
Error Thresholds and their Relation toOptimal Mutation RatesGabriela Ochoa, Inman Harvey, and Hilary BuxtonCentre for the Study of EvolutionCentre for Computational Neuroscience and RoboticsCOGS { The University of SussexFalmer, Brighton BN1 9QH, UKfgabro,inmanh,hilarybg@cogs.susx.ac.ukAbstract. The error threshold| a notion from molecular evolution |is the critical mutation rate beyond which structures obtained by theevolutionary process are destroyed more frequently than selection canreproduce them. We argue that this notion is closely related to the morefamiliar notion of optimal mutation rates in Evolutionary Algorithms(EAs). This correspondence has been intuitively perceived before ([9],[11]). However, no previous study, to our knowledge, has been aimed atexplicitly testing the hypothesis of such a relationship. Here we proposea methodology for doing so. Results on a restricted range of �tness land-scapes suggest that these two notions are indeed correlated. There is not,however, a critically precise optimal mutation rate but rather a rangeof values producing similar near-optimal performance. When recombi-nation is used, both error thresholds and optimal mutation ranges arelower than in the asexual case. This knowledge may have both theoret-ical relevance in understanding EA behavior, and practical implicationsfor setting optimal values of evolutionary parameters.1 IntroductionThe error threshold | a notion from molecular evolution | is the critical mu-tation rate beyond which structures obtained by the evolutionary process aredestroyed more frequently than selection can reproduce them. With mutationrates above this critical value, an optimal solution would not be stable in thepopulation, i.e., the probability that the population loses these structures is nolonger negligible. On the other hand, an optimum mutation rate | a more fa-miliar notion within the EAs community | is the mutation value which solvesa speci�ed search or optimization problem with optimal e�ciency, that is withthe least number of generations or function evaluations.The notion of error threshold seems to be intuitively related to the idea of anoptimal balance between exploitation and exploration in genetic search. In thissense, we argue that optimal mutation rates are related to error thresholds. Theaim of this paper is to test this hypothesis using an empirical approach togetherwith knowledge from molecular evolution theory.



Optimal parameter settings have been the subject of numerous studies withinthe EA community [2], [6], [17], and particular emphasis has been placed on�nding optimal mutation rates [9]. There is, however, no conclusive agreementon what is best, most people use what has worked well in previously reportedcases. It is very di�cult to formulate a priori general principles about parametersettings, in view of the variety of problem types, encodings, and performance cri-teria possible in di�erent applications. Our hypothesis | that optimal mutationrates are correlated to the notion of error thresholds | promises practical rele-vance and useful guidelines in �nding optimal parameter settings, thus enhancingevolutionary search.In the remainder of the paper we summarize the knowledge from molecularevolution relevant to our argument: the notions of quasispecies and error thresh-olds; we discuss the relation between error thresholds and optimal mutationrates; and we describe the �tness landscape used for our experiments: the RoyalStaircase functions. Thereafter, we describe the empirical methodology used totest the hypothesis under study, we present the experimental results obtained,and we discuss the insight gained.2 Quasispecies And Error ThresholdsThe concept of a `quasi-species' was developed in the context of polynucleotidereplication, and in particular studies of early RNA evolution [3], [4], [5]. A pro-tein space, [12] or more generally a sequence space, can be modelled as the spaceof all possible sequences of length � drawn from a �nite alphabet of size A.Each sequence has a �tness value which speci�es its replication rate, or expectednumber of o�spring per unit time. The �tnesses of all A� possible sequencesde�ne a `�tness landscape'. When A = 2, a binary alphabet, the �tness land-scape is equivalent to specifying �tness values at each vertex of a �-dimensionalhypercube; with some mathematical imagination | and some caution | thiscan be pictured as spread out over a geographical landscape where �tness isanalogous to height, and the dynamics of evolution of a population correspondsto movement of the population over such a landscape.Given an in�nite population, and a speci�ed mutation rate governing errorsin (asexual) replication, one can determine the stationary sequence distributionreached after any transients from some original distribution have died away[4]. Unless the mutation rate is too large or di�erences in �tnesses too small,the population will typically cluster around the �ttest sequence(s), forming aconcentrated cloud; the average Hamming distance between two members ofsuch a distribution drawn at random will be relatively small. Such a clustereddistribution is called a `quasi-species'. As the mutation rate is increased, thelocal distribution widens and ultimately loses its hold on the local optimum.This can be seen at its clearest in an extreme form of a �tness landscapewhich contains a single peak of �tness � > 1, all other sequences having a �tnessof 1. With an in�nite population there is a phase transition at a particular errorrate p, the mutation rate at each of the � loci in a sequence. In [5], this critical



error rate (the error threshold) is determined analytically (Equation 1), and itis de�ned as the rate above which the proportion of the in�nite population onthe peak drops to chance levels. p = ln(�)� (1)In equation 1, � represents the selective advantage of the master sequenceover the rest of the population, and � the chromosome length. In the simplestcase � is the ratio of the master sequence reproduction rate (�tness) to theaverage reproduction rate of the rest.2.1 Error Thresholds In Finite PopulationsIn [14] the calculations of an error threshold for in�nite asexually replicatingpopulations are extended to �nite populations (we shall call the critical rate pMfor a population of size M ). Finite populations lose grip on the solitary spikeof superior �tness easily, because of the added hazard of natural uctuationsin this case. In [15], we derived a reformulation of the Nowak and Schusteranalytical expression. This new expression (equation 2) explicitly approximatesthe extent of the reduction in the error threshold as we move from in�nite to�nite populations. The expression strictly should be an in�nite series in whichsuccessive terms get smaller; here, we are ignoring all after the �rst few:pM = ln(�)� � 2p� � 1�pM + 2ln(�)p� � 1�2pM (2)3 Error Thresholds and Optimal Mutation RatesThe notion of error threshold seems to be intuitively related to the idea of anoptimal balance between exploitation and exploration in genetic search. Too lowa mutation rate implies too little exploration; in the limit of zero mutation, suc-cessive generations of selection remove all variety from the population, and oncethe population has converged to a single point in genotype space all further ex-ploration ceases. On the other hand, clearly, mutation rates can be too excessive;in the limit where mutation places a randomly chosen allele at every locus on ano�spring genotype, then the evolutionary process has degenerated into randomsearch with no exploitation of the information acquired in preceding generations.Any optimal mutation rate must lie between these two extremes, but itsprecise position will depend on several factors including, in particular, structureof the �tness landscape. It can, however, be hypothesized that where evolutionproceeds through a successive accumulation of information then a mutation rateclose to the error threshold is an optimal mutation rate for the landscape understudy; since this should maximise the search done through mutation subject tothe constraint of not losing information already gained. The main purpose ofour paper is to empirically test this hypothesis (section 5).



Some biological evidence supports the relationship between error thresholdsand optimalmutation rates. Eigen and Schuster [5] have pointed out that viruses| which are very e�ciently evolving entities | live within and close to the errorthresholds given by the known rates of nucleotide mutations. This correspon-dence has also been noticed before in the GA community: Hesser and Manner[9], devised a heuristic formula for optimal setting of mutation rates inspired byprevious work on error thresholds [14]; Kau�man [11] (p. 107) also suggest arelationship between these two notions.4 Royal Staircase Fitness Functionsvan Nimwegen and Crutch�eld [19] proposed the Royal Staircase functions foranalyzing epochal evolutionary search. This class of functions are related to theprevious Royal Road functions [13]. In [19] the authors justify their particularchoice of �tness function both in terms of biological motivations and in terms ofarti�cial evolution issues. In short, many biological systems and arti�cial evolu-tion problems have highly degenerate genotype-to-phenotype maps; that is, themapping from genetic speci�cation to �tness is a many-to-one function. Conse-quently, the number of di�erent �tness values that genotypes can take is muchsmaller than the number of di�erent genotypes. Moreover, due to its high dimen-sionality, it is possible for the genotype to break into networks of \connected"sets of equal-�tness genotype that can reach each other via elementary geneticvariation steps such as point mutation. These connected subsets of iso-�tnessgenotypes are referred to as \neutral networks"[10].Our paper is guided by the working hypothesis that many real search prob-lems have genotype search spaces that decompose into a number of such neutralnetworks. Such neutrality has been observed in problem domains as diverse asmolecular folding [18], evolvable hardware [8], and evolutionary robotics [7]. Onesymptom of evolutionary search where neutral networks are important is thatof long periods of (sometimes noisy) �tness stasis ( | search along a neutralnetwork) punctuated by occasional �tness leaps ( | transitions to a higher neu-tral network). The Royal Staircase class of �tness functions capture the essentialelements discussed above, and are suitable for evaluating our hypothesis. Theyare de�ned as follows [19]:1. Genotypes are speci�ed by binary strings s = s1s2 : : : sL; si 2 f0; 1g, oflength L = NK.2. Starting from the �rst position, the number I(s) of consecutive 1s in a stringis counted.3. The �tness f(s) of string s with I(s) consecutive ones, followed by a zero,is f(s) = 1 + bI(s)=Kc. The �tness is thus an integer between 1 and N + 1,corresponding to 1 plus the number of consecutive fully-set blocks startingfrom the left.4. The single global optimum is s = 1L; namely, the string of all 1s.Fixing N (number of blocks) and K (bits per block) determines a particularproblem or �tness landscape.



5 Experimental DesignThe approach taken here is to independently assess error thresholds and optimalmutation rates, comparing then these two measures.For the experiments, we used Royal Staircase functions (section 4). The ratio-nale for this choice is two-fold. First, because we agree with their proposers [19]that these functions, despite their simplicity, have some ingredients encounteredin evolutionary search problems. Secondly, because Staircase functions have astep feature similar to that of single peak landscapes. Theoretical results on er-ror thresholds are available for single peak landscapes. Error thresholds can beextended to other landscapes, however, a degree of ruggedness is needed.We used a generational GA with �tness proportional selection and withoutelitism. Fitness functions were Staircase functions. Speci�cally, we tested 6 dif-ferent functions (choices of N and K): N = 1-3, K = 10; and N = 4-6, K = 5.Population size was 100, genetic operators were standard bit mutation and two-point crossover with a rate of 0.6. Several mutation rates were tested, from 0.0to 0.2 expected mutations per bit. The algorithm was run in two modes Asexual:using mutation only; and Sexual: using both mutation and recombination. Eachrun lasted a maximum of 5000 generations.5.1 Empirically Determined Optimal Mutation RatesFor the purpose of this paper, we de�ned the optimal mutation rate as thatwhich �nds the peak (on average) with the least number of generations.For determining optimal mutation rates as de�ned above, we ran the GAstarting from a random population, and stored the generation number at whichthe peak was attained for the �rst time. This measure was averaged over 100trials for each mutation rate tested.5.2 Empirically Determined Error ThresholdsThe error threshold is the critical mutation rate beyond which structures ob-tained by the evolutionary process are destroyed more frequently than selectioncan reproduce them. Aiming at capturing this de�nition in an algorithm, wedesigned the following method for empirically estimating error thresholds:For the selected range of mutation rates:{ Start from a population of all 1s, that is, all members on the peak.{ Run the GA for a maximum of 5,000 generations or until the whole popula-tion has completely lost the peak.{ Count how many times, out of 100 trials, the population completely losesthe peak.For low mutation rates, at least one member of the population is on thepeak during all the generations, for all the 100 trials. As the mutation rate isincreased, there is a point where the population completely loses the peak for



some or all the 100 trials. The error threshold is identi�ed as the mutation ratewhere this transition occurs. The observations are approximate in that, �rstly,precision is limited to the mutation step size used, and secondly, the limit of5,000 generations was assumed to be su�ciently long for the purpose.Validating the Empirical Method For validating the empirical method de-scribed above, we designed the following experiment: we considered a single peaklandscape with � = 2, and for distinct string lengths (10, 25, 50, 100, and 200),we calculated the error threshold analytically using equation 2 (valid for �niteasexual populations). The population size, M , was 100. Results of these calcula-tions are shown in the second column of table 1. Next, for the the same landscapeand settings, we estimated the error thresholds empirically following our method.Results of these estimations are shown in the third column of the table. There isreasonable agreement between analytical and empirical �gures, though worst atshort string lengths. The empirical �gures were always higher than the analyticalones, which is related to the limited number of generations used. The higher thenumber of generations the lower one should expect the empirical �gure to be;the analytical �gure assumes an in�nite number of generations.Table 1. Comparing Analytical and Empirical Error Thresholds on a Single PeakLandscape String Length Analytical Empirical10 0.05 0.1125 0.02 0.0350 0.01 0.015100 0.005 0.006200 0.003 0.0046 ResultsFigure 1 summarizes experimental results for the six landscapes studied. Thecurves show the number of generations to reach the global peak as a functionof the mutation rate, for asexual and sexual populations. Each data point givesthe number of generations for �nding the peak averaged over 100 runs. Optimalmutation rates are those which �nd the peak with the least number of gen-erations. Two general trends may be observed, if one excludes the �rst resultshown. First, there is not a single critically precise optimal mutation rate, butinstead a range of mutation values producing near-optimal results. The curvesare U-shaped with a at bottom. Secondly, the curves for sexual populationsare shifted to the left, that is, to lower mutation values, when compared to theasexual population curves.In the plots we indicate the empirically estimated error thresholds for asexual(solid arrows) and sexual (dotted arrows) populations. Error thresholds for the



landscapes studied were found to be within the range of optimal mutation rates,for both asexual and sexual populations. The results support the hypothesizedrelationship between these two measures.An exception to these general trends is the plot for N = 1, K = 10. Thisscenario is equivalent to a single peak landscape, where a single string has thehighest �tness, and all the others strings have the same but lower �tness. Therationale for hypothesising that optimal mutation rates are correlated with op-timal mutation rates (Section 3) was that of maximising search subject to theconstraint of not losing information already gained. However, this landscape isan extreme case where there is no intermediate step, no accumulation of in-formation which might be lost through excessive mutation. The peak is foundrandomly without any gradual approach. Here, high mutation rates (close to1.0) were optimal for both asexual and sexual populations.Notice that error thresholds for sexual populations were, in all cases, lowerthan for asexual populations. A similar trend is observed for optimal mutationrates; this is compatible with the hypothesized correlation between error thresh-olds and optimal mutation rates.The experiments determining optimal mutation rates showed standard devi-ations of the same order as the average number of generations measured. Thus,there were large run-to-run variations in the time to reach the optimal string.This observation was also reported by van Nimwegen and Crutch�eld who per-formed similar experiments using the Royal Staircase function [19]. Figure 2shows standard deviations for the N = 2, K = 10 landscape.7 DiscussionOur results suggest that error thresholds and optimal mutation rates are indeedcorrelated. This empirical evidence supports previous intuitions expecting thiscorrelation [9] [11], [15], [16]. There is not, however, a single critically precisevalue for the optimal mutation rate, but instead a range of values producingnear-optimal performance. The error threshold, on the other hand, is a moreprecise measure. Hence, mutation rates slightly lower or higher than estimatederror thresholds are likely to produce near-optimal results.The implication of this �nding is two-fold. First, theoretically, in helping tounderstand EAs' behavior, as insights regarding error thresholds will be reectedin our understanding of optimalmutation rates. Second, practically, as heuristicsfor �nding error thresholds will provide useful guidelines for setting optimalmutation rates, thus improving the performance of EAs.In our experiments, both error thresholds and optimal mutation ranges werelower for sexual compared to asexual populations. This result has been observedbefore: a recent work from the evolutionary biology literature [1] studied therole of recombination on evolving population of viruses, particularly, the e�ectof recombination on the magnitude of the error threshold. They report thatrecombination shifts the error threshold to lower mutation rates. Moreover, in[16], now in the realm of genetic algorithms, we found that recombination shifts
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Fig. 1. For the six di�erent landscapes explored, plots show the number of generationsfor �nding the peak (Y axis) as a function of the mutation rate (X axis | note thescale is not linear at the lower end of the axis), for both asexual and sexual populations.Error thresholds are indicated by solid vertical arrows (asexual) and dotted verticalarrows (sexual).
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