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Introduction

 Search and optimization problems are everywhere, and
search algorithms are getting increasingly powerful

 They are also getting increasingly complex
 Only autonomous self-managed systems that provide

high-level abstractions can turn search algorithms into
widely used methodologies

 Research goal: software systems able to automatically
tune, configure, or even generate and design
optimisation algorithms and search heuristics.
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Introduction

 Several approaches to automated heuristic design
• Offline approaches

– Automated algorithm configuration
– Meta-learning
– Performance prediction

• Online approaches
– Adaptive memetic algorithms
– Adaptive operator selection
– Parameter control in evolutionary algorithms
– Adaptive and self-adaptive search algorithms
– Reactive search
– Algorithm portfolios

• Intelligent optimisation (offline and online)
• Hyper-heuristics (offline and online)
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Motivation
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We have a problem (e.g. exam
timetabling) and a set of benchmark
instances

We develop new methodologies
(ever more sophisticated)

 Apply methodologies to benchmarks
 Compare with other “players”
 The goal is to “get further up the

wall” than the other players
 Consequence: Made to measure

(handcrafted) Rolls-Royce systems

e.g. Exam Timetabling

Benchmark Instances

The “Up the Wall” game
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 Can we develop the ability to automatically work well on
different problems?

 Raising the level of generality
 Still want to get as high up the wall as possible … BUT…
We want to be able to operate on as many different walls

as possible

Consequence: Off the peg, Ford model

One method
that operates
on several
problems

The “Many Walls” game

Motivation
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Motivation

Develop decision
support systems that
are off the peg

Develop the ability to
automatically work
well on different
problems

Research challenges
Automate heuristic

design
• Now made by human

experts
• Not cheap!

How general we could
make hyper-heuristics
• No free lunch theorem
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Motivation
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The General Solver Doesn’t exist….

Problem Specific Solvers

More General These situations exist

Significant scope for future research
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What is a Hyper-heuristic?
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‘standard’ search heuristic

potential Solutions

Operates upon

What is a Hyper-heuristic?
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 Hyper-heuristics
 “Heuristics to choose heuristics”

hyper-heuristic

heuristics

potential Solutions

Operates upon

Operates upon

‘standard’ search heuristic

potential Solutions

Operates upon

What is a hyper-heuristic?
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What is a hyper-heuristic?

All the term hyper-heuristic says is:
• “Operate on a search space of heuristics”

Most meta-heuristics operate directly on
problems

Hyper-heuristics operate on heuristics, which are
then applied on the actual problems

But … hyper-heuristics can be meta-heuristics
Attempt to find the right method or heuristic in a

particular situation
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What is a hyper-heuristic?

 Recent research trend in hyper-heuristics
• Automatically generate new heuristics suited to a given problem

or class of problems
• Combining, i.e. by GP, components or building-blocks of human

designed heuristics

 New definition:
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A hyper-heuristic is an automated methodology for
selecting or generating heuristics to solve hard
computational search problems

E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. Woodward (2009). A Classification of Hyper-
heuristics Approaches, Handbook of Metaheuristics, International Series in Operations Research &
Management Science, M. Gendreau and J-Y Potvin (Eds.), Springer, pp.449-468.
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Origins and early approaches

 Term hyper-heuristics
• First used 1997 (Dezinger et. al): a protocol for combining

several AI methods in automated theorem proving
• Independently used in 2000 (Colwing et. al): ‘heuristic to choose

heuristics’ in combinatorial optimisation
• First journal paper (Burke et. al, 2003)

 The ideas can be traced back to the 60s and 70s
• Automated heuristic sequencing (early 60s and 90s)
• Automated planning systems (90s)
• Automated parameter control in evolutionary algorithms (70s)
• Automated learning of heuristic methods (90s)
• Automated prioritising: “Squeaky Wheel” optimisation (1999)

14Automated Heuristic Design

Perturbation
 Search space: complete

candidate solutions
 Search step: modification of

one or more solution
components

 TSP: 2-opt exchanges
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Construction
 Search space: partial

candidate solutions
 Search step: extension

with one or more
solution components

 TSP: Next-neighbour

Search paradigms
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Classification of hyper-heuristics

Hyper-
heuristics

Heuristic
Selection

Construction
heuristics

Perturbation
heuristics

Heuristic
generation

Construction
heuristics

Perturbation
heuristics

Classification of hyper-heuristics
(nature of the search space)

Heuristic componentsFixed, human-designed
low level heuristics
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Hyper-
heuristics

Online
learning

Offline
learning

No learning

Classification of hyper-heuristics
(source of feedback during learning)

Online
 Learning while solving a

single instance
 Adapt
 Examples: reinforcement

learning, meta-heuristics

Offline
 Gather knowledge from a set of training

instances
 Generalise
 Examples: classifier systems, case-based, GP
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HHs based on construction heuristics vs.
HHs based on perturbation heuristics
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Perturbation Construction

Initial solution Complete Empty

Training phase No (Online) Yes (Offline) and No

Objective function Yes Other measures may
be needed

Low-level heuristics Operate in solution
space

Operate in state space

Stopping condition User-defined (automatic) final state

Re-usability Easy Less (training required
for each problem)

19
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Section2: Heuristic Selection
Methodologies

Case Study 1: A constructive
Hyper-heuristic
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Graph-based hyper-heuristics

A general framework (GHH) employing a set of
low level constructive graph colouring heuristics

Low level heuristics: sequential methods that
order events by the difficulties of assigning them
• 5 graph colouring heuristics
• Random ordering strategy

Applied to exam and course timetabling problem

20

E.K.Burke, B.McCollum, A.Meisels, S.Petrovic & R.Qu. A Graph-
Based Hyper Heuristic for Educational Timetabling Problems. EJOR,
176: 177-192, 2007.
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Examination timetabling

 A number of exams (e1, e2, e3, …), taken by different
students (s1, s2, s3, …), need to be scheduled to a
limited time periods (t1, t2, t3, …) and certain rooms
(r1, r2, r3, …)

 Hard Constraints
• Exams taken by common students can’t be assigned to the same

time period
• Room capacity can’t be exceeded

 Soft Constraints
• Separation between exams
• Large exams scheduled early
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How can we represent/model
this problem?
• There are 7 exams, e1 ~ e7
• 5 students taking different

exams
– s1: e1, e2, e4
– s2: e2, e3, e4
– s3: e3, e4, e5
– s4: e4, e5, e6
– s5: e7

• let’s ignore rooms at the
moment

e1 e3

e4 e5

e6
e7

e2

Examination timetabling

22Automated Heuristic Design

Can be modelled as graph
colouring problems

 Nodes: exams
 Edges: adjacent exams (nodes) have

common students
 Colours: time periods
 Objective: assign colours (time

periods) to nodes (exams), adjacent
nodes with different colour, minimising
time periods used

e1 e3

e4 e5

e6
e7

e2

Examination timetabling
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Graph-based hyper-heuristics

24

Graph Heuristics Ordering strategies

Largest degree (LD) Number of clashed events

Largest weighted degree (LW) LD with number of common students

Saturation degree (SD) Number of valid remaining time periods

Largest enrolment (LE) Number of students

Colour degree (CD) Number of clashed event that are
scheduled

+

Random ordering (RO) Randomly
e1 e3

e4 e5

e6
e7

e2
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heuristic list

SD SD LD CD LE SD SD LW SD LD CD RO …

events

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 …

e1
e9

e3 e26 e25

e1 e9 e3 e26 e25 e6 e17 e28 e19 e10 e31 e12 …
order of events

slots

Graph-based hyper-heuristics
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heuristic list

SD SD LD CD LE SD SD LW SD LD CD RO …

events

e2 e4 e5 e6 e7 e8 e10 e11 e12 …

slots
e1
e9

e3 e26 e25

order of eventsorder of events
e6 e17 e28 e19 e10 e31 e12 e5 e22 e32 e27 e19 …

e6
e19

e28 e17 e10

Graph-based hyper-heuristics
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heuristic list

SD SD LD CD LE SD SD LW SD LD CD RO …

events

e2 e4 e5 e7 e8 e11 e12 …

slots
e1
e9

e3 e26 e25

order of eventorder of events
e5 e32 e19 e22 e13 e31 e12 e7 e2 e15 e27 e12 …

e6
e19

e28 e17 e10
e5
e13

e32
e19

e13

Graph-based hyper-heuristics

27
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 Tabu Search at the high level
• Neighbourhood operator: randomly change two heuristics in the

heuristic list
• Objective function: quality of solutions built by the corresponding

heuristic list
• Tabu list: visits to the same heuristic lists forbidden

 Other high-level search strategies tested
• Steepest Descent
• Variable neighbourhood search → best performing
• Iterated Steepest Descent

Automated Heuristic Design 28
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search space of GHH solution space of problem

A

B

C

a

b

c

d

Two search spaces
search space of heuristics: sequences of low level
heuristics
solution space of problem: actual solutions

Graph-based hyper-heuristics
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Heuristic Selection
Methodologies

Case Study 2: HyFlex and
automated heuristic selection

Automated Heuristic Design

Hyper-heuristics Research Challenge

Challenge

Can we develop the ability to automatically work
well on different problems?

Raising the level of generality
Develop search methodologies that are more

generally applicable

31
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However ...

Current hyper-heuristic
research

HyFlex (Hyper-heuristics
Flexible framework)

 Papers deal with very few
problems: sometimes 2,
rarely 3, ... mostly only 1!

 Question: Can we
produce a benchmark to
test the generality of
heuristic search
algorithms?

 A software framework
(problem library) for
designing and evaluating
general-purpose search
algorithms

 Provides the problem-specific
components

 Efforts focused on designing
high-level strategies

32
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HyFlex: re-use and Interchange

* *
...

Problem Domains
(problem specific )

1 1

2 2

...

n m

Hyper-heuristics
(general purpose)

HyFlex

33
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Domain Barrier

Decide which heuristic, i, to apply to which solution, j,
and where to store it in the list of solutions, k. Based only
on past history of heuristics applied and objective function
values returned

Hyper-heuristic

Heuristic
Repository

Problem Domain

 Problem
representation
 Problem
instances
 Evaluation
function f(sk)
 List of solutions

 Others…

H1

…H2

Hn

f(sk) (i, j, k)
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HH fremework:(Cowling P., Kendall G. and Soubeiga, 2000, 2001), (E. K. Burke et al., 2003)
Extension: J. Woodward, A. J. Parkes, G. Ochoa, A Mathematical Framework for Hyper-heuristics. PPSN Hyper-
heuristics Workshop. 2008

Automated Heuristic Design

Overview of the problem domain
modules
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1. A routine to initialise (randomised) solutions
2. A set of heuristics to modify solutions

a. Mutational: makes a random modification
b. Ruin-recreate: partially destroy a solution and rebuild

it using a constructive procedure
c. Local-search: iterative procedures searching on the

neighbourhood of solutions
d. Crossover: takes parent solutions and produce

offspring solution
3. A set of interesting instances, that can be easily

loaded (LoadInstance(i))
4. A population or list of solutions

36

Four Problem
Domains

MAX-SAT

Bin Packing

Personnel
Scheduling

Flow Shop
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Personnel scheduling
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Instances: Wide range
of data sets (Industry,
Academia, +10
countries)

Low level heuristics:
12, different types. LS
based on new,
horizontal and vertical
moves

Horizontal swap:
move shifts in single
employee’s work
pattern

Automated Heuristic Design

HyFlex Hyper-heuristics

 Access to interesting problem domains and instance data
 Rich variety of low-level heuristics
 Example: Adaptive Iterated Local Search

• On-line learning mechanisms for intelligently selecting the
mutation operation in the perturbation phase

– Choice function
– Extreme value based adaptive operator selection

• Good overall performance across the four test domains
• Note: additional slides will be added at the presentation
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The Cross-domain Heuristic Search
Challenge (CHeSC 2011)

http://www.asap.cs.nott.ac.uk/chesc2011

Staff Roster Solutions
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Description of the challenge
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Instances
:

MAX-SAT

Bin Packing

Personnel
Scheduling

Flow Shop

Hidden
Domain

SAT Instance 1:
HH1 – 34
HH2 – 23
HH3 – 27
HH4 – 10
HH5 – 30
...

 The Decathlon Challenge of search
heuristics

Automated Heuristic Design



Conclusions of 1st Section

 Main feature: search in a space of heuristics
 Term used for ‘heuristics to choose heuristics’ in 2000
 Ideas can be traced back to the 60s and 70s
 Two main type of approaches

• Heuristic selection
• Heuristic generation

 Ideas from online and offline machine learning are
relevant, as are ideas of meta-level search

41

A hyper-heuristic is an automated methodology for
selecting or generating heuristics to solve hard
computational search problems

Automated Heuristic Design

Future work

 Generalisation: By far the biggest challenge is to develop
methodologies that work well across several domains

 Foundational studies: Thus far, little progress has been
made to enhance our understanding of hyper-heuristic
approaches

 Distributed, agent-based and cooperative approaches:
Since different low-level heuristics have different
strengths and weakness, cooperation can allow synergies
between them

 Multi-criteria, multi-objective and dynamic problems: So
far, hyper-heuristics have been mainly applied to single
objective and static problems
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Section 3
Heuristic Generation

Methodologies
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Outline
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Introduction to this section
• Hyper-Heuristic Definition
• What’s the Point?

Case Study 1: SAT
Case Study 2: Flow Shop
Case Study 3: Bin Packing
Conclusion
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Hyper-Heuristic Definition
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“A hyper-heuristic is an
automated methodology

for selecting or
generating heuristics

to solve hard
computational search

problems”

Automated Heuristic Design

Two Types of Hyper-Heuristic?

48

Hyper
Heuristic

Heuristic

Problem

Heuristic Heuristic Heuristic Heuristic

A Hyper Heuristic Model:

Heuristics
defined by the
user

Domain-Specific
Heuristic Defined by the
Hyper-Heuristic

Hyper Heuristic to
Generate Heuristics

Heuristic
????
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What’s the Point?

49

We spend a lot of time testing, and fine
tuning, solution methods.
They are usually specialised to a particular

problem instance set, with certain
characteristics.
Automating this creative process can

potentially save time and/or effort.
Humans still have a creative role in

heuristic generation, but the idea is that
more of the process is automated.

Automated Heuristic Design 50

What’s the Point?

Automated Heuristic Design
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Heuristic Generation
Methodologies
Case Study 1
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CASE STUDY 1
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Evolving Heuristics for SAT
Bader-el-Din and Poli, 2007
Based on Fukunaga, 2004, 2008
SAT local search heuristics can be evolved

from a set of components, obtained by
analysing existing heuristics from the
literature
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Evolving Heuristics for SAT
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Make a boolean expression true
(¬A or B or C) AND (B or ¬C or E) AND

(¬B or A or ¬D) AND (…) AND (…) …
Hundreds/thousands of variables and

clauses
Local search heuristics iteratively choose a

variable to flip.

Automated Heuristic Design

Existing Heuristics for SAT
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GSAT
• Flip variable which removes the most broken clauses

(highest ‘net gain’)
HSAT

• Same as GSAT, but break ties by choosing the
variable that has remained ‘unflipped’ for the longest

HARMONY
• Pick random broken clause BC. Select the variable V

in BC with highest net gain, unless V has been flipped
most recently in BC. If so, select V with probability p.
Otherwise, flip variable with 2nd highest net gain

Automated Heuristic Design

Existing Heuristics for SAT
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GWSAT
• With probability

0.5, apply GSAT
• Otherwise flip a

random variable
in a random
broken clause. Random

Tie:
RandomAll

Flip

IF

50% Max Net
Gain

Broken
Clause

Automated Heuristic Design

Evolving New SAT Heuristics

56

They define a
grammar,
which can
represent many
heuristics from
the literature,
and new
heuristics

Taken from: Bader-El-Din and Poli, “Generating SAT local-search
heuristics using a GP hyper-heuristic framework”, Proceedings of
the 8th International Conference on Artificial Evolution. 2007. pp
37-49
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Evolving New SAT Heuristics
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Flip

Maximum
Net Gain

Tie:
Age

All
Clauses

IF

20% Broken
Clause

Automated Heuristic Design

Lessons – Case Study 1
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Existing local search heuristics were
broken down into components
These heuristics return a variable to flip,

not a value or ‘score’
Local search heuristics evolved here,

rather than constructive heuristics

Automated Heuristic Design
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Heuristic Generation
Methodologies
Case Study 2
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CASE STUDY 2
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Multi-Objective Scheduling
Tay and Ho, 2008
In a multi-objective flexible job shop

problem, composite dispatching rules can
be evolved which dominate human
created rules from the literature

Automated Heuristic Design



Job-Shop Scheduling

Machine Machine Machine Machine

Jobs,
consisting of
operations

61Automated Heuristic Design

Job-Shop Scheduling

Machine

Queue of
operations

How should we
decide which
operation to
process next?
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Dispatching Rules
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Existing dispatching rules from the
literature can be written as formulas,
containing:

Release Date
Due Date
Operation Processing Time
Job Processing Time Remaining
Current Time
Number of Operations in Job
Total Job Processing Time
+ - * /

Automated Heuristic Design

Evolved Dispatching Rules

64

RD + 2PT + 2TPT + nOPS
Higher priority to:

• Smaller processing time
• Jobs with less operations

RD + DD + TPT + PT – 2(RD / nOPS)
Higher priority to:

• Smaller processing time
• Jobs with more operations

Automated Heuristic Design



Lessons – Case Study 2

65

They found that some elements are
useful, which are ignored in the literature
So can discover counter-intuitive

heuristics
They fix some of the algorithm, and

evolve one decision making component.
Operations are assigned to machines with

a fixed algorithm. The order of operations
at each machine is decided by the evolved
heuristic.

Automated Heuristic Design

Sufficient Components
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Due date, processing time, current time
Slack = due date – processing time – current

time
‘Slack’ can be added as a single component
Eliminates the need for slack to be evolved
But, slight variations of slack cannot be

evolved
‘Expressivity’ versus ‘Design Effort’

Automated Heuristic Design
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Heuristic Generation
Methodologies
Case Study 3
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CASE STUDY 3

68

One Dimensional Bin Packing
Burke, Hyde, Kendall, and Woodward

2007
Heuristics can be evolved that are

specialised to different types of problems

Extended to two dimensional packing
heuristics in Burke, Hyde, Kendall, and
Woodward 2010
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The Bin Packing Problem

69

Pack all the pieces
into as few bins as
possible

90
120

30 45

70

…

70

85

30

60

…
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The Bin Packing Problem Set
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Online
7 problem classes

7 Training sets 7 Validation sets

Bin Capacity 150
120 items

GP Parameters Outline

50 generations
90% crossover
10% reproduction
Functions and terminals:

• Bin Capacity
• Bin Fullness
• Piece Size
• +, - , *, %, ≤

C

S

F

1000 population
Fitness proportional

selection
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Evolving Bin Packing Heuristics
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90 120
70

30 45

70
85

30 60

-15 -3.75 3 4.29 1.88

-

+

FS

C

%

C
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Illegal Heuristics
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Permitted
High penalty
The system evolves

an understanding
of the rules

85

70

30

60

+

CC
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Results - Specialisation of Heuristics
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classsuper-class

class

super-class

super-classsuper-super-class

class
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Results - Specialisation of Heuristics
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super-class

class

super-class

super-super-class

classclass class

Automated Heuristic Design

Results - Robustness of Heuristics

= all legal results

= some illegal results
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Example of an evolved heuristic

77

Heuristic evolved on instances with the widest
distribution

Tested on
instances with
piece sizes
between 10-29

The heuristic performs very badly, by
putting just one piece into each bin

Automated Heuristic Design

Example of an evolved heuristic
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The heuristic always scores the empty
bin as the best

27 15 151812

2127

21

15

12

12 12
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Lessons – Case Study 3
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Heuristics can be specialised to
specific types of sub problem
Heuristics may not work at all on new

instances if they contain different
distributions of pieces
The training set must be

carefully chosen to ensure it
represents every type of problem that
the heuristic must solve in the future

Automated Heuristic Design

Conclusion
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Presented three case studies which highlight
different research issues

Humans will (always?) still have a role in
heuristic generation

The hyper-heuristic automates the process of
combining elements that have been chosen
by humans

Our role moves from designing heuristics to
designing the search space in which the
best heuristic is likely to exist
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