolutionary parameters on the magnitude of both
error thresholds and optimal mutation rates was investigated. This study revealed several
principles concerning the interaction between each of these parameters with the mutation
rate, together with the sensitivity of these interactions.� The heuristic of setting a mutation rate of one mutation per genotype (1=L) has been pro-
posed before within the evolutionary computation community. However, results in this
dissertation set bounds to the validity of this heuristic. Amutation rate of 1=L would be
sub-optimal in the following cases:

– a weak selection pressure,

– an excessively high selection pressure,

– a small population size (< 20), and

– in the presence of highly neutral (redundant) genotypes.� From the evidence gathered in this dissertation, we suggestthat mutation rates should be
expressed as mutations per genotype instead of as mutationsper bit.

7.3 Limitations� The number of landscapes and problems explored was necessarily limited. The use of real-
world domains as test problems supports the practical relevance of the findings in this disser-
tation. However, it is worth observing that other real-world problems might have different
characteristics from those explored in this dissertation.� The genetic representation explored was limited to fixed-length binary strings.� Among the different approaches to evolutionary computation, this dissertation was limited
to genetic algorithms.� The mutation rate was considered in its standard form, that is, as a fixed value throughout
the whole GA run.

7.4 Suggestions for Further Study

Since this dissertation focused on fixed-length binary strings, a natural extension would be to ex-

plore variable-length, n-ary discrete representations. The extension of the notion of error thresh-

olds to real number encodings, and non-linear (e.g. hierarchical) chromosomes would be a more

difficult enterprise. In a similar vein, it would be interesting to explore the existence of error

thresholds with other evolutionary algorithms such as evolution strategies, evolutionary program-

ming, and genetic programming. We can expect the phenomenonto persist, as it comes from the

quasispecies model, which is a formal model of evolution based on differential equations, different

in nature from a computational model such as the GA.
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It has been suggested that a mutation parameter that varies across the GA run would be op-

timal. However, devising optimal schemes for varying the mutation rate is a difficult task. The

notion of error threshold might be relevant to this enterprise as it possesses an upper limit to the

mutation parameter beyond which evolutionary search woulddegenerate into random search. In a

similar vein, consensus sequence plots may suggest optimalmutation rate schedules. Consensus

sequence plots show differences in the error threshold magnitude across the genotype, which are

more clearly observed on Royal Staircase functions (Chapter 5, Figures 5.7, 5.17). This supports

the idea that a time-varying scheme for the mutation rate would be optimal. This idea was origi-

nally proposed by Fogarty (1989), who found that varying themutation rate over time and across

the bit representation of individuals (or both), significantly improved the performance of the GA.

Later on, similar findings were reported by Bäck (1992) and Mühlenbein (1992). A clear impli-

cation of the findings in this dissertation is that, not only can useful estimates of optimal mutation

rates be inferred from error thresholds, but also that a systematic method of setting a non-fixed

schedule of such rates can be devised for families of real-world application problems. This, then,

deserves further investigation.

Finally, the anomalous results found when estimating optimal mutation rates on GAs without

recombination, and the distinction between a termination criterion considering either generations

or evaluations of newly created individuals (Chapter 6, Section 6.2.1), suggest a potentially inter-

esting line of research. Specifically, that, at least for landscapes with high levels of neutrality, a

mutation-only algorithm with a low mutation rate may produce better performance than a standard

GA, when performance is in terms of new evaluations.

7.5 Final Words

The field of genetic algorithms is characterised, in my opinion, by a big gap between the theory

and the practice. There are very few theoretical results, and, most of them are not relevant for the

practitioner. This thesis is an attempt at bridging this gap. By bringing the notion of error threshold

into the field, new light was shed on the sensitivity of the mutation rate parameter. Also, some

principles concerning the interactions between the mutation rate and other evolutionary parameters

were illuminated. This new understanding is not only relevant from the theoretical point of view,

but was used here to reveal potential useful heuristics concerning parameter interactions and near-

optimal parameter setting.
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